adrian gonz´ alez casanova & maite wilke...

100
The seed-bank coalescent Adri ´ an Gonz ´ alez Casanova & Maite Wilke Berenguer joint work (in progress) with Jochen Blath and Noemi Kurt (all TU Berlin) Mini-workshop Duality of Markov processes and applications to spatial population models November 6th-7th, 2014 AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 1 / 35

Upload: others

Post on 25-Sep-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The seed-bank coalescent

Adri

´

an Gonz

´

alez Casanova & Maite Wilke Berenguer

joint work (in progress) with

Jochen Blath and Noemi Kurt

(all TU Berlin)

Mini-workshopDuality of Markov processes and applications to spatial population models

November 6th-7th, 2014

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 1 / 35

Page 2: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

1 Dynamics

2 The Frequency Process

3 Duality

4 The Seed-bank Coalescent

5 ...and its properties

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 2 / 35

Page 3: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

0

1

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 4: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 5: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 6: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 7: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 8: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 9: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 10: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 11: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 12: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 13: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 14: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 15: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 16: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 17: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 18: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 19: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2...

and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 20: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2... and type-space {a,A}

N Mc=2

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 21: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2... and type-space {a,A}

N Mc=2

a AA A A Aa a aa

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 22: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bankConsider a haploid population reproducing in discrete generationsi = 0, 1, 2... and type-space {a,A}

N Mc=2

a AA A A Aa a aa

A Aa a a aA A A

N plants produce N-c plants by multinomial samplingc seeds are selected uniformly to germinate:they produce exactly one plant eachN plants produce c seeds by multinomial samplingN-c seeds stay in the seed-bankOffspring inherit the type of their parents

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 3 / 35

Page 23: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bank

N Mc=2

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 4 / 35

Page 24: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bank

N Mc=2

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 4 / 35

Page 25: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bank

N Mc=2

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 4 / 35

Page 26: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bank

N Mc=2

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 4 / 35

Page 27: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bank

N Mc=2

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 4 / 35

Page 28: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bank

N Mc=2

a A A A A Aa a a

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 4 / 35

Page 29: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

The Wright-Fisher model with geometric seed-bank

N Mc=2

a A A A A Aa a a

a a a a

a a a aa

a a a a a

a aaaa a

aa a aaaa

A AAAA

A A A A

A A A A

A A A

A A

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 4 / 35

Page 30: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Dynamics

Formal Definition

Definition 1 (Wright-Fisher model with geometric seed-bank)

Fix population-size N 2 N, seed-bank size M = M(N), seed-bankintensity c 2 N, c N,M genetic type space E . Given initial typeconfigurations ⇠0 2 EN and ⌘0 2 EM , let

⇠i :=�

⇠i(j)�

j2[N], and ⌘i :=

⌘k (j)�

j2[M], i 2 N,

be the random genetic type configuration in EN of the plants ingeneration k , resp. that of the seeds in EM (obtained from thedynamics above).We call the discrete-time Markov-chain (⇠k , ⌘k )k2N0 with values inEN ⇥ EM the type configuration process of the Wright-Fisher modelwith geometric seed-bank component .

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 5 / 35

Page 31: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The frequency process

Consider the bi-allelic case E = {a,A}.

Definition 2 (The frequency process)Let

X Nk :=

1N

X

i2[N]

1{⇠k (i)=a} and Y Mk :=

1M

X

j2[M]

1{⌘k (j)=a}, k 2 N0.

be the fraction of type a plants, resp. seeds.

Both are (discrete-time) Markov chains with values in

IN =n

0,1N,

2N, . . . , 1

o

resp. IM =n

0,1M

,2M

, . . . , 1o

.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 6 / 35

Page 32: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The frequency process

X Nk :=

1N

X

i2[N]

1{⇠k (i)=a} and Y Mk :=

1M

X

j2[M]

1{⌘k (j)=a}, k 2 N0.

