additive combinatorics in fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... ·...

77
Additive combinatorics in Fp and the polynomial method Additive combinatorics in F p and the polynomial method ´ Eric Balandraud Journ´ ees estivales de la M´ ethode Polynomiale

Upload: others

Post on 15-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive combinatorics in Fp

and the polynomial method

Eric Balandraud

Journees estivales de la Methode Polynomiale

Page 2: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

The Combinatorial Nullstellensatz

Theorem (Alon)

K a field and P a polynomial K[X1, . . . ,Xd ].

If deg(P) =∑d

i=1 ki and P has a non zero coefficient for∏d

i=1 X kii ,

then whatever A1, . . . , Ad , subsets of K such that |Ai | > ki , thereexists (a1, . . . , ad) ∈ A1 × · · · × Ad so that:

P(a1, . . . , ad) 6= 0.

Page 3: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

The Combinatorial Nullstellensatz

Theorem (Alon)

K a field and P a polynomial K[X1, . . . ,Xd ].If deg(P) =

∑di=1 ki and P has a non zero coefficient for

∏di=1 X ki

i ,

then whatever A1, . . . , Ad , subsets of K such that |Ai | > ki , thereexists (a1, . . . , ad) ∈ A1 × · · · × Ad so that:

P(a1, . . . , ad) 6= 0.

Page 4: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

The Combinatorial Nullstellensatz

Theorem (Alon)

K a field and P a polynomial K[X1, . . . ,Xd ].If deg(P) =

∑di=1 ki and P has a non zero coefficient for

∏di=1 X ki

i ,then whatever A1, . . . , Ad , subsets of K such that |Ai | > ki , thereexists (a1, . . . , ad) ∈ A1 × · · · × Ad so that:

P(a1, . . . , ad) 6= 0.

Page 5: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Another formulation

TheoremK a field and P a polynomial K[X1, . . . ,Xd ]. Let A1, . . . , Ad

subsets of K. Setting gi (Xi ) =∏

ai∈Ai(Xi − ai ). If P vanishes on

A1 × · · · × Ad , there exist hi ∈ K[X1, . . . ,Xd ], withdeg(hi ) 6 deg(P)− deg(gi ) such that:

P =d∑

i=1

higi .

Page 6: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Three Addition Theorems in Fp

I Cauchy-Davenport

I Dias da Silva-Hamidoune (Erdos-Heilbronn)

I Set of Subsums

Page 7: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Cauchy-Davenport

Cauchy-Davenport

Theorem (Cauchy-Davenport - 1813, 1935)

p a prime number, A and B two subsets of Fp, then:

|A + B| > min {p, |A|+ |B| − 1} .

proof: If A + B ⊂ C , with |C | = min{p − 1, |A|+ |B| − 2}, thepolynomial ∏

c∈C

(X + Y − c)

would vanish on A× B and the coefficient of X |A|−1Y |C |−|A|−1 is( |C ||A|−1

)6= 0.

Page 8: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Cauchy-Davenport

Cauchy-Davenport

Theorem (Cauchy-Davenport - 1813, 1935)

p a prime number, A and B two subsets of Fp, then:

|A + B| > min {p, 1 + (|A| − 1) + (|B| − 1)} .

proof: If A + B ⊂ C , with |C | = min{p − 1, |A|+ |B| − 2}, thepolynomial ∏

c∈C

(X + Y − c)

would vanish on A× B and the coefficient of X |A|−1Y |C |−|A|−1 is( |C ||A|−1

)6= 0.

Page 9: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Cauchy-Davenport

Cauchy-Davenport

Theorem (Cauchy-Davenport - 1813, 1935)

p a prime number, A and B two subsets of Fp, then:

|A + B| > min {p, 1 + (|A| − 1) + (|B| − 1)} .

proof: If A + B ⊂ C , with |C | = min{p − 1, |A|+ |B| − 2}, thepolynomial ∏

c∈C

(X + Y − c)

would vanish on A× B and the coefficient of X |A|−1Y |C |−|A|−1 is( |C ||A|−1

)6= 0.

Page 10: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Dias da Silva-Hamidoune

Dias da Silva-Hamidoune

Conjecture (Erdos-Heilbronn - 1964)

p a prime number, A ⊂ Fp, then:

|{a1 + a2 | ai ∈ A, a1 6= a2}| > min{p, 2|A| − 3}

Define:h∧A = {a1 + · · ·+ ah | ai ∈ A, ai 6= aj}

Theorem (Dias da Silva, Hamidoune - 1994)

Let p be a prime number and A ⊂ Fp. Let h ∈ [1, |A|] , one has,

|h∧A| > min{p, 1 + h(|A| − h)}.

Page 11: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Dias da Silva-Hamidoune

Dias da Silva-Hamidoune

Conjecture (Erdos-Heilbronn - 1964)

p a prime number, A ⊂ Fp, then:

|{a1 + a2 | ai ∈ A, a1 6= a2}| > min{p, 2(|A| − 2) + 1}

Define:h∧A = {a1 + · · ·+ ah | ai ∈ A, ai 6= aj}

Theorem (Dias da Silva, Hamidoune - 1994)

Let p be a prime number and A ⊂ Fp. Let h ∈ [1, |A|] , one has,

|h∧A| > min{p, 1 + h(|A| − h)}.

