adam marcus (crisply, yale) daniel spielman (yale) nikhil srivastava (msr …cs- · 2014-05-19 ·...

131
The Solution of the Kadison-Singer Problem Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Upload: others

Post on 19-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The Solution of the Kadison-Singer Problem

Adam Marcus (Crisply, Yale) Daniel Spielman (Yale)

Nikhil Srivastava (MSR India)

Page 2: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Outline

Disclaimer The Kadison-Singer Problem, defined. Restricted Invertibility, a simple proof. Break Kadison-Singer, outline of proof.  

Page 3: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The Kadison-Singer Problem (‘59)

A  posi've  solu'on  is  equivalent  to:    Anderson’s  Paving  Conjectures  (‘79,  ‘81)    Bourgain-­‐Tzafriri  Conjecture  (‘91)    Feich'nger  Conjecture  (‘05)    Many  others  

 Implied  by:  

 Akemann  and  Anderson’s  Paving  Conjecture  (‘91)    Weaver’s  KS2  Conjecture      

Page 4: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A  posi've  solu'on  is  equivalent  to:    Anderson’s  Paving  Conjectures  (‘79,  ‘81)    Bourgain-­‐Tzafriri  Conjecture  (‘91)    Feich'nger  Conjecture  (‘05)    Many  others  

 Implied  by:  

 Akemann  and  Anderson’s  Paving  Conjecture  (‘91)    Weaver’s  KS2  Conjecture      

The Kadison-Singer Problem (‘59)

Page 5: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A  posi've  solu'on  is  equivalent  to:    Anderson’s  Paving  Conjectures  (‘79,  ‘81)    Bourgain-­‐Tzafriri  Conjecture  (‘91)    Feich'nger  Conjecture  (‘05)    Many  others  

 Implied  by:  

 Akemann  and  Anderson’s  Paving  Conjecture  (‘91)    Weaver’s  KS2  Conjecture      

The Kadison-Singer Problem (‘59)

Page 6: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Let be a maximal Abelian subalgebra of , the algebra of bounded linear operators on Let be a pure state. Is the extension of to unique?  

         

A

⇢ : A ! C⇢

See  Nick  Harvey’s  Survey  or  Terry  Tao’s  Blog  

B(`2(N))`2(N)

B(`2(N))

The Kadison-Singer Problem (‘59)

Page 7: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Anderson’s Paving Conjecture ‘79

For all there is a k so that for every n-by-n symmetric matrix A with zero diagonals, there is a partition of into  

kA(Sj , Sj)k ✏ kAk for j = 1, . . . , k

✏ > 0

Recall  kAk = max

kxk=1kAxk

{1, ..., n} S1, ..., Sk

Page 8: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

0

@

1

A

Anderson’s Paving Conjecture ‘79

For all there is a k so that for every n-by-n symmetric matrix A with zero diagonals, there is a partition of into  

kA(Sj , Sj)k ✏ kAk for j = 1, . . . , k

✏ > 0

Recall  kAk = max

kxk=1kAxk

{1, ..., n} S1, ..., Sk

Page 9: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

kAk = supkxk=1

kAxk

Anderson’s Paving Conjecture ‘79

For all there is a k so that for every self-adjoint bounded linear operator A on , there is a partition of into  

kA(Sj , Sj)k ✏ kAk for j = 1, . . . , k

✏ > 0`2

N S1, ..., Sk

Page 10: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Anderson’s Paving Conjecture ‘79

For all there is a k so that for every n-by-n symmetric matrix A with zero diagonals, there is a partition of into  

kA(Sj , Sj)k ✏ kAk for j = 1, . . . , k

✏ > 0

{1, ..., n} S1, ..., Sk

Is equivalent if restrict to projection matrices. [Casazza, Edidin, Kalra, Paulsen ‘07]  

Page 11: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Anderson’s Paving Conjecture ‘79

There exist an and a k so that for such that and then exists a partition of into k parts s.t.  

✏ > 0

kvik2 1/2

{1, . . . , n}

Equivalent to [Harvey ‘13]:  

v1, ..., vn 2 Cd

Pviv⇤i = I

���P

i2Sjviv⇤i

��� 1� ✏

Page 12: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Moments of Vectors The moment of vectors in the direction of a unit vector is  

v1, ..., vnu

v1

v2

v1

v2

v1

v2

u

X

i

(vTi u)2

2.5

u

u1 4

Page 13: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Moments of Vectors The moment of vectors in the direction of a unit vector is  

v1, ..., vnu

X

i

(vTi u)2 =

X

i

uT (vivTi )u

= uT

X

i

vivTi

!u

Page 14: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Vectors with Spherical Moments

v1

�v1�v2

�v3

�v4

v4

v3

v2

For every unit vector  uX

i

(vTi u)2 = 1u

Page 15: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Vectors with Spherical Moments

v1

�v1�v2

�v3

�v4

v4

v3

v2

For every unit vector  uX

i

(vTi u)2 = 1

X

i

vivTi = I

u

Also called isotropic position  

Page 16: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Partition into Approximately ½-Spherical Sets S1 S2

Page 17: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Partition into Approximately ½-Spherical Sets

1/4 P

i2Sj(vTi u)

2 3/4

S1 S2

Page 18: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Partition into Approximately ½-Spherical Sets

1/4 P

i2Sj(vTi u)

2 3/4

1/4 eigs(P

i2SjvivTi ) 3/4

S1 S2

Page 19: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Partition into Approximately ½-Spherical Sets

1/4 P

i2Sj(vTi u)

2 3/4

1/4 eigs(P

i2SjvivTi ) 3/4

S1 S2

eigs(P

i2SjvivTi ) 3/4

X

i2S1

vivTi = I �

X

i2S2

vivTibecause  

()

Page 20: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Partition into Approximately ½-Spherical Sets

1/4 P

i2Sj(vTi u)

2 3/4

1/4 eigs(P

i2SjvivTi ) 3/4

S1 S2

X

i2S1

vivTi = I �

X

i2S2

vivTibecause  

()���P

i2SjvivTi

��� 3/4

Page 21: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

S1

S2

Big vectors make this difficult

Page 22: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

S1 S2

Big vectors make this difficult

Page 23: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Weaver’s Conjecture KS2

There exist positive constants and so that if all then exists a partition into S1 and S2 with  

↵ ✏

kvik ↵

eigs(P

i2Sjviv⇤i ) 1� ✏

Page 24: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Weaver’s Conjecture KS2

There exist positive constants and so that if all then exists a partition into S1 and S2 with  

↵ ✏

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer  

kvik ↵

eigs(P

i2Sjviv⇤i ) 1� ✏

Page 25: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

eigs(P

i2Sjviv⇤i ) 1

2 + 3↵

Main Theorem

For all if all then exists a partition into S1 and S2 with  

↵ > 0

kvik ↵

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer  

Page 26: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A Random Partition? Works with high probability if all

(by Tropp ‘11, variant of Matrix Chernoff, Rudelson)  kvik2 O(1/ log d)

Page 27: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A Random Partition? Works with high probability if all

(by Tropp ‘11, variant of Matrix Chernoff, Rudelson)  

Troublesome case: each is a scaled axis vector  

kvik = ↵

are of each  1/↵2

kvik2 O(1/ log d)

Page 28: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A Random Partition? Works with high probability if all

(by Tropp ‘11, variant of Matrix Chernoff, Rudelson)  

Troublesome case: each is a scaled axis vector  

kvik = ↵

are of each  1/↵2

chance that all in one direction land in same set is   2�1/↵2

kvik2 O(1/ log d)

Page 29: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A Random Partition? Works with high probability if all

(by Tropp ‘11, variant of Matrix Chernoff, Rudelson)  

Troublesome case: each is a scaled axis vector  

kvik = ↵

are of each  1/↵2

chance that all in one direction land in same set is   2�1/↵2

kvik2 O(1/ log d)

Chance there exists a direction in which all land in same set is  

1�⇣1� 2�1/↵2

⌘d! 1

Page 30: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The Graphical Case

From a graph G = (V,E) with |V| = n and |E| = m Create m vectors in n dimensions:  

va,b(c) =

8><

>:

1 if c = a

�1 if c = b

0 otherwise

X

(a,b)2E

va,bvTa,b = LG

If G is a good d-regular expander, all eigs close to d very close to spherical  

Page 31: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Partitioning Expanders

Can partition the edges of a good expander to obtain two expanders.

Broder-Frieze-Upfal ‘94: construct random partition guaranteeing degree at least d/4, some expansion Frieze-Molloy ‘99: Lovász Local Lemma, good expander Probability is works is low, but can prove non-zero  

Page 32: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Interlacing Families of Polynomials

A new technique for proving existence from very low probabilities

Page 33: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Pi viv

⇤i = I

Restricted Invertibility (Bourgain-Tzafriri)

Special case: For with for every there is a so that

v1, ..., vn 2 Cd

k d S ⇢ {