N Mc=2

a AA A A Aa a aa

A Aa a a aA A A

x y

U: # of “a” plants whose parents are plants ) U ⇠ Bin(N � c, x)Z: # of “a” plants whose parents are seeds ) Z ⇠ Hyp(M, c, yM)

V: # of “a” seeds whose parents are plants ) V ⇠ Bin(c, x)yM-Z: # of “a” seeds whose parents were seeds

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 7 / 35

Page 33: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The frequency process

X Nk :=

1N

X

i2[N]

1{⇠k (i)=a} and Y Mk :=

1M

X

j2[M]

1{⌘k (j)=a}, k 2 N0.

N Mc=2

a AA A A Aa a aa

A Aa a a aA A A

x y

U: # of “a” plants whose parents are plants ) U ⇠ Bin(N � c, x)Z: # of “a” plants whose parents are seeds ) Z ⇠ Hyp(M, c, yM)

V: # of “a” seeds whose parents are plants ) V ⇠ Bin(c, x)yM-Z: # of “a” seeds whose parents were seeds

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 7 / 35

Page 34: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The frequency process

X Nk :=

1N

X

i2[N]

1{⇠k (i)=a} and Y Mk :=

1M

X

j2[M]

1{⌘k (j)=a}, k 2 N0.

N Mc=2

a AA A A Aa a aa

A Aa a a aA A A

x y

U: # of “a” plants whose parents are plants ) U ⇠ Bin(N � c, x)Z: # of “a” plants whose parents are seeds ) Z ⇠ Hyp(M, c, yM)

V: # of “a” seeds whose parents are plants ) V ⇠ Bin(c, x)yM-Z: # of “a” seeds whose parents were seeds

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 7 / 35

Page 35: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The frequency process

X Nk :=

1N

X

i2[N]

1{⇠k (i)=a} and Y Mk :=

1M

X

j2[M]

1{⌘k (j)=a}, k 2 N0.

N Mc=2

a AA A A Aa a aa

A Aa a a aA A A

x y

U: # of “a” plants whose parents are plants ) U ⇠ Bin(N � c, x)Z: # of “a” plants whose parents are seeds ) Z ⇠ Hyp(M, c, yM)

V: # of “a” seeds whose parents are plants ) V ⇠ Bin(c, x)yM-Z: # of “a” seeds whose parents were seeds

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 7 / 35

Page 36: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The frequency process

X Nk :=

1N

X

i2[N]

1{⇠k (i)=a} and Y Mk :=

1M

X

j2[M]

1{⌘k (j)=a}, k 2 N0.

N Mc=2

a AA A A Aa a aa

A Aa a a aA A A

x y

U: # of “a” plants whose parents are plants ) U ⇠ Bin(N � c, x)Z: # of “a” plants whose parents are seeds ) Z ⇠ Hyp(M, c, yM)

V: # of “a” seeds whose parents are plants ) V ⇠ Bin(c, x)yM-Z: # of “a” seeds whose parents were seeds

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 7 / 35

Page 37: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The frequency process

X Nk :=

1N

X

i2[N]

1{⇠k (i)=a} and Y Mk :=

1M

X

j2[M]

1{⌘k (j)=a}, k 2 N0.

N Mc=2

a AA A A Aa a aa

A Aa a a aA A A

x y

U: # of “a” plants whose parents are plants ) U ⇠ Bin(N � c, x)Z: # of “a” plants whose parents are seeds ) Z ⇠ Hyp(M, c, yM)

V: # of “a” seeds whose parents are plants ) V ⇠ Bin(c, x)yM-Z: # of “a” seeds whose parents were seeds

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 7 / 35

Page 38: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Frequency Process

The scaling-limit of the allele frequency process

Assume: N 2 N, M=M(N)=KN (for K 2 N), c 2 N fix,

Theorem 3Under these conditions,

(X NbNtc,Y

NbNtc)t�0 ) (Xt ,Yt)t�0

on D[0,1)([0, 1]2), where (Xt ,Yt)t�0 is a 2-dimensional diffusion solving(

dXt = c(Yt � Xt)dt +p

Xt(1 � Xt)dBt ,

dYt = cK (Xt � Yt)dt .