Page 12: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Dias da Silva-Hamidoune

Dias da Silva-Hamidoune

Conjecture (Erdos-Heilbronn - 1964)

p a prime number, A ⊂ Fp, then:

|{a1 + a2 | ai ∈ A, a1 6= a2}| > min{p, 2(|A| − 2) + 1}

Define:h∧A = {a1 + · · ·+ ah | ai ∈ A, ai 6= aj}

Theorem (Dias da Silva, Hamidoune - 1994)

Let p be a prime number and A ⊂ Fp. Let h ∈ [1, |A|] , one has,

|h∧A| > min{p, 1 + h(|A| − h)}.

Page 13: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Dias da Silva-Hamidoune

Dias da Silva-Hamidoune

Conjecture (Erdos-Heilbronn - 1964)

p a prime number, A ⊂ Fp, then:

|{a1 + a2 | ai ∈ A, a1 6= a2}| > min{p, 2(|A| − 2) + 1}

Define:h∧A = {a1 + · · ·+ ah | ai ∈ A, ai 6= aj}

Theorem (Dias da Silva, Hamidoune - 1994)

Let p be a prime number and A ⊂ Fp. Let h ∈ [1, |A|] , one has,

|h∧A| > min{p, 1 + h(|A| − h)}.

Page 14: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Dias da Silva-Hamidoune

Proof: Setting i0 = max{0, h(|A| − h)− p + 1},(h(|A| − h)− p + 1 < h). one considers the polynomial

(X0 + · · ·+ Xh−1)h(|A|−h)−i0

∏06i<j6h−1

(Xj − Xi )

,

it has degree h(|A| − h)− i0 + h(h−1)2 ,

and the sets:

A0 ={

a1, . . . , a|A|−h

}A1 =

{a1, . . . , a|A|−h, a|A|−h+1

}...

.... . .

Ai0−1 ={

a1, . . . , a|A|−h, . . . , a|A|−h+i0−1

}Ai0 =

{a1, . . . , a|A|−h, . . . , a|A|−h+i0−1, a|A|−h+i0 , a|A|−h+i0+1

}...

. . .

Ah−2 ={

a1, . . . , a|A|−1

}Ah−1 =

{a1, . . . , a|A|−1, a|A|

},

Page 15: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Dias da Silva-Hamidoune

Proof: Setting i0 = max{0, h(|A| − h)− p + 1},(h(|A| − h)− p + 1 < h). one considers the polynomial

(X0 + · · ·+ Xh−1)h(|A|−h)−i0

∏06i<j6h−1

(Xj − Xi )

,

it has degree h(|A| − h)− i0 + h(h−1)2 , and the sets:

A0 ={

a1, . . . , a|A|−h

}A1 =

{a1, . . . , a|A|−h, a|A|−h+1

}...

.... . .

Ai0−1 ={

a1, . . . , a|A|−h, . . . , a|A|−h+i0−1

}Ai0 =

{a1, . . . , a|A|−h, . . . , a|A|−h+i0−1, a|A|−h+i0 , a|A|−h+i0+1

}...

. . .

Ah−2 ={

a1, . . . , a|A|−1

}Ah−1 =

{a1, . . . , a|A|−1, a|A|

},

Page 16: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Set of Subsums

Let A be a subset of Fp, define

Σ(A) =

{∑x∈I

x | ∅ ⊂ I ⊂ A

}

Theorem (Olson - 1968)

Let A ⊂ Fp. If A ∩ (−A) = ∅, then

|Σ(A)| > min

{p + 3

2,|A|(|A|+ 1)

2

}.

Page 17: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Set of Subsums

Let A be a subset of Fp, define

Σ∗(A) =

{∑x∈I

x | ∅ ( I ⊂ A

}

Theorem (Olson - 1968)

Let A ⊂ Fp. If A ∩ (−A) = ∅, then

|Σ(A)| > min

{p + 3

2,|A|(|A|+ 1)

2

}.

Page 18: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Set of Subsums

Let A be a subset of Fp, define

Σ∗(A) =

{∑x∈I

x | ∅ ( I ⊂ A

}

Theorem (Olson - 1968)

Let A ⊂ Fp. If A ∩ (−A) = ∅, then

|Σ(A)| > min

{p + 3

2,|A|(|A|+ 1)

2

}.

Page 19: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Theorem (B.)

p a odd prime number, A ⊂ Fp, such that A ∩ (−A) = ∅. One has

|Σ(A)| > min

{p, 1 +

|A|(|A|+ 1)

2

},

|Σ∗(A)| > min

{p,

|A|(|A|+ 1)

2

}.

Denote A = {2a1, . . . , 2ad}.

Σ(A) =∑

i∈[1,d ]

{0, 2ai} =

∑i∈[1,d ]

ai

+∑

i∈[1,d ]

{−ai , ai}︸ ︷︷ ︸d terms

.

Page 20: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Theorem (B.)

p a odd prime number, A ⊂ Fp, such that A ∩ (−A) = ∅. One has

|Σ(A)| > min

{p, 1 +

|A|(|A|+ 1)

2

},

|Σ∗(A)| > min

{p,

|A|(|A|+ 1)

2

}.

Denote A = {2a1, . . . , 2ad}.

Σ(A) =∑

i∈[1,d ]

{0, 2ai} =

∑i∈[1,d ]

ai

+∑

i∈[1,d ]

{−ai , ai}︸ ︷︷ ︸d terms

.

Page 21: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Theorem (B.)

p a odd prime number, A ⊂ Fp, such that A ∩ (−A) = ∅. One has

|Σ(A)| > min

{p, 1 +

|A|(|A|+ 1)

2

},

|Σ∗(A)| > min

{p,

|A|(|A|+ 1)

2

}.

