advanced steps with simplegeo

27
Advanced steps with Simple Advanced steps with Simple Chris Theis

Upload: africa

Post on 22-Feb-2016

50 views

Category:

Documents


0 download

DESCRIPTION

Advanced steps with SimpleGeo. Chris Theis. Overview. Different visualization modes Geometry sections Visualization of biasing Volume & mass calculation Replicas Measures, Precision & geometry sharing. Visualization BiasingVolume & mass calculation. Different visualization modes. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Advanced steps with  SimpleGeo

Advanced steps with SimpleGeoAdvanced steps with SimpleGeoChris Theis

Page 2: Advanced steps with  SimpleGeo

OverviewDifferent visualization modes

Geometry sections

Visualization of biasing

Volume & mass calculation

Replicas

Measures, Precision & geometry sharing

Page 3: Advanced steps with  SimpleGeo

Different visualization modesVisualization Biasing Volume & mass calculation

3

Typical problem – visualizing the “inside” of objects while preserving the full appearanceof the surrounding structure

Solution: Solution: 1.) Define the material (e.g. concrete) transparent but this would render all concrete structures transparent

2.) Use “X-ray” or “Edge ray” properties

Page 4: Advanced steps with  SimpleGeo

Different visualization modes

Visualization Biasing Volume & mass calculation

1. Select the body you would like to make transparent2. In the “Viz attributes” section on the right of your screen choose either “X-ray mode” or “Edge-Ray mode”

X-ray Edge-ray

* The gradient background can be enabled via the menu “View Settings…”** Always enable “Gouraud shading” for high quality plots (“View Shading…”)

Page 5: Advanced steps with  SimpleGeo

Different visualization modesVisualization Biasing Volume & mass calculation

Sketched contours (shaded) Sketched contours (non-shaded)

“Hand drawn” contours

Page 6: Advanced steps with  SimpleGeo

Different visualization modesVisualization Biasing Volume & mass calculation

“Hand drawn” contours are user configurable via the menu “View Settings” dialog

Frequency & amplitude = level of jitteringEdge overrun => 0 = no over-drawn edges

frequency = 0.05amplitude =0.0004edge overrun => 0.1

frequency = 0.005amplitude =0.0004edge overrun => 0.3

* Decreasing the frequency and the amplitude + enabling of anti-aliasing (“view” menu) yields thicker, chalk-like lines.

Page 7: Advanced steps with  SimpleGeo

Different visualization modes – interactive shadows

Visualization Biasing Volume & mass calculation

Enabling shadows via the “View” Shadows menu enhances the depth of an image

No shadows Hard shadows

Soft shadows

Soft shadows will be only available in SGversions > 4.2

They can be configured via the “View” “Settings” dialog.

More samples = nicer penumbra but longer calculation times (more powerful GFX card)

Page 8: Advanced steps with  SimpleGeo

1.) Select “CAD 2D template” “Load” file2.) Select projection (XY, YZ, etc.), unit and scaling factor in the dialog that pops up

3.) Configure the display of the drawing in terms of position, rotation, axis dependent scaling, line styles

Hint: The CAD template can be moved interactively by selecting the menu “CAD 2D template” “Move CAD template”. It will be moved in the current work plane and by pressing Shift it can be moved perpendicularly

Different visualization modes – CAD templateVisualization Biasing Volume & mass calculation

AutoCAD 2D DXF files can be loaded as templates to be super-imposed with the 3D geometry allows for comparing the CSG model to a technical drawing. (SG version > 4.2!)

Page 9: Advanced steps with  SimpleGeo

Different visualization modes – CAD templateVisualization Biasing Volume & mass calculation

Page 10: Advanced steps with  SimpleGeo

Different visualization modes – rendering into imagesVisualization Biasing Volume & mass calculation

SG versions > 4.2 support interactive rendering of geometries & also DaVis3D results into images.