We call (Xt ,Yt)t�0 the seed-bank diffusion.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 8 / 35

Page 39: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Duality

The dual of the seed-bank diffusion

Definition 4 (The block-counting process of the seed-bank coalescent)Let (Nt ,Mt)t�0 be the continuous time Markov chain taking values inN2

0 with transitions

(n,m) 7!

8

>

<

>

:

(n � 1,m + 1) at rate cn(n + 1,m � 1) at rate cKm(n � 1,m) at rate

�n2�

We call this the block counting process of the seed-bank coalescent .

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 9 / 35

Page 40: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Duality

Moment Duality

The block-counting process of the seedbank-coalescent is the momentdual of the seed-bank diffusion!

Theorem 5For every x , y 2 [0, 1]2,every n,m 2 N2

0 and every t � 0 we have

Ex ,y [X nt Y m

t ] = En,m[xNt yMt ].

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 10 / 35

Page 41: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

Duality

Proof of moment duality

Let H : [0, 1]2 ⇥ N20 ! R be given by H((x , y), (n,m)) := xnym and

denote by A and A the generators of (Xt ,Yt)t�0 and (Nt ,Mt)t�0.

AH(·, (n,m))(x , y)

= c(y � x)dHdx

(x , y) +12

x(1 � x)d2Hdx2 (x , y) + cK (x � y)

dHdy

(x , y)

= c(y � x)nxn�1ym +12

x(1 � x)n(n � 1)xn�2ym + cK (x � y)xnmym�1

= cn(xn�1ym+1 � xnym) +

n2

(xn�1ym � xnym)

+ cKm(xn+1ym�1 � xnym)

= AH((x , y), ·)(n,m)

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 11 / 35

Page 42: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The genealogy of a sample

N Mc=2

1 2 3

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 12 / 35

Page 43: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The genealogy of a sample

N Mc=2

1 2 3

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 12 / 35

Page 44: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The genealogy of a sample

N Mc=2

1 2 3

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 12 / 35

Page 45: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The genealogy of a sample

N Mc=2

1 2 3

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 12 / 35

Page 46: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

Partitions with flags

Let Pk be the set of partitions of [k ] := {1, . . . , k}.For ⇣ 2 Pk , let |⇣| be the number of clocks of ⇣.Space of marked partitions:

P{p,s}k := {(⇣,~u) | ⇣ 2 Pk ,~u 2 {s, p}|⇣|}.

Example: k=5

{{1, 3}p, {2}s, {4, 5}p}.

Can trace whether an ancestral line is currently a seed or a plant .

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 13 / 35

Page 47: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The seed-bank coalescentDefinition 6

Let k 2 N, c,K 2 (0,1). The seed-bank k-coalescent⇣

⇧(k)t

t�0with

seed-bank intensity c and relative seed-bank size K is the(continuous-time) Markov chain with values in P{s,p}

k and transitions

⇡ 7! ⇡ at rate8

>

<

>

:

1 if exactly 2 p-blocks coalesce,c if blocks stay the same, but one p is replaced by an s,cK if blocks stay the same, but one s is replaced by a p.

Definition 7

We define the seed-bank coalescent (⇧t)t�0 (with values in P{p,s}1 ) as

the projective Kolmogoroff limit as k ! 1 of the laws of the seed-bankk -coalescent.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 14 / 35

Page 48: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The seed-bank coalescentDefinition 6

Let k 2 N, c,K 2 (0,1). The seed-bank k-coalescent⇣

⇧(k)t

t�0with

seed-bank intensity c and relative seed-bank size K is the(continuous-time) Markov chain with values in P{s,p}

k and transitions

⇡ 7! ⇡ at rate8

>

<

>

:

1 if exactly 2 p-blocks coalesce,c if blocks stay the same, but one p is replaced by an s,cK if blocks stay the same, but one s is replaced by a p.