Conjecture (Selfridge - 1976)

p a prime number, A a maximal zerosum free subset of Z/pZ ,then:

|A| = max

{k | k(k + 1)

2< p

}.

Denote A = {2a1, . . . , 2ad}.

Σ(A) =∑

i∈[1,d ]

{0, 2ai} =

∑i∈[1,d ]

ai

+∑

i∈[1,d ]

{−ai , ai}︸ ︷︷ ︸d terms

.

Page 22: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Theorem (B.)

p a odd prime number, A ⊂ Fp, such that A ∩ (−A) = ∅. One has

|Σ(A)| > min

{p, 1 +

|A|(|A|+ 1)

2

},

|Σ∗(A)| > min

{p,

|A|(|A|+ 1)

2

}.

Denote A = {2a1, . . . , 2ad}.

Σ(A) =∑

i∈[1,d ]

{0, 2ai} =

∑i∈[1,d ]

ai

+∑

i∈[1,d ]

{−ai , ai}︸ ︷︷ ︸d terms

.

Page 23: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Theorem (B.)

p a odd prime number, A ⊂ Fp, such that A ∩ (−A) = ∅. One has

|Σ(A)| > min

{p, 1 +

|A|(|A|+ 1)

2

},

|Σ∗(A)| > min

{p,

|A|(|A|+ 1)

2

}.

Denote A = {2a1, . . . , 2ad}.

Σ(A) =∑

i∈[1,d ]

{0, 2ai} =

∑i∈[1,d ]

ai

+∑

i∈[1,d ]

{−ai , ai}︸ ︷︷ ︸d terms

.

Page 24: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Let i0 = max{0, d(d+1)2 − p + 1}, one has

t = d(d+1)2 − i0 = min{d(d+1)

2 , p − 1}

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)

A0 = {a1, . . . , ad}A1 = {a1, . . . , ad ,−a1}...

. . .

Ai0−1 = {a1, . . . , ad ,−a1, . . . ,−ai0−1}Ai0 = {a1, . . . , ad ,−a1, . . . ,−ai0−1,−ai0 ,−ai0+1}...

. . .

Ad−1 = {a1, . . . , ad ,−a1, . . . . . . ,−ad} .

Page 25: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Let i0 = max{0, d(d+1)2 − p + 1}, one has

t = d(d+1)2 − i0 = min{d(d+1)

2 , p − 1}

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)A0 = {a1, . . . , ad}A1 = {a1, . . . , ad ,−a1}...

. . .

Ai0−1 = {a1, . . . , ad ,−a1, . . . ,−ai0−1}Ai0 = {a1, . . . , ad ,−a1, . . . ,−ai0−1,−ai0 ,−ai0+1}...

. . .

Ad−1 = {a1, . . . , ad ,−a1, . . . . . . ,−ad} .

Page 26: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

Let i0 = max{0, d(d+1)2 − p + 1}, one has

t = d(d+1)2 − i0 = min{d(d+1)

2 , p − 1}

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)A0 = {a1, . . . , ad}A1 = {a1, . . . , ad ,−a1}...

. . .

Ai0−1 = {a1, . . . , ad ,−a1, . . . ,−ai0−1}Ai0 = {a1, . . . , ad ,−a1, . . . ,−ai0−1,−ai0 ,−ai0+1}...

. . .

Ad−1 = {a1, . . . , ad ,−a1, . . . . . . ,−ad} .

Page 27: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)

=

∑(t0,...,td−1)∑d−1

i=0 ti=t

t!∏d−1i=0 ti !

d−1∏i=0

X tii

1 X 2

0 . . . X2(d−1)0

1 X 21 . . . X

2(d−1)1

......

...

1 X 2d−1 . . . X

2(d−1)d−1

It suffices to prove that the following binomial determinant isnon zero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 28: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)

=

∑(t0,...,td−1)∑d−1

i=0 ti=t

t!∏d−1i=0 ti !

d−1∏i=0

X tii

1 X 2

0 . . . X2(d−1)0

1 X 21 . . . X

2(d−1)1

......

...

1 X 2d−1 . . . X

2(d−1)d−1

It suffices to prove that the following binomial determinant isnon zero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 29: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)

=

∑(t0,...,td−1)∑d−1

i=0 ti=t

t!∏d−1i=0 ti !

d−1∏i=0

X tii

∑σ∈Sd

sign(σ)d−1∏i=0

X2σ(i)i

It suffices to prove that the following binomial determinant isnon zero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 30: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)= t!

∑σ∈Sd

sign(σ)∑

(t0,...,td−1)∑d−1i=0 ti=t

1∏d−1i=0 ti !

d−1∏i=0

Xti+2σ(i)i

It suffices to prove that the following binomial determinant isnon zero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 31: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)= t!

∑σ∈Sd

sign(σ)∑

(b0,...,bd−1)06bi−2σ(i)6t∑d−1i=0 bi=t+d(d−1)

1∏d−1i=0 (bi − 2σ(i))!

d−1∏i=0

X bii

It suffices to prove that the following binomial determinant is nonzero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 32: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)=

∑(b0,...,bd−1)∑d−1

i=0 bi=t+d(d−1)max{bi}<p

(t!∏d−1

i=0 (2i)!∏d−1i=0 bi !

∑σ∈Sd

sign(σ)d−1∏i=0

(bi

2σ(i)

)) d−1∏i=0

X bii +Sp

It suffices to prove that the following binomial determinant is nonzero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 33: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)=

∑(b0,...,bd−1)∑d−1

i=0 bi=t+d(d−1)max{bi}<p

(t!∏d−1

i=0 (2i)!∏d−1i=0 bi !

