advanced motor control technologies – part 2

23
#EEwebinar

Upload: design-world

Post on 15-Apr-2017

285 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Advanced Motor Control Technologies – Part 2

#EEwebinar

Page 2: Advanced Motor Control Technologies – Part 2

#EEwebinar

This webinar will be available afterwards at www.eeworldonline.com & email

Q&A at the end of the presentation

Hashtag for this webinar: #EEwebinar

Before We Start

Page 3: Advanced Motor Control Technologies – Part 2

#EEwebinar

Meet your Speakers

MODERATOR FEATURED SPEAKERDal Y. OhmPresidentDrivetech, Inc.

Aimee KalnoskasModeratorEE World

Page 4: Advanced Motor Control Technologies – Part 2

#EEwebinar 4

FOC (Field oriented Control) for AC motors• Synchronously rotating reference frame

o Analogy: Geo-centric vs Helio-centric view• AC motor current can be divided into two components

o Torque producing current componento Field flux current component

• PM motor – Zero normally, Nonzero for IPM• Induction motor – Magnetization Current

• Independent control of two current components• Operation is very similar to separately excited DC motors

Page 5: Advanced Motor Control Technologies – Part 2

#EEwebinar 5

Frame Transform (1) - Clarke• 3 Phase to 2 Phase Transform

S 1 cos120 cos120 Sa S =1.5 0 -sin120 sin120 Sb So 0.5 0.5 0.5 Sc

• All polyphase currents produceso Rotating mag flux!

• Equivalent 2-Phase Machine• Identical magnitude, Reversible• Not invariant power

Sa,S

S

Sb

Sc

Page 6: Advanced Motor Control Technologies – Part 2

#EEwebinar 6

Frame Transform (2) - Park• Coordinate attached to the rotor

(rotating)o D-axis on rotor N poleo Q-axis on N-S mid point

Id cos sin Ix Iq = - sin cos Iy

Ix cos - sin Id Iy = sin cos Iq

x

+yd

q

Page 7: Advanced Motor Control Technologies – Part 2

#EEwebinar 7

Dynamic Equations of Brushless Motors• Voltage Model in Synchronous Frame

Vq = (Rs + Ls p) Iq + Ls Id + mVd = (Rs + Ls p) Id - Ls Iq

• Correspondent to DC Motor equation• Can be extended to Induction Motors

m

+

Rs Ls

+-

VqIq +

Ls Id

Rs Ls

+-

VdId

Ls Iq

Page 8: Advanced Motor Control Technologies – Part 2

#EEwebinar 8

Synchronous Current Regulator (SR)

o Zero steady-state phase error with PI control“Internal Model Principle”

o Id* is nonzero for phase angle advanceo Easy to add back emf & cross-coupling compensation

PWM (SVM)

VaVbVc

IaIbIc

eCross-

Coupling Compensation

Inverse Park

RegulatorPI

RegulatorPI

Iq* + -

Id* + -

Iq

Id

Vd

Vq

e

Vector Saturatio

nAlgorith

m

Inverse

Clarke

V

V

ClarkePark

I

Ie

Page 9: Advanced Motor Control Technologies – Part 2

#EEwebinar 9

Characteristics of FOC Drives• Inherent “zero steady-state tracking error”• Simple to add “disturbance feed-forward”

o Back emf and cross-coupling• Results

o Accurate commutation at any speed!!o Maximum torque per ampere

• With nonzero Id* for IPMo Improved Dynamicso Induction motor flux weakening by changing Id*

Page 10: Advanced Motor Control Technologies – Part 2

#EEwebinar 10

Disturbance Feedforward Techniques

• Compensates for Back emf and cross-coupling terms

• Quick integrator response – Improved performance

Transform

abc -> dq

PI

PI

Transform

dq -> abc

IaIbIc

Va*Vb*Vc*

-+

-+

Iq*

Iq

Id*

Vq*

Id

Vd*

e - Lq Iq

Ld Id + m

Page 11: Advanced Motor Control Technologies – Part 2

#EEwebinar 11

Analytic Tuning of Velocity PI (1)• Used for initial gain before fine tuning• Based on simple 1st order plant model• (1) Cancellation Tuning for bw of v

Kp( s + i)s

KtJm s + Bm

+-

c

Gc(s) = 1/{Jm / (Kp Kt) s + 1} v = (Kp Kt / Jm)