Definition 7

We define the seed-bank coalescent (⇧t)t�0 (with values in P{p,s}1 ) as

the projective Kolmogoroff limit as k ! 1 of the laws of the seed-bankk -coalescent.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 14 / 35

Page 49: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The seed-bank coalescent

A possible realisation of theseed-bank 8-coalescent :

At the red line:{{1}p, {2, 3, 4, 5}s, {6, 7, 8}p}

1 2 3 4 5 6 7 8

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 15 / 35

Page 50: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The seed-bank coalescent

A possible realisation of theseed-bank 8-coalescent :

At the red line:{{1}p, {2, 3, 4, 5}s, {6, 7, 8}p}

1 2 3 4 5 6 7 8

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 15 / 35

Page 51: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

The Seed-bank Coalescent

The seed-bank coalescent as scaling limit

Theorem 8Again, assuming M = M(N) = KM (for some K 2 N), c fix, and k 2 N,⇣

⇧(N,k)Nt

t�0converges weakly as N ! 1 to the seed-bank

k-coalescent⇣

⇧(k)t

t�0.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 16 / 35

Page 52: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Not coming down from infinity

Theorem 9The Seed-Bank coalescent does not come down from infinity.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 17 / 35

Page 53: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 54: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 55: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 56: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 57: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 58: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 59: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 60: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Non-monotonicity of Nt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 18 / 35

Page 61: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The Artificial Process

Definition 5.1

We define the artificial process (Nt ,Mt)t�0 to be the continuous timeMarkov chain started in (N0,M0) 2 N0 ⇥ N0 with transitions

(n,m) 7! (n � 1,m + 1) at rate cn,(n,m) 7! (n,m � 1) at rate cKm,

(n,m) 7! (n � 1,m) at rate✓

n2

.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 19 / 35

Page 62: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The Kingman phase

For n 2 N [ {1} let

⌧nj := inf{t � 0 : N(n,0)

t = j}, 1 j n � 1, j < 1

be the first time that the number of active blocks of an n-samplereaches j .Then

E⇥

⌧11⇤

= E⇥

1X

i=1

⌧1i � ⌧1i�1⇤

=1X

i=1

1� j

2�

+ cj< 2

In particular ⌧11 < 1 a.s. We say that the kingman phase is over at therandom time ⌧11

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 20 / 35

Page 63: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The Kingman phase

For n 2 N [ {1} let

⌧nj := inf{t � 0 : N(n,0)

t = j}, 1 j n � 1, j < 1

be the first time that the number of active blocks of an n-samplereaches j .Then

E⇥

⌧11⇤

= E⇥

1X

i=1

⌧1i � ⌧1i�1⇤

=1X

i=1

1� j

2�

+ cj< 2

In particular ⌧11 < 1 a.s. We say that the kingman phase is over at therandom time ⌧11

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 20 / 35

Page 64: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The Kingman phase

For n 2 N [ {1} let

⌧nj := inf{t � 0 : N(n,0)

t = j}, 1 j n � 1, j < 1

be the first time that the number of active blocks of an n-samplereaches j .Then

E⇥

⌧11⇤

= E⇥

1X

i=1

⌧1i � ⌧1i�1⇤

=1X

i=1

1� j

2�

+ cj< 2

In particular ⌧11 < 1 a.s. We say that the kingman phase is over at therandom time ⌧11

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 20 / 35

Page 65: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Infinitely many plants become seeds (escape from theKingman Phase)Note that

P�

deactivation at ⌧nj�1

=cj

� j2�

+ cj=

2cj + 2c � 1

,

independently of the number of inactive blocks.Then

E⇥

nX

j=1

1deactivation at ⌧nj�1

=nX

j=1

2cj + 2c � 1

⇠ 2c log(n)

and

E⇥

1X

j=1

1deactivation at ⌧1j�1

⇠1X

j=1

2cj + 2c � 1

= 1

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 21 / 35

Page 66: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Infinitely many plants become seeds (escape from theKingman Phase)Note that