(b0, b1, . . . , bd−1

0, 2, . . . , 2(d − 1)

)) d−1∏i=0

X bii +Sp

It suffices to prove that the following binomial determinant is nonzero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 34: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Set of Subsums

(X0 + · · ·+ Xd−1)t

∏06i<j6d−1

(X 2

j − X 2i

)=

∑(b0,...,bd−1)∑d−1

i=0 bi=t+d(d−1)max{bi}<p

(t!∏d−1

i=0 (2i)!∏d−1i=0 bi !

(b0, b1, . . . , bd−1

0, 2, . . . , 2(d − 1)

)) d−1∏i=0

X bii +Sp

It suffices to prove that the following binomial determinant is nonzero:

Dd ,i0 =

(d − 1, d , . . . , d − 2 + i0, d + i0, . . . , 2d − 1

0, 2, . . . , 2(i0 − 1), 2i0, . . . , 2(d − 1)

).

Page 35: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Binomial Determinants

Binomial Determinants

(a1, . . . , ad

b1, . . . , bd

)=

∣∣∣∣∣∣∣∣∣

(a1b1

) (a1b2

). . .

(a1bd

)(a2b1

) (a2b2

). . .

(a2bd

)...

......(ad

b1

) (adb2

). . .

( adbd )

)∣∣∣∣∣∣∣∣∣ .

Dn,h,i =

(n − h − 1, n − h, . . . , n − h + i − 2, n − h + i , . . . , n − 1

0 , 1 , . . . , (i − 1) , i , . . . , (h − 1)

)

Dd ,i =

(d − 1, d , . . . , d − 2 + i , d + i , . . . , 2d − 1

0, 2, . . . , 2(i − 1), 2i , . . . , 2(d − 1)

).

Page 36: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Binomial Determinants

Binomial Determinants

(a1, . . . , ad

b1, . . . , bd

)=

∣∣∣∣∣∣∣∣∣

(a1b1

) (a1b2

). . .

(a1bd

)(a2b1

) (a2b2

). . .

(a2bd

)...

......(ad

b1

) (adb2

). . .

( adbd )

)∣∣∣∣∣∣∣∣∣ .

Dn,h,i =

(n − h − 1, n − h, . . . , n − h + i − 2, n − h + i , . . . , n − 1

0 , 1 , . . . , (i − 1) , i , . . . , (h − 1)

)

Dd ,i =

(d − 1, d , . . . , d − 2 + i , d + i , . . . , 2d − 1

0, 2, . . . , 2(i − 1), 2i , . . . , 2(d − 1)

).

Page 37: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Binomial Determinants

Dn,h,i =

(h

i

),

This proves Dias da Silva-Hamidoune Theorem.

Proposition

Let d > 1, one has:Dd ,0 = 2d(d−1)/2,

Dd ,d = 2(d−1)(d−2)/2.

Dd ,i = 2d−1 d − 1

d − 2 + iDd−1,i−1 + 2d−1 d − 1

d − 1 + iDd−1,i .

Dd ,i = 2d(d−1)

2−i

(d

i

)d + i

d.

Page 38: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Binomial Determinants

Dn,h,i =

(h

i

),

This proves Dias da Silva-Hamidoune Theorem.

Proposition

Let d > 1, one has:Dd ,0 = 2d(d−1)/2,

Dd ,d = 2(d−1)(d−2)/2.

Dd ,i = 2d−1 d − 1

d − 2 + iDd−1,i−1 + 2d−1 d − 1

d − 1 + iDd−1,i .

Dd ,i = 2d(d−1)

2−i

(d

i

)d + i

d.

Page 39: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Binomial Determinants

Dn,h,i =

(h

i

),

This proves Dias da Silva-Hamidoune Theorem.

Proposition

Let d > 1, one has:Dd ,0 = 2d(d−1)/2,

Dd ,d = 2(d−1)(d−2)/2.

Dd ,i = 2d−1 d − 1

d − 2 + iDd−1,i−1 + 2d−1 d − 1

d − 1 + iDd−1,i .

Dd ,i = 2d(d−1)

2−i

(d

i

)d + i

d.

Page 40: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Addition Theorems

Binomial Determinants

Dn,h,i =

(h

i

),

This proves Dias da Silva-Hamidoune Theorem.

Proposition

Let d > 1, one has:Dd ,0 = 2d(d−1)/2,

Dd ,d = 2(d−1)(d−2)/2.

Dd ,i = 2d−1 d − 1

d − 2 + iDd−1,i−1 + 2d−1 d − 1

d − 1 + iDd−1,i .

Dd ,i = 2d(d−1)

2−i

(d

i

)d + i

d.

Page 41: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Three Additive results on sequences in Fp

I Erdos-Ginzburg-Ziv

I Snevily’s conjecture (Arsovsky)

I Nullstellensatz for sequences

Page 42: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Erdos-Ginzburg-Ziv

The permanent Lemma

Theorem (Alon - 1999)

K a field, A an n × n matrix with non zero permanent, b ∈ Kn. Ifone considers some sets Si , i = 1..n, |Si | = 2. There existss = (s1, . . . , sn) ∈ S1 × · · · × Sn, such that As and b arecoordoninatewise distincts.

proof: The polynomial

n∏i=1

n∑j=1

ai ,jXj − bi

has degree n and the coefficient of

∏ni=1 Xi is Per(A) 6= 0.

