advanced serpentine heat exchangers serpentine heat exchangers 2017building technologies office peer...

19
Advanced Serpentine Heat Exchangers 2017 Building Technologies Office Peer Review Daniel Bacellar [email protected] Optimized Thermal Systems, Inc.

Upload: vukien

Post on 01-May-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Advanced Serpentine Heat Exchangers 2017 Building Technologies Office Peer Review

Daniel Bacellar bacellaroptimizedthermalsystemscom

Optimized Thermal Systems Inc

Project Summary

Timeline Start date 102016

Planned end date 102019

Key Milestones 1 Develop Optimized Fin Geometry 082017

2 Construct Prototype Heat Exchangers 032018

3 Commercialization Plan 102019

Budget Total Project $ to Date 2393797 bull DOE $1788440 bull Cost Share $605357

Total Project $ 663397 bull DOE $509563 bull Cost Share $153834

Key Partners Optimized Thermal Systems Inc

Heat Transfer Technologies (HTT)

United Technologies Research Center (UTRC)

Project Outcome Conceptualize serpentine heatexchangers for HVAC application aiming leakage reduction Design amp Optimize novel ldquodog-bonerdquo fin concepts that result in equivalent orbetter performance than current state-ofshythe-art tube-fin heat exchangers Prototype validate and commercialize

2

Purpose and Objectives

Problem Statement develop heat exchanger design and manufacturing solutions aiming to significantly reduce the direct and indirect impacts of refrigerant leakage in heating ventilating air conditioning and refrigeration (HVACampR) systems

Main Objectives bull Develop serpentine heat exchangers (SHX) with equivalent or better performance than

current state‐of‐the‐art HXrsquos bull Eliminate 90 of the joints in a 3‐ton residential AC heat pump system

bull Develop designs that could be mass produced

Target Market and Audience Heat Pumps and Air Conditioners ndash 31 of end energy use in residential and commercial buildings in 2014

Impact of Project a) New SHX concepts with reduced leakage potential ndash Year 1 b) New tooling and manufacturing approaches ndash Years 1 2 c) SHX Design amp Optimization Prototype amp Validation ndash Year 2 d) Commercialization Plan ndash Year 3 e) Heat Pumps with reduced leakage potential ndash 2‐3 Years after project

3

Approach

Develop SHX for

HVACampR ndash Reduce Leakage

Define Baseline and

Target performance

Design Concepts

Investigation CFD Analyses

Manufacturing Solutions

Investigation

HX Selection Multi‐Physics

Analysis System Performance (VapCycreg)

Tooling Development

Prototyping Validation (wind

tunnel) System Performance

Assessment

Commer‐cialization

Plan

Design Optimization

Optimizer

CFD

CoilDesignerreg

Activities (RampD)Key

Output

Key Output

Short-Term Outcome

MidLong -Term

Outcome

Automated Parameterization

4

Progress and Accomplishments ‐ Tasks amp Milestones

Task Milestone Time frame

Status

Task 11 Baseline Selection

Milestone 11 Provide details of selected baseline systems and heat exchangers and provide rationale for selection

1016 ndash 1116

Baseline selected Carrier state‐of‐the‐art 3Ton unit

CoilDesignerreg verification

Task 12 Initial Performance Simulations

Milestone 12 Demonstrate that a non‐optimized enhanced ldquodog‐bonerdquo type fin can achieve heat transfer and pressure drop

performance within 20 of the baseline fin through CFD simulations

1116 ‐0217

CoilDesignerreg optimization studies

Challenges identification Baseline re‐designed with

ldquodog‐bonerdquo fin + CFD simulations

CoilDesignerreg verification lt20 of baseline performance

5

Baseline Selection

56deg

Inner grooved

6

Baseline Selection ndash Performance Assessment VapCycreg System Results

System COP 46 ‐Power Consumption 2234 W Refrigerant Charge 148 kg

Subcooling 55 K Superheat 40 K

CoilDesignerreg Heat Exchanger Results Unit

Baseline Indoor HX

Outdoor HX

Capacity kW 1031 1258 Air flow rate cfm 1200 3149 Pressure kPa 1147 2798 Inlet Temperature K 285 345 Inlet Quality ‐ 0228 ‐Air Pressure Drop Pa 458 122 Air Heat Transfer Coefficient Wmsup2K 1013 1081