Page 11: Advanced steps with  SimpleGeo

Different visualization modes – voxel geometriesVisualization Biasing Volume & mass calculation

DaVis3D can be used to display cuts through voxel geometries. Since the end of 2010 it is possible to directly load FLUKA binary voxel geometry files. The colors are user configurable (see manual).

Page 12: Advanced steps with  SimpleGeo

Visualization of importance biasing

Visualization Biasing Volume & mass calculation

Geometric importance biasing settings can be visualized by coloring their contours according to their importance.

Allows for checking for erroneous discontinuities

1.) Select “View Shading Render importance”

2.) Set the importance range, number of colors as well as the color scheme.

Page 13: Advanced steps with  SimpleGeo

Geometry sections

13

Visualization Biasing Volume & mass calculation

For better understanding we would like to “cut out” a part of the geometry or create a full sectionwith a plane.

Page 14: Advanced steps with  SimpleGeo

Geometry sections Create a body which will be used as a section body (cookie cutter) and place it at the correct position.

Select this body and choose from the menu “Edit Create section of whole geometry”. This will modify the whole geometry

in order to subtract the respective body! The file extension is changed to “.sec.dat” to avoid mistaking this geometry, which is intended for visualization only, with an ordinary one that can be

exported for simulations.

14

Visualization Biasing Volume & mass calculation

Page 15: Advanced steps with  SimpleGeo

Geometry sections

15

Visualization Biasing Volume & mass calculation

Note: The parameters of the section body (size, position) can be changed even after it has been subtracted. All changes will be propagated immediately to the rest of the geometry. It is also possible to remove the section body from some regions in order to exclude them from being sliced.

Page 16: Advanced steps with  SimpleGeo

BiasingVisualization Biasing Volume & mass calculation

Task: Splitting of one body/region into several sub-regions for importance biasing

1.) Select the body/region2.) From the (context) menu choose “Biasing wizard Splitting wizard”3.) Set the number of sub-regions, the dimension in splitting direction (=distance of the splitting planes) & splitting direction4.) Press okay full region description will be created automatically

Page 17: Advanced steps with  SimpleGeo

BiasingVisualization Biasing Volume & mass calculation

Task: Creation of concentric, encapsulated structures

1.) Select the body (only box, cylinder or sphere!)2.) From the (context) menu choose “Biasing wizard Concentric regions”

3.) Set the geometry modification parameters Optionally the importances can be applied as well e.g.: entering 1.4 would apply 1.4 to the first region, 1.4^2 to the second, 1.4^3 to the third etc….

4.) Press okay full region description will be created automatically

Page 18: Advanced steps with  SimpleGeo

Volume & mass calculationVisualization Biasing Volume & mass calculation

What is the volume & the mass of this object?

Select the object & from the context menu (right click) choose “Volume & mass calculation”

Page 19: Advanced steps with  SimpleGeo

ReplicasReplicas

To create a complex geometry which contains several cloned replicas of one prototype as a full geometry instead of a virtual lattice copy one can use SimpleGeo’s replica function.

1.) Create a prototype, e.g., of a magnet

2.) Do NOT include any surrounding regions with the exception of a box which contains your whole prototype. This facilitates the integration in the final geometry.

3.) Save this prototype to a file.

4.) Open the final geometry and choose “File Merge”. Select the file containing the prototype.

5.) In the following dialog answer “Yes” to keep the prototype grouped.

Page 20: Advanced steps with  SimpleGeo

ReplicasReplicas

6.) In the CSG tree you will find the prototype as a group named “Root”. You can change this name according to your preference.

7.) Select the grouped prototype and modify its position parameters to place it correctly.

8.) Subtract the container box of the prototype from its surrounding volume (etc. the surrounding air)

9.) Create a replica of the grouped prototype (Ctrl + C) a fully independent clone will be created with independent body primitives. Move this replica to its final position by changing its position parameters. Repeat step 8 and continue as often as you would like.