Page 43: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Erdos-Ginzburg-Ziv

The permanent Lemma

Theorem (Alon - 1999)

K a field, A an n × n matrix with non zero permanent, b ∈ Kn. Ifone considers some sets Si , i = 1..n, |Si | = 2. There existss = (s1, . . . , sn) ∈ S1 × · · · × Sn, such that As and b arecoordoninatewise distincts.

proof: The polynomial

n∏i=1

n∑j=1

ai ,jXj − bi

has degree n and the coefficient of

∏ni=1 Xi is Per(A) 6= 0.

Page 44: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Erdos-Ginzburg-Ziv

Erdos Ginzburg Ziv

Theorem (Erdos Ginzburg Ziv - 1961)

G abelian finite group, |G | = n. Whathever (g1, g2, . . . , g2n−1)elements of G . There exists a zerosum subsequence of length n.

In [0,p-1], g1 6 g2 6 · · · 6 g2p−1.

I If gi = gi+p−1, one has p equal elements.

I Otherwise, one considers the (p − 1)× (p − 1) matrix withonly 1’s, its permanent is (p − 1)! 6= 0. DefineSi = {gi , gi+p−1}, for i ∈ [1, p − 1], of cardinality 2, and bcontaining all values but −g2p−1.

Page 45: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Erdos-Ginzburg-Ziv

Erdos Ginzburg Ziv

Theorem (Erdos Ginzburg Ziv - 1961)

G abelian finite group, |G | = n. Whathever (g1, g2, . . . , g2n−1)elements of G . There exists a zerosum subsequence of length n.

In [0,p-1], g1 6 g2 6 · · · 6 g2p−1.

I If gi = gi+p−1, one has p equal elements.

I Otherwise, one considers the (p − 1)× (p − 1) matrix withonly 1’s, its permanent is (p − 1)! 6= 0. DefineSi = {gi , gi+p−1}, for i ∈ [1, p − 1], of cardinality 2, and bcontaining all values but −g2p−1.

Page 46: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Erdos-Ginzburg-Ziv

Erdos Ginzburg Ziv

Theorem (Erdos Ginzburg Ziv - 1961)

G abelian finite group, |G | = n. Whathever (g1, g2, . . . , g2n−1)elements of G . There exists a zerosum subsequence of length n.

In [0,p-1], g1 6 g2 6 · · · 6 g2p−1.

I If gi = gi+p−1, one has p equal elements.

I Otherwise, one considers the (p − 1)× (p − 1) matrix withonly 1’s, its permanent is (p − 1)! 6= 0. DefineSi = {gi , gi+p−1}, for i ∈ [1, p − 1], of cardinality 2, and bcontaining all values but −g2p−1.

Page 47: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Erdos-Ginzburg-Ziv

Erdos Ginzburg Ziv

Theorem (Erdos Ginzburg Ziv - 1961)

G abelian finite group, |G | = n. Whathever (g1, g2, . . . , g2n−1)elements of G . There exists a zerosum subsequence of length n.

In [0,p-1], g1 6 g2 6 · · · 6 g2p−1.

I If gi = gi+p−1, one has p equal elements.

I Otherwise, one considers the (p − 1)× (p − 1) matrix withonly 1’s, its permanent is (p − 1)! 6= 0. DefineSi = {gi , gi+p−1}, for i ∈ [1, p − 1], of cardinality 2, and bcontaining all values but −g2p−1.

Page 48: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Snevily’s conjecture

Snevily’s ConjectureG a finite group of odd order.a1, . . . , ak , k distinct elements and b1, . . . , bk , k distincts elements.then there exists a permutation π of [1, k] such thata1 + bπ(1), . . . , ak + bπ(k) are pairwise distincts.

I G = Z/pZ (Alon - 2000)

I G = Z/nZ (Dasgupta, Karolyi, Serra, Szegedy - 2001),in F2d (with n | 2d − 1), g of order n in F×

2d , the polynomial:

P(X1, . . . ,Xk) =∏

16j<i6k

(Xi − Xj) (αiXi − αjXj) .

has degree k(k − 1), where αi = gbi andA1 = · · · = Ak = {gai | i = 1..k}.

Coefficient of∏k

i=1 X k−1i is the Van der Monde permanent of

the αi ’s. In F2d , permanent and determinant are equal.

Page 49: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Snevily’s conjecture

Snevily’s ConjectureG a finite group of odd order.a1, . . . , ak , k distinct elements and b1, . . . , bk , k distincts elements.then there exists a permutation π of [1, k] such thata1 + bπ(1), . . . , ak + bπ(k) are pairwise distincts.

I G = Z/pZ (Alon - 2000)

I G = Z/nZ (Dasgupta, Karolyi, Serra, Szegedy - 2001),in F2d (with n | 2d − 1), g of order n in F×

2d , the polynomial:

P(X1, . . . ,Xk) =∏

16j<i6k

(Xi − Xj) (αiXi − αjXj) .

has degree k(k − 1), where αi = gbi andA1 = · · · = Ak = {gai | i = 1..k}.

Coefficient of∏k

i=1 X k−1i is the Van der Monde permanent of

the αi ’s. In F2d , permanent and determinant are equal.

Page 50: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Snevily’s conjecture

Snevily’s ConjectureG a finite group of odd order.a1, . . . , ak , k distinct elements and b1, . . . , bk , k distincts elements.then there exists a permutation π of [1, k] such thata1 + bπ(1), . . . , ak + bπ(k) are pairwise distincts.