Refrigerant Pressure Drop kPa 149 233

7

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Project Summary

Timeline Start date 102016

Planned end date 102019

Key Milestones 1 Develop Optimized Fin Geometry 082017

2 Construct Prototype Heat Exchangers 032018

3 Commercialization Plan 102019

Budget Total Project $ to Date 2393797 bull DOE $1788440 bull Cost Share $605357

Total Project $ 663397 bull DOE $509563 bull Cost Share $153834

Key Partners Optimized Thermal Systems Inc

Heat Transfer Technologies (HTT)

United Technologies Research Center (UTRC)

Project Outcome Conceptualize serpentine heatexchangers for HVAC application aiming leakage reduction Design amp Optimize novel ldquodog-bonerdquo fin concepts that result in equivalent orbetter performance than current state-ofshythe-art tube-fin heat exchangers Prototype validate and commercialize

2

Purpose and Objectives

Problem Statement develop heat exchanger design and manufacturing solutions aiming to significantly reduce the direct and indirect impacts of refrigerant leakage in heating ventilating air conditioning and refrigeration (HVACampR) systems

Main Objectives bull Develop serpentine heat exchangers (SHX) with equivalent or better performance than

current state‐of‐the‐art HXrsquos bull Eliminate 90 of the joints in a 3‐ton residential AC heat pump system

bull Develop designs that could be mass produced

Target Market and Audience Heat Pumps and Air Conditioners ndash 31 of end energy use in residential and commercial buildings in 2014

Impact of Project a) New SHX concepts with reduced leakage potential ndash Year 1 b) New tooling and manufacturing approaches ndash Years 1 2 c) SHX Design amp Optimization Prototype amp Validation ndash Year 2 d) Commercialization Plan ndash Year 3 e) Heat Pumps with reduced leakage potential ndash 2‐3 Years after project

3

Approach

Develop SHX for

HVACampR ndash Reduce Leakage

Define Baseline and

Target performance

Design Concepts

Investigation CFD Analyses

Manufacturing Solutions

Investigation

HX Selection Multi‐Physics

Analysis System Performance (VapCycreg)

Tooling Development

Prototyping Validation (wind

tunnel) System Performance

Assessment

Commer‐cialization

Plan

Design Optimization

Optimizer

CFD

CoilDesignerreg

Activities (RampD)Key

Output

Key Output

Short-Term Outcome

MidLong -Term

Outcome

Automated Parameterization

4

Progress and Accomplishments ‐ Tasks amp Milestones

Task Milestone Time frame

Status

Task 11 Baseline Selection

Milestone 11 Provide details of selected baseline systems and heat exchangers and provide rationale for selection

1016 ndash 1116

Baseline selected Carrier state‐of‐the‐art 3Ton unit

CoilDesignerreg verification

Task 12 Initial Performance Simulations

Milestone 12 Demonstrate that a non‐optimized enhanced ldquodog‐bonerdquo type fin can achieve heat transfer and pressure drop

performance within 20 of the baseline fin through CFD simulations

1116 ‐0217

CoilDesignerreg optimization studies

Challenges identification Baseline re‐designed with

ldquodog‐bonerdquo fin + CFD simulations

CoilDesignerreg verification lt20 of baseline performance

5

Baseline Selection

56deg

Inner grooved

6

Baseline Selection ndash Performance Assessment VapCycreg System Results

System COP 46 ‐Power Consumption 2234 W Refrigerant Charge 148 kg

Subcooling 55 K Superheat 40 K

CoilDesignerreg Heat Exchanger Results Unit

Baseline Indoor HX

Outdoor HX

Capacity kW 1031 1258 Air flow rate cfm 1200 3149 Pressure kPa 1147 2798 Inlet Temperature K 285 345 Inlet Quality ‐ 0228 ‐Air Pressure Drop Pa 458 122 Air Heat Transfer Coefficient Wmsup2K 1013 1081

Refrigerant Pressure Drop kPa 149 233

7

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Purpose and Objectives

Problem Statement develop heat exchanger design and manufacturing solutions aiming to significantly reduce the direct and indirect impacts of refrigerant leakage in heating ventilating air conditioning and refrigeration (HVACampR) systems