P�

deactivation at ⌧nj�1

=cj

� j2�

+ cj=

2cj + 2c � 1

,

independently of the number of inactive blocks.Then

E⇥

nX

j=1

1deactivation at ⌧nj�1

=nX

j=1

2cj + 2c � 1

⇠ 2c log(n)

and

E⇥

1X

j=1

1deactivation at ⌧1j�1

⇠1X

j=1

2cj + 2c � 1

= 1

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 21 / 35

Page 67: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The seed phase

Each ancestral line that jumped to the seed bank, stay in the seedbank until time t with probability at least e�cKt . So if infinitely manyancestral lines become seeds, infinitely many stay seeds.

We conclude:The artificial process does not come down from infinity.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 22 / 35

Page 68: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The seed phase

Each ancestral line that jumped to the seed bank, stay in the seedbank until time t with probability at least e�cKt . So if infinitely manyancestral lines become seeds, infinitely many stay seeds.

We conclude:The artificial process does not come down from infinity.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 22 / 35

Page 69: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Back to the Seed Bank Coalescent

To conclude that the Seed Bank Coalescent does not come down frominfinity, we use that almost surely

Nt + Mt � Nt + Mt

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 23 / 35

Page 70: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The coupling: a coloured coalescent

In addtion to the flags indicating state of a lineage, we add colours(blue and white) to the particles:The coloured partitions with marks:

P{p,s},{w ,b}k := {(⇣,~u,~v) | ⇣ 2 Pk ,~u 2 {s, p}|⇣|,~v 2 {w , b}k}.

Example: k=8

{{1w , 2b}p, {3b, 4b, 5b}s, {6b, 7b, 8b}p}

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 24 / 35

Page 71: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The coupling: a coloured coalescent

In addtion to the flags indicating state of a lineage, we add colours(blue and white) to the particles:The coloured partitions with marks:

P{p,s},{w ,b}k := {(⇣,~u,~v) | ⇣ 2 Pk ,~u 2 {s, p}|⇣|,~v 2 {w , b}k}.

Example: k=8

{{1w , 2b}p, {3b, 4b, 5b}s, {6b, 7b, 8b}p}

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 24 / 35

Page 72: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

A coloured coalescent

The coloured seed-bank k -coalescent⇣

⇧(k)t

t�0is the

(continuous-time) Markov chain with values in P{s,p},{w ,b}k and

transitions

⇡ 7! ⇡ at rate8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if exactly 2 p-blocks coalesce, colours stay the samec if blocks stay the same, but one p is replaced by an s,

colours stay the samecK if blocks stay the same, but one s is replaced by a p

and all particles in that block are coloured blue.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 25 / 35

Page 73: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

A coloured coalescent

1 2 3 4 5 6 7 8

Seedbank-coalescent:“colourblind”

Artificial process:sees only white

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 26 / 35

Page 74: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

A coloured coalescent

1 2 3 4 5 6 7 8

Seedbank-coalescent:“colourblind”

Artificial process:sees only white

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 26 / 35

Page 75: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

A coloured coalescent

1 2 3 4 5 6 7 8

Seedbank-coalescent:“colourblind”

Artificial process:sees only white

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 26 / 35

Page 76: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

A coloured coalescent

1 2 3 4 5 6 7 8

Seedbank-coalescent:“colourblind”

Artificial process:sees only white

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 26 / 35

Page 77: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

A coloured coalescent

1 2 3 4 5 6 7 8

Seedbank-coalescent:“colourblind”

Artificial process:sees only white

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 26 / 35

Page 78: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Time to the most recent common ancestor

Theorem 5.2

For all c,K 2 (0,1), the seed bank coalescent satisfies

E[TMRCA[n]] ⇣ log log n.

Here, the symbol ⇣ denotes weak asymptotic equivalence ofsequences meaning that we have

lim infn!1

E[TMRCA[n]]log log n

> 0,

andlim sup

n!1

E[TMRCA[n]]log log n

< 1.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 27 / 35

Page 79: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Time to the most recent common ancestor

Theorem 5.2

For all c,K 2 (0,1), the seed bank coalescent satisfies

E[TMRCA[n]] ⇣ log log n.