I G = Z/pZ (Alon - 2000)

I G = Z/nZ (Dasgupta, Karolyi, Serra, Szegedy - 2001),in F2d (with n | 2d − 1), g of order n in F×

2d , the polynomial:

P(X1, . . . ,Xk) =∏

16j<i6k

(Xi − Xj) (αiXi − αjXj) .

has degree k(k − 1), where αi = gbi andA1 = · · · = Ak = {gai | i = 1..k}.

Coefficient of∏k

i=1 X k−1i is the Van der Monde permanent of

the αi ’s. In F2d , permanent and determinant are equal.

Page 51: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Snevily’s conjecture

Snevily’s ConjectureG a finite group of odd order.a1, . . . , ak , k distinct elements and b1, . . . , bk , k distincts elements.then there exists a permutation π of [1, k] such thata1 + bπ(1), . . . , ak + bπ(k) are pairwise distincts.

I G = Z/pZ (Alon - 2000)

I G = Z/nZ (Dasgupta, Karolyi, Serra, Szegedy - 2001),in F2d (with n | 2d − 1), g of order n in F×

2d , the polynomial:

P(X1, . . . ,Xk) =∏

16j<i6k

(Xi − Xj) (αiXi − αjXj) .

has degree k(k − 1), where αi = gbi andA1 = · · · = Ak = {gai | i = 1..k}.Coefficient of

∏ki=1 X k−1

i is the Van der Monde permanent ofthe αi ’s. In F2d , permanent and determinant are equal.

Page 52: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

A question of Erdos

A = (a1, . . . , a`) a sequence of F×p .SA: set of (0− 1)-solutions of

a1x1 + · · ·+ a`x` = 0.

SA = A⊥ ∩ {0, 1}`

One considers:dim(A) = dim(〈SA〉).

Page 53: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

A question of Erdos

A = (a1, . . . , a`) a sequence of F×p .SA: set of (0− 1)-solutions of

a1x1 + · · ·+ a`x` = 0.

SA = A⊥ ∩ {0, 1}`

One considers:dim(A) = dim(〈SA〉).

Page 54: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , a`) a sequence of ` > p elementsof F×p :

dim(A) = `− 1.

Method: SA ⊂ SB , Iλ = {i ∈ [1, `] : bi/ai = λ} .λ1, . . . , λd ratios associated to (A,B) and Si = (aj : j ∈ Iλi

) andΣi = Σ(Si ). The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , coefficient of∏

X tii is c

∑λi ti .

Page 55: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , a`) a sequence of ` > p elementsof F×p :

dim(A) = `− 1.

Method: SA ⊂ SB , Iλ = {i ∈ [1, `] : bi/ai = λ} .λ1, . . . , λd ratios associated to (A,B) and Si = (aj : j ∈ Iλi

) andΣi = Σ(Si ). The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , coefficient of∏

X tii is c

∑λi ti .

Page 56: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , a`) a sequence of ` > p elementsof F×p :

dim(A) = `− 1.

Method: SA ⊂ SB , Iλ = {i ∈ [1, `] : bi/ai = λ} .

λ1, . . . , λd ratios associated to (A,B) and Si = (aj : j ∈ Iλi) and

Σi = Σ(Si ). The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , coefficient of∏

X tii is c

∑λi ti .

Page 57: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , a`) a sequence of ` > p elementsof F×p :

dim(A) = `− 1.

Method: SA ⊂ SB , Iλ = {i ∈ [1, `] : bi/ai = λ} .λ1, . . . , λd ratios associated to (A,B) and Si = (aj : j ∈ Iλi

) andΣi = Σ(Si ).

The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , coefficient of∏

X tii is c

∑λi ti .

Page 58: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , a`) a sequence of ` > p elementsof F×p :

dim(A) = `− 1.

Method: SA ⊂ SB , Iλ = {i ∈ [1, `] : bi/ai = λ} .λ1, . . . , λd ratios associated to (A,B) and Si = (aj : j ∈ Iλi

) andΣi = Σ(Si ). The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , coefficient of∏

X tii is c

∑λi ti .

Page 59: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap) a sequence of p elements ofF×p :

I dim(A) = 1,(a1, . . . , ap) = (r , . . . , r).

I dim(A) = p − 2, ∃t ∈ [1, p − 3],

(aσ(1), . . . , aσ(p)) = (r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−2−t

,−(t+1)r ,−(t+1)r).

I dim(A) = p − 1.

Page 60: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap) a sequence of p elements ofF×p :

I dim(A) = 1,(a1, . . . , ap) = (r , . . . , r).

I dim(A) = p − 2, ∃t ∈ [1, p − 3],

(aσ(1), . . . , aσ(p)) = (r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−2−t

,−(t+1)r ,−(t+1)r).

I dim(A) = p − 1.

Page 61: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap) a sequence of p elements ofF×p :

I dim(A) = 1,(a1, . . . , ap) = (r , . . . , r).

I dim(A) = p − 2, ∃t ∈ [1, p − 3],

(aσ(1), . . . , aσ(p)) = (r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−2−t

,−(t+1)r ,−(t+1)r).

I dim(A) = p − 1.

Page 62: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap) a sequence of p elements ofF×p :

I dim(A) = 1,(a1, . . . , ap) = (r , . . . , r).

I dim(A) = p − 2, ∃t ∈ [1, p − 3],

(aσ(1), . . . , aσ(p)) = (r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−2−t

,−(t+1)r ,−(t+1)r).

I dim(A) = p − 1.