Kp = v (Jm / Kt), i = Bm / Jm

Page 12: Advanced Motor Control Technologies – Part 2

#EEwebinar 12

Analytic Tuning of Velocity PI (2)(2) Pole placement Tuning

o Based on critically damped poleso No control of closed-loop zeros

Kt ( Kp s + i) Jm s2 + (Kt Kp + Bm) s + Kt iGc(s) =

Kp = 2 v (Jm / Kt), i = (1/2) v

Page 13: Advanced Motor Control Technologies – Part 2

#EEwebinar 13

Gains for Per Unit Systems• Conversion of S.I. Gains to Per Unit Systems• Kp, i, max, Imax are in SI units• Kp’, max’, Imax’ are in per unit units• i’ = i, Kp’ from two identical block equations• Note: id = i Ts (digital controller gain)

Kp( s + i)s

i*

Kp’( s + i’)s

i* max’max

ImaxImax’

Page 14: Advanced Motor Control Technologies – Part 2

#EEwebinar 14

Tuning of Current Loop

• Cancellation tuningKp = c Lq, i = (Rs/Lq)

• Pole-placement tuningKp = 2 c Lq, i = c

2 Lq• Gain translation for Per-unit systems

– similar to Velocity-loop

Kp( s + i)s

(1/Rs)(Lq/Rs) s + 1

+-

IqIq* Vq

Page 15: Advanced Motor Control Technologies – Part 2

#EEwebinar 15

Low-cost Sensors & Sensorless Control• Hall sensors (with linear interpolation)• Magnetic Rotary Hall Position Sensors (AMS, Avago) • Sensoless - Estimation of Flux Angle & Velocity

o Popular technologiesVemf detection (6-step)Model-based Observer (Estimator)Carrier injection (IPM, Audible noise)

o PerformanceBW limited, limited accuracyChallenges at startup and near-zero speed, high torque

applicationModel of nonlinearities (Extra voltage drops)Algorithm selection and tuning – key to success

Page 16: Advanced Motor Control Technologies – Part 2

#EEwebinar 16

Carrier Injection Method (IPM)

Current Regulator

PWMVoltageInverter

LPF

BPF

HeterodyningCalculation

LuenbergerObserver

FrameTransform

InverseTransform

Carrier VoltageInjection (0.5 – 2

kHz)

+ -

θr^

θr^

Iqds

θr^

VqdsIqd*

Iqde

motor

(Sensored Block)

Page 17: Advanced Motor Control Technologies – Part 2

#EEwebinar 17

Observers (Linear or Sliding mode)

• Applied to 2-ph stationary quantities (I, I, E, E, etc.)o 2-ph Synchronous variables can also be used.

• Luenberger: Select K so that observer bw is >>10X motor model

• Sliding mode: Sliding gain L > max(E, E), K = o Chattering, heavy LPF

• Atan() or Phase Locked-Loop

MotorModel

KIs~ +

Is-V

s Es s

(Optional outer loop)

(Saturate to +/-L)

LPFATAN(

)

Page 18: Advanced Motor Control Technologies – Part 2

#EEwebinar

Sensorless Start-up Strategies• Open-loop forced start

o Kt Iqs = J d/dt + TL o Startup current Iqs and acceleration rate should beo Slightly higher than worst case J and TL

• Inductance-based angle detection for motors with high ΔLo V – IR = L di/dto Voltage injection with Current rise-time measurment

• Carrier Injection Startup for motors with high ΔL

Page 19: Advanced Motor Control Technologies – Part 2

#EEwebinar 19

Power Factor Correction (PFC)

(Pavg)p.f. = ---------------------------

(Vrms) (Irms)• A figure of merit that measures how effectively energy is

transmitted• p.f = (Is1/Is) cos

o Distortion factor (Is1/Is) o Displacement factor cos

• IEEE 519 recommends <5%• Dedicated PFC Converter IC or Processor Controlled (1

Phase)

Page 20: Advanced Motor Control Technologies – Part 2

#EEwebinar 20.

Conclusion• High motor reduces size and total operating

cost• Sensorless or Low-cost feedback reduces cost • Proper control algorithm & optimally tuned

driveallows precise commutation to improve

efficiency, maximum torque, and dynamics• Selection of uC, Gate drives and Power

switches for low-cost and compact design

Page 21: Advanced Motor Control Technologies – Part 2

#EEwebinar

Questions?

MODERATOR FEATURED SPEAKERDal Y. OhmPresidentDrivetech, [email protected]

Aimee KalnoskasModeratorEE [email protected]

@DW_Aimee

Page 22: Advanced Motor Control Technologies – Part 2

#EEwebinar

This webinar will be available at eeworldonline.com & email

Tweet with hashtag #EEwebinar

Connect with EE World Online

Continue the discussion on our forums

EDABoard.com & ElectroTechOnline.com

Don’t Forget!

Page 23: Advanced Motor Control Technologies – Part 2

#EEwebinar