Here, the symbol ⇣ denotes weak asymptotic equivalence ofsequences meaning that we have

lim infn!1

E[TMRCA[n]]log log n

> 0,

andlim sup

n!1

E[TMRCA[n]]log log n

< 1.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 27 / 35

Page 80: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Idea

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 28 / 35

Page 81: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Idea

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 28 / 35

2

n plants

~ log n

?

Page 82: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Idea

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 28 / 35

2

n plants

~ log n

log log n~

Page 83: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Relation to other models

KKL Seed Bank ModelBolthausen-Sznitman CoalescentStructured Coalescent (Two Island Model)

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 29 / 35

Page 84: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Relation to other models

KKL Seed Bank ModelBolthausen-Sznitman CoalescentStructured Coalescent (Two Island Model)

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 29 / 35

Page 85: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Relation to other models

KKL Seed Bank ModelBolthausen-Sznitman CoalescentStructured Coalescent (Two Island Model)

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 29 / 35

Page 86: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Long term behavior

A = {(0, 0), (1, 1)} is the absorbing set of (Xt ,Yt).Let

⌧ = inf{t > 0 : (Xt ,Yt) 2 A}

What is the distribution of (X⌧ ,Y⌧ )?Problem: There is no reason to believe that ⌧ < 1 a.s. ((X⌧ ,Y⌧ ) is noteven well defined)

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 30 / 35

Page 87: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Long term behavior

A = {(0, 0), (1, 1)} is the absorbing set of (Xt ,Yt).Let

⌧ = inf{t > 0 : (Xt ,Yt) 2 A}

What is the distribution of (X⌧ ,Y⌧ )?Problem: There is no reason to believe that ⌧ < 1 a.s. ((X⌧ ,Y⌧ ) is noteven well defined)

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 30 / 35

Page 88: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Long term behavior

A = {(0, 0), (1, 1)} is the absorbing set of (Xt ,Yt).Let

⌧ = inf{t > 0 : (Xt ,Yt) 2 A}

What is the distribution of (X⌧ ,Y⌧ )?Problem: There is no reason to believe that ⌧ < 1 a.s. ((X⌧ ,Y⌧ ) is noteven well defined)

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 30 / 35

Page 89: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Ignore the problem

Recall,

dXt = c(Yt � Xt)dt +p

Xt(1 � Xt)dBt ,

dYt = cK (Xt � Yt)dt ,

Let Wt = K Xt + Yt . Then Wt is a Mattingale

dWt = Kp

Xt(1 � Xt)dBt ,

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 31 / 35

Page 90: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Ignore the problem

Recall,

dXt = c(Yt � Xt)dt +p

Xt(1 � Xt)dBt ,

dYt = cK (Xt � Yt)dt ,

Let Wt = K Xt + Yt . Then Wt is a Mattingale

dWt = Kp

Xt(1 � Xt)dBt ,

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 31 / 35

Page 91: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Keep ignoring the problem

Do not forget Wt = KXt + Yt .Note that by Doob´ s optional stopping theorem (That we can NOTapply)

Ex ,y [W0] = Ex ,y [W⌧ ]

ThenKx + y = (K + 1)Px ,y

(X⌧ ,Y⌧ ) = (1, 1)�

So we conclude that

Px ,y�

(X⌧ ,Y⌧ ) = (1, 1)�

=Kx + yK + 1

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 32 / 35

Page 92: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Keep ignoring the problem

Do not forget Wt = KXt + Yt .Note that by Doob´ s optional stopping theorem (That we can NOTapply)

Ex ,y [W0] = Ex ,y [W⌧ ]

ThenKx + y = (K + 1)Px ,y

(X⌧ ,Y⌧ ) = (1, 1)�

So we conclude that

Px ,y�

(X⌧ ,Y⌧ ) = (1, 1)�

=Kx + yK + 1

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 32 / 35

Page 93: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Keep ignoring the problem