Page 63: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , the coefficient of∏

X tii is c

∑λi ti .

Id∑

i=1

(|Σi | − 1) ≥ p

I If∑

(|Σi | − 1) = p, one has:∑λi (|Σi | − 1) = 0

I And |Σi | − 1 = |Si |, Σi arithmetic progression.

Page 64: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , the coefficient of∏

X tii is c

∑λi ti .

Id∑

i=1

(|Σi | − 1) ≥ p

I If∑

(|Σi | − 1) = p, one has:∑λi (|Σi | − 1) = 0

I And |Σi | − 1 = |Si |, Σi arithmetic progression.

Page 65: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , the coefficient of∏

X tii is c

∑λi ti .

Id∑

i=1

(|Σi | − 1) ≥ p

I If∑

(|Σi | − 1) = p, one has:∑λi (|Σi | − 1) = 0

I And |Σi | − 1 = |Si |, Σi arithmetic progression.

Page 66: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

The polynomial

P(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σi , the coefficient of∏

X tii is c

∑λi ti .

Id∑

i=1

(|Σi | − 1) ≥ p

I If∑

(|Σi | − 1) = p, one has:∑λi (|Σi | − 1) = 0

I And |Σi | − 1 = |Si |, Σi arithmetic progression.

Page 67: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

i0, j0 ∈ [1, d ] and ri0 ∈ Si0

Σ′i0 = Σ(Si0 r (ri0)), Σ′j0 = Σ(Sj0 ∪ (ri0)) = Σj0 + {0, ri0}

Qi0,j0(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)(d∑

i=1

λiXi − χ

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σ′i , χ = (λj0 − λi0)ri0 . |Σ′i0 | = |Σi0 | − 1 et|Σ′j0 | ≥ |Σj0 |+ 2For ti0 = |Σi0 | − 2, tj0 = |Σj0 |+ 1, one has ti ≤ |Σ′i | − 1, thecoefficient is

2(λj0 − λi0)2 −d∑

i=1

λ2i (|Σi | − 1)

Page 68: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

i0, j0 ∈ [1, d ] and ri0 ∈ Si0

Σ′i0 = Σ(Si0 r (ri0)), Σ′j0 = Σ(Sj0 ∪ (ri0)) = Σj0 + {0, ri0}

Qi0,j0(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)(d∑

i=1

λiXi − χ

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σ′i , χ = (λj0 − λi0)ri0 .

|Σ′i0 | = |Σi0 | − 1 et|Σ′j0 | ≥ |Σj0 |+ 2For ti0 = |Σi0 | − 2, tj0 = |Σj0 |+ 1, one has ti ≤ |Σ′i | − 1, thecoefficient is

2(λj0 − λi0)2 −d∑

i=1

λ2i (|Σi | − 1)

Page 69: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

i0, j0 ∈ [1, d ] and ri0 ∈ Si0

Σ′i0 = Σ(Si0 r (ri0)), Σ′j0 = Σ(Sj0 ∪ (ri0)) = Σj0 + {0, ri0}

Qi0,j0(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)(d∑

i=1

λiXi − χ

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σ′i , χ = (λj0 − λi0)ri0 . |Σ′i0 | = |Σi0 | − 1 et|Σ′j0 | ≥ |Σj0 |+ 2

For ti0 = |Σi0 | − 2, tj0 = |Σj0 |+ 1, one has ti ≤ |Σ′i | − 1, thecoefficient is

2(λj0 − λi0)2 −d∑

i=1

λ2i (|Σi | − 1)

Page 70: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

i0, j0 ∈ [1, d ] and ri0 ∈ Si0

Σ′i0 = Σ(Si0 r (ri0)), Σ′j0 = Σ(Sj0 ∪ (ri0)) = Σj0 + {0, ri0}

Qi0,j0(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)(d∑

i=1

λiXi − χ

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σ′i , χ = (λj0 − λi0)ri0 . |Σ′i0 | = |Σi0 | − 1 et|Σ′j0 | ≥ |Σj0 |+ 2For ti0 = |Σi0 | − 2, tj0 = |Σj0 |+ 1, one has ti ≤ |Σ′i | − 1, thecoefficient is

2(λj0 − λi0)2 −d∑

i=1

λ2i (|Σi | − 1)

Page 71: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

i0, j0 ∈ [1, d ] and ri0 ∈ Si0

Σ′i0 = Σ(Si0 r (ri0)), Σ′j0 = Σ(Sj0 ∪ (ri0)) = Σj0 + {0, ri0}

Qi0,j0(X1, . . . ,Xd) =

(d∑

i=1

λiXi

)(d∑

i=1

λiXi − χ

)( d∑i=1

Xi

)p−1

− 1

,

vanishes on∏d

i=1 Σ′i , χ = (λj0 − λi0)ri0 . |Σ′i0 | = |Σi0 | − 1 et|Σ′j0 | ≥ |Σj0 |+ 2For ti0 = |Σi0 | − 2, tj0 = |Σj0 |+ 1, one has ti ≤ |Σ′i | − 1, thecoefficient is

2(λj0 − λi0)2 −d∑

i=1

λ2i (|Σi | − 1)

Page 72: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap−1) a zerosum sequence ofp − 1 elements of F×p :

I dim(A) = 1,

(r , . . . , r , 2r).

(aσ(1), . . . , aσ(p−1)) = (r , . . . , r , 2r).

I dim(A) = p − 4,

(r , . . . , r︸ ︷︷ ︸p−5

,−r , 2r , 2r , 2r).