ATTENTION:ATTENTION:The new regions/bodies will carry unique names based on the original names + suffix. Some codes like FLUKA have a limit of 8-10 characters for names!! Thus, one might have to manually adapt these names if they become too long. For codes like PHITS this does not pose a problem as SimpleGeo’s exporter automatically converts names to numbers.

NOTE:NOTE:Please read also the “Create replicas” section in the manual for further information.

Page 21: Advanced steps with  SimpleGeo

ReplicasReplicas Measures 2D/3D Precision

Page 22: Advanced steps with  SimpleGeo

Measures (2D/3D)Replicas Measures 2D/3D Precision

What are the dimensions of this object?You can measure dimensions/distancesin 2D or in 3D but you need to pay attentionto the following constraints:

2D:2D:

-Distances/measures can be defined freely without any dependence on the geometry -Results are only meaningful if the measures are placed in parallel and not in perspective view. the view should be aligned to the axis-system of the geometry (use F1, F2, F3 keys, etc…)

3D:3D:

-Distances can be measured independently of the perspective-as the screen/mouse are 2D devices the third coordinate for the start/end of the measure has to be obtained from a list of known points bound to geometry vertices

Page 23: Advanced steps with  SimpleGeo

Measures (2D)Replicas Measures 2D/3D Precision

1.) Press F10 or select . This will automatically change into the parallel projection mode.

2.) Choose the most suitable perspective (F1, F2, F3 etc…)

3.) Click once on your geometry to define the starting point. While moving the mouse the actual distance w.r.t. start will be shown next to the cursor.

4.) Click again to define the end point.

5.) Press Esc to remove all measures from the screen.

Try also to automatically obtain horizontal & vertical measures.The number of displayed digits can be configured via the menu “View Settings”.

Page 24: Advanced steps with  SimpleGeo

Measures 3DReplicas Measures 2D/3D Precision

1.) Click on

2.) All vertices will be marked with green points. The size of the points can be changed via “View Settings” in the field “Snap/Debugpoint size”.

3.) Click on the first vertex to define the starting point.

4.) Click on another vertex to define the end point.

Page 25: Advanced steps with  SimpleGeo

PrecisionReplicas Measures 2D/3D Precision

• Internally SG uses full double precision for calculations. However, by default only 2 digits, which equals for example 1/100 cm for FLUKA, will be used in the property view.

• You can enter more digits but they will be rounded to 2 in the view for display but not internally for geometry creation!

• The FLUKA, PHITS & MCNP(X) export filters usually use 2 digits with some exception like arbitrary planes which require higher accuracy.

• It is possible to increase the number of digits that are displayed as well as exported. Via the menu “View Settings” you can open a dialog and request a larger number in the field “Number of property digits”.

Note: Note: A larger number of digits does not always reflect higher accuracy! We are dealing with binary floating point arithmetic!!

Currently only the export modules for FLUKA & PHITS support a configurable number of digits.

Page 26: Advanced steps with  SimpleGeo

Sharing geometries/images Mailing of geometries or images is supported directly from within

SimpleGeo. Just select “File Send” and “Geometry” or “Image”.

This will send either the full geometry (incl. the material database) or the currently rendered image to a mail recipient.

Images can be transferred directly from SimpleGeo to other applications like Word etc. For this purpose two options are available:

Copy the full image to the clipboard (Ctrl + Alt + P or via the “Edit” menu) Copy region of the image to the clipboard (Ctrl + Alt + R or via the “Edit” menu)

In this case the user can define the copied region by dragging a rectangle over thescreen.

Mail/Copy/Paste

Page 27: Advanced steps with  SimpleGeo

Thank you for your attentionThank you for your attention

Website: www.cern.ch/theis/simplegeoWebsite: www.cern.ch/theis/simplegeo

Author: Christian.Theis {at} cern . chAuthor: Christian.Theis {at} cern . ch

27