Do not forget Wt = KXt + Yt .Note that by Doob´ s optional stopping theorem (That we can NOTapply)

Ex ,y [W0] = Ex ,y [W⌧ ]

ThenKx + y = (K + 1)Px ,y

(X⌧ ,Y⌧ ) = (1, 1)�

So we conclude that

Px ,y�

(X⌧ ,Y⌧ ) = (1, 1)�

=Kx + yK + 1

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 32 / 35

Page 94: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

The result is (almost) true

Corollary 10 (Fixation in law)

Given c,K and (X0,Y0) = (x , y) 2 [0, 1]2, a.s., we have that

limt!1

L(x ,y)�

Xt ,Yt�

=y + xK1 + K

�(1,1) +1 + (1 � x)K � y

1 + K�(0,0).

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 33 / 35

Page 95: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Duality saves the day

Proposition 5.3

All mixed moments of (Xt ,Yt)t�0 converge to the same finite limitdepending only on x , y ,K .More precisely, for each fixed n,m 2 N [ {0}, n + m � 1 we have

limt!1

Ex ,y [X nt Y m

t ] =y + xK1 + K

.

T := TMRCA := inf�

t > 0 : Nt + Mt = 1

.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 34 / 35

Page 96: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Duality saves the day

Proposition 5.3

All mixed moments of (Xt ,Yt)t�0 converge to the same finite limitdepending only on x , y ,K .More precisely, for each fixed n,m 2 N [ {0}, n + m � 1 we have

limt!1

Ex ,y [X nt Y m

t ] =y + xK1 + K

.

T := TMRCA := inf�

t > 0 : Nt + Mt = 1

.

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 34 / 35

Page 97: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Duality saves the day

limt!1

Ex ,y⇥

X nt Y m

t⇤

= limt!1

En,mh

xNt yMti

= limt!1

En,mh

xNt yMt | T ti

Pn,m (T t)

+ limt!1

En,mh

xNt yMt

T > ti

Pn,m�T > t�

= limt!1

xPn,m�Nt = 1�

+ yPn,m�Mt = 1�

=xK

1 + K+

y1 + K

,

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 35 / 35

Page 98: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Duality saves the day

limt!1

Ex ,y⇥

X nt Y m

t⇤

= limt!1

En,mh

xNt yMti

= limt!1

En,mh

xNt yMt | T ti

Pn,m (T t)

+ limt!1

En,mh

xNt yMt

T > ti

Pn,m�T > t�

= limt!1

xPn,m�Nt = 1�

+ yPn,m�Mt = 1�

=xK

1 + K+

y1 + K

,

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 35 / 35

Page 99: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Duality saves the day

limt!1

Ex ,y⇥

X nt Y m

t⇤

= limt!1

En,mh

xNt yMti

= limt!1

En,mh

xNt yMt | T ti

Pn,m (T t)

+ limt!1

En,mh

xNt yMt

T > ti

Pn,m�T > t�

= limt!1

xPn,m�Nt = 1�

+ yPn,m�Mt = 1�

=xK

1 + K+

y1 + K

,

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 35 / 35

Page 100: Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´page.math.tu-berlin.de/~kurt/Duality/GonzalezWilke.pdf · The seed-bank coalescent Adrian Gonz´ alez Casanova & Maite Wilke Berenguer´

...and its properties

Duality saves the day

limt!1

Ex ,y⇥

X nt Y m

t⇤

= limt!1

En,mh

xNt yMti

= limt!1

En,mh

xNt yMt | T ti

Pn,m (T t)

+ limt!1

En,mh

xNt yMt

T > ti

Pn,m�T > t�

= limt!1

xPn,m�Nt = 1�

+ yPn,m�Mt = 1�

=xK

1 + K+

y1 + K

,

AGC & MWB (TU Berlin) The seed-bank coalescent November 2014 35 / 35