I dim(A) = p − 3, ∃t ∈ [0, p − 6],

(r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−4−t

, 2r ,−(t + 3)r ,−(t + 3)r).

I dim(A) = p − 3, ∃t ∈ [1, p − 4],

(r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−3−t

,−(t + 1)r ,−(t + 2)r).

I p = 7, dim(A) = p − 3 = 4,

(−1, 1,−2, 2,−3, 3).

I dim(A) = p − 2.

Page 73: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap−1) a zerosum sequence ofp − 1 elements of F×p :

I dim(A) = 1, (r , . . . , r , 2r).

I dim(A) = p − 4,

(r , . . . , r︸ ︷︷ ︸p−5

,−r , 2r , 2r , 2r).

(aσ(1), . . . , aσ(p−1)) = (r , . . . , r︸ ︷︷ ︸p−5

,−r , 2r , 2r , 2r).

I dim(A) = p − 3, ∃t ∈ [0, p − 6],

(r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−4−t

, 2r ,−(t + 3)r ,−(t + 3)r).

I dim(A) = p − 3, ∃t ∈ [1, p − 4],

(r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−3−t

,−(t + 1)r ,−(t + 2)r).

I p = 7, dim(A) = p − 3 = 4,

(−1, 1,−2, 2,−3, 3).

I dim(A) = p − 2.

Page 74: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap−1) a zerosum sequence ofp − 1 elements of F×p :

I dim(A) = 1, (r , . . . , r , 2r).

I dim(A) = p − 4, (r , . . . , r︸ ︷︷ ︸p−5

,−r , 2r , 2r , 2r).

I dim(A) = p − 3, ∃t ∈ [0, p − 6],

(r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−4−t

, 2r ,−(t + 3)r ,−(t + 3)r).

(aσ(1), . . . , aσ(p−1)) = (r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−4−t

, 2r ,−(t+3)r ,−(t+3)r).

I dim(A) = p − 3, ∃t ∈ [1, p − 4],

(r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−3−t

,−(t + 1)r ,−(t + 2)r).

I p = 7, dim(A) = p − 3 = 4,

(−1, 1,−2, 2,−3, 3).

I dim(A) = p − 2.

Page 75: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap−1) a zerosum sequence ofp − 1 elements of F×p :

I dim(A) = 1, (r , . . . , r , 2r).

I dim(A) = p − 4, (r , . . . , r︸ ︷︷ ︸p−5

,−r , 2r , 2r , 2r).

I dim(A) = p − 3, ∃t ∈ [0, p − 6],(r , . . . , r︸ ︷︷ ︸

t

,−r , . . . ,−r︸ ︷︷ ︸p−4−t

, 2r ,−(t + 3)r ,−(t + 3)r).

I dim(A) = p − 3, ∃t ∈ [1, p − 4],

(r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−3−t

,−(t + 1)r ,−(t + 2)r).

(aσ(1), . . . , aσ(p−1)) = (r , . . . , r︸ ︷︷ ︸t

,−r , . . . ,−r︸ ︷︷ ︸p−3−t

,−(t+1)r ,−(t+2)r).

I p = 7, dim(A) = p − 3 = 4,

(−1, 1,−2, 2,−3, 3).

I dim(A) = p − 2.

Page 76: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap−1) a zerosum sequence ofp − 1 elements of F×p :

I dim(A) = 1, (r , . . . , r , 2r).

I dim(A) = p − 4, (r , . . . , r︸ ︷︷ ︸p−5

,−r , 2r , 2r , 2r).

I dim(A) = p − 3, ∃t ∈ [0, p − 6],(r , . . . , r︸ ︷︷ ︸

t

,−r , . . . ,−r︸ ︷︷ ︸p−4−t

, 2r ,−(t + 3)r ,−(t + 3)r).

I dim(A) = p − 3, ∃t ∈ [1, p − 4],(r , . . . , r︸ ︷︷ ︸

t

,−r , . . . ,−r︸ ︷︷ ︸p−3−t

,−(t + 1)r ,−(t + 2)r).

I p = 7, dim(A) = p − 3 = 4,

(−1, 1,−2, 2,−3, 3).

(aσ(1), . . . , aσ(6)) = (−1, 1,−2, 2,−3, 3).

I dim(A) = p − 2.

Page 77: Additive combinatorics in Fp and the polynomial methodmath.univ-lille1.fr/~bhowmik/seminaire... · Additive combinatorics in Fp and the polynomial method The Combinatorial Nullstellensatz

Additive combinatorics in Fp and the polynomial method

Additive results on sequences

Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, A = (a1, . . . , ap−1) a zerosum sequence ofp − 1 elements of F×p :

I dim(A) = 1, (r , . . . , r , 2r).

I dim(A) = p − 4, (r , . . . , r︸ ︷︷ ︸p−5

,−r , 2r , 2r , 2r).

I dim(A) = p − 3, ∃t ∈ [0, p − 6],(r , . . . , r︸ ︷︷ ︸

t

,−r , . . . ,−r︸ ︷︷ ︸p−4−t

, 2r ,−(t + 3)r ,−(t + 3)r).

I dim(A) = p − 3, ∃t ∈ [1, p − 4],(r , . . . , r︸ ︷︷ ︸

t

,−r , . . . ,−r︸ ︷︷ ︸p−3−t

,−(t + 1)r ,−(t + 2)r).

I p = 7, dim(A) = p − 3 = 4, (−1, 1,−2, 2,−3, 3).

I dim(A) = p − 2.