Main Objectives bull Develop serpentine heat exchangers (SHX) with equivalent or better performance than

current state‐of‐the‐art HXrsquos bull Eliminate 90 of the joints in a 3‐ton residential AC heat pump system

bull Develop designs that could be mass produced

Target Market and Audience Heat Pumps and Air Conditioners ndash 31 of end energy use in residential and commercial buildings in 2014

Impact of Project a) New SHX concepts with reduced leakage potential ndash Year 1 b) New tooling and manufacturing approaches ndash Years 1 2 c) SHX Design amp Optimization Prototype amp Validation ndash Year 2 d) Commercialization Plan ndash Year 3 e) Heat Pumps with reduced leakage potential ndash 2‐3 Years after project

3

Approach

Develop SHX for

HVACampR ndash Reduce Leakage

Define Baseline and

Target performance

Design Concepts

Investigation CFD Analyses

Manufacturing Solutions

Investigation

HX Selection Multi‐Physics

Analysis System Performance (VapCycreg)

Tooling Development

Prototyping Validation (wind

tunnel) System Performance

Assessment

Commer‐cialization

Plan

Design Optimization

Optimizer

CFD

CoilDesignerreg

Activities (RampD)Key

Output

Key Output

Short-Term Outcome

MidLong -Term

Outcome

Automated Parameterization

4

Progress and Accomplishments ‐ Tasks amp Milestones

Task Milestone Time frame

Status

Task 11 Baseline Selection

Milestone 11 Provide details of selected baseline systems and heat exchangers and provide rationale for selection

1016 ndash 1116

Baseline selected Carrier state‐of‐the‐art 3Ton unit

CoilDesignerreg verification

Task 12 Initial Performance Simulations

Milestone 12 Demonstrate that a non‐optimized enhanced ldquodog‐bonerdquo type fin can achieve heat transfer and pressure drop

performance within 20 of the baseline fin through CFD simulations

1116 ‐0217

CoilDesignerreg optimization studies

Challenges identification Baseline re‐designed with

ldquodog‐bonerdquo fin + CFD simulations

CoilDesignerreg verification lt20 of baseline performance

5

Baseline Selection

56deg

Inner grooved

6

Baseline Selection ndash Performance Assessment VapCycreg System Results

System COP 46 ‐Power Consumption 2234 W Refrigerant Charge 148 kg

Subcooling 55 K Superheat 40 K

CoilDesignerreg Heat Exchanger Results Unit

Baseline Indoor HX

Outdoor HX

Capacity kW 1031 1258 Air flow rate cfm 1200 3149 Pressure kPa 1147 2798 Inlet Temperature K 285 345 Inlet Quality ‐ 0228 ‐Air Pressure Drop Pa 458 122 Air Heat Transfer Coefficient Wmsup2K 1013 1081

Refrigerant Pressure Drop kPa 149 233

7

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Approach

Develop SHX for

HVACampR ndash Reduce Leakage

Define Baseline and

Target performance

Design Concepts

Investigation CFD Analyses

Manufacturing Solutions

Investigation

HX Selection Multi‐Physics

Analysis System Performance (VapCycreg)

Tooling Development

Prototyping Validation (wind

tunnel) System Performance

Assessment

Commer‐cialization

Plan

Design Optimization

Optimizer

CFD

CoilDesignerreg

Activities (RampD)Key

Output

Key Output

Short-Term Outcome

MidLong -Term

Outcome

Automated Parameterization

4

Progress and Accomplishments ‐ Tasks amp Milestones

Task Milestone Time frame

Status

Task 11 Baseline Selection

Milestone 11 Provide details of selected baseline systems and heat exchangers and provide rationale for selection

1016 ndash 1116

Baseline selected Carrier state‐of‐the‐art 3Ton unit

CoilDesignerreg verification

Task 12 Initial Performance Simulations

Milestone 12 Demonstrate that a non‐optimized enhanced ldquodog‐bonerdquo type fin can achieve heat transfer and pressure drop

performance within 20 of the baseline fin through CFD simulations

1116 ‐0217

CoilDesignerreg optimization studies

Challenges identification Baseline re‐designed with

ldquodog‐bonerdquo fin + CFD simulations

CoilDesignerreg verification lt20 of baseline performance

5

Baseline Selection

56deg

Inner grooved

6

Baseline Selection ndash Performance Assessment VapCycreg System Results

System COP 46 ‐Power Consumption 2234 W Refrigerant Charge 148 kg

Subcooling 55 K Superheat 40 K

CoilDesignerreg Heat Exchanger Results Unit

Baseline Indoor HX

Outdoor HX

Capacity kW 1031 1258 Air flow rate cfm 1200 3149 Pressure kPa 1147 2798 Inlet Temperature K 285 345 Inlet Quality ‐ 0228 ‐Air Pressure Drop Pa 458 122 Air Heat Transfer Coefficient Wmsup2K 1013 1081

Refrigerant Pressure Drop kPa 149 233

7

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Progress and Accomplishments ‐ Tasks amp Milestones

Task Milestone Time frame

Status

Task 11 Baseline Selection

Milestone 11 Provide details of selected baseline systems and heat exchangers and provide rationale for selection

1016 ndash 1116

Baseline selected Carrier state‐of‐the‐art 3Ton unit

CoilDesignerreg verification

Task 12 Initial Performance Simulations

Milestone 12 Demonstrate that a non‐optimized enhanced ldquodog‐bonerdquo type fin can achieve heat transfer and pressure drop

performance within 20 of the baseline fin through CFD simulations

1116 ‐0217

CoilDesignerreg optimization studies

Challenges identification Baseline re‐designed with

ldquodog‐bonerdquo fin + CFD simulations

CoilDesignerreg verification lt20 of baseline performance

5

Baseline Selection

56deg

Inner grooved

6

Baseline Selection ndash Performance Assessment VapCycreg System Results

System COP 46 ‐Power Consumption 2234 W Refrigerant Charge 148 kg

Subcooling 55 K Superheat 40 K

CoilDesignerreg Heat Exchanger Results Unit

Baseline Indoor HX

Outdoor HX

Capacity kW 1031 1258 Air flow rate cfm 1200 3149 Pressure kPa 1147 2798 Inlet Temperature K 285 345 Inlet Quality ‐ 0228 ‐Air Pressure Drop Pa 458 122 Air Heat Transfer Coefficient Wmsup2K 1013 1081

Refrigerant Pressure Drop kPa 149 233

7

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Baseline Selection

56deg

Inner grooved

6

Baseline Selection ndash Performance Assessment VapCycreg System Results

System COP 46 ‐Power Consumption 2234 W Refrigerant Charge 148 kg

Subcooling 55 K Superheat 40 K

CoilDesignerreg Heat Exchanger Results Unit

Baseline Indoor HX

Outdoor HX

Capacity kW 1031 1258 Air flow rate cfm 1200 3149 Pressure kPa 1147 2798 Inlet Temperature K 285 345 Inlet Quality ‐ 0228 ‐Air Pressure Drop Pa 458 122 Air Heat Transfer Coefficient Wmsup2K 1013 1081

Refrigerant Pressure Drop kPa 149 233

7

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Baseline Selection ndash Performance Assessment VapCycreg System Results

System COP 46 ‐Power Consumption 2234 W Refrigerant Charge 148 kg

Subcooling 55 K Superheat 40 K

CoilDesignerreg Heat Exchanger Results Unit

Baseline Indoor HX

Outdoor HX

Capacity kW 1031 1258 Air flow rate cfm 1200 3149 Pressure kPa 1147 2798 Inlet Temperature K 285 345 Inlet Quality ‐ 0228 ‐Air Pressure Drop Pa 458 122 Air Heat Transfer Coefficient Wmsup2K 1013 1081

Refrigerant Pressure Drop kPa 149 233

7

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Initial Analysis ndash Circuiting vs Joint Reduction

200

300

400

500

600

700

800

900

1000

SHX Joint R

eductio

n

Indoor Outdoor

Indoor baseline 4 circuits 72 joints

Outdoor baseline 5 circuits 28 joints

85

1 2 3 4 5 6 7 8 9 10 Number of SHX Circuits (‐)

8

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Initial Analysis ‐ Ref ΔP vs Ndeg circuits (Indoor HX)

9

~2x baseline

Baseline

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Indoor HX) Semi‐cross Parallel Semi‐cross Counter

dS

tP

D

09

085

08

075 o

07 Full‐cross Counter

dS

tP

oD

065

Area

Red

uctio

n Factor

(‐)

06 1 155 21 265 32

PtDo (‐)

10

dS

tP

oD

087 l tP P

100 l tP P

115 l tP P

Vertical Diagonal

075 l tP P

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Initial Analysis ndash Fin ldquodog‐bonerdquo cut (Outdoor HX)

Airflow

Area

redu

ction factor

(‐)

Minimum free flow area high u

Wake flow low u

Reduced

Type 1 Type 2

095

09

085

08

075

07

065

06

Type 1 (PlPt = 087)

Type 1 (PlPt = 1)

Type 1 (PlPt = 115)

Type 2 (PlPt = 087)

Type 2 (PlPt = 1)

Type 2 (PlPt = 115)

1 122 144 166 188 21 232 254 276 298 32

PtDo (‐)

No enhancements enhancements reduction

11

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Initial Analysis ndash Manufacturing Considerations

bull Tubes ndash Minimum diameter 50mm

ndash Minimum bend radius (Do) 15

ndash Tube length NA

ndash Pitch angle NA

bull Fins ndash Minimum tube‐fin enhancement distance 20mm

ndash Max fin density ~20 FPI ndash Assembly could potentially damage enhancements yet to be

confirmed

12

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Baseline Modification ndash Indoor HX

CFD Settings bull Mesh size 10mm (polyhedral elements) bull Boundary layer 30mm 10 layers 12 growth bull Uncertainty analysis ‐ GCI (on going task) bull Dry air ndash ideal gas bull K‐e Realizable turbulence model bull B C uniform inlet velocitytemperature constant wall temp bull Steady‐State

13

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Milestone 12 Accomplishment ndash Indoor HX Metric Unit Baseline SHX‐POF‐001 Rel Diff Do m 00098 00098 000

Pl m 0019 00198 421

Pt m 00254 00254 000

Sd m 00229 00235 293

FPI m 16 16 000

Nbanks ‐ 3 3 000

Nrows ‐ 24 24 000

Ncircuits ‐ 4 4 000

Face area msup2 0263 0263 00

Joints ‐ 72 8 ‐8889

hair Wmsup2K 1011 1133 1207

Ao msup2 1685 1424 ‐1547

ΔPair Pa 4582 4969 845

ΔPref kPa 14925 14661 ‐177

Q W 10351 10187 ‐158

lt 20

Wang et al (2001) CFD

14

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Project Integration and Collaboration

OTS bull Concept

bull Design amp Opt bull Testing

HTT bull Manuf Solutions constraints

UTRC bull State‐of‐the‐

art tech bull Products

Market

Voss (Fin) ‐ NDA Brazeway (tubes) ‐

NDA

Weekly Interaction

Frequent Interaction (on demand)

bull Novel designs (Intellectual Property) bull Prototypes bull Validation bull Publications Patents technical articles

15

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Next Steps and Future Plans

bull Task 12 Initial Performance Analysis bull Finalize CFD analyses (uncertainty analysis outdoor HX)

bull Task 13 Material Simulation and Selection bull Study other modifications to the baseline to make it

manufacturable bull Indoor coil review copper and aluminum options bull Outdoor coil exploring options (Task 12) bull HTT begins exploring material and manufacturing options

bull Task 14 Benchtop Testing of Brazing Methods (HTT)

16

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

REFERENCE SLIDES

17

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Project Budget

Budget History

102016 ndash FY 2017 FY 2018 FY 2019 ndash 102019

DOE Cost‐share DOE Cost‐share DOE Cost‐share $100432 $25297 $253488 $68230 $155643 $60307

18

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19

Project Plan and Schedule Project Schedule Project Start 102016 Completed Work Projected End 102019 Active Task (in progress work)

MilestoneDeliverable (Originally Planned) MilestoneDeliverable (Actual) FY2017 FY2018 FY2019

Task

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Q1 (Oct‐Dec)

Q2 (Ja

n‐Mar)

Q3 (Apr‐Jun)

Q4 (Jul‐Sep)

Past Work 10 Intellectual Property (IP) Management Plan 21 Baseline Selection 22 Initial Performance Simulations CurrentFuture Work 23 Material Simulation and Selection 24 Benchtop Testing of Brazing Methods 31 Optimization Definition and Manufacturing Considerations 32 Develop Optimized Fin Geometry 41 Design Fin Tooling 42 Construct Prototype Heat Exchangers 51 Heat Exchanger Performance Testing 52 Mechanical Cyclic Testing 61 Improve Manufacturing Techniques in Preparation for Commercialization 62 System Level Integration 63 System Level Testing 70 Develop Technology to Market Commercialization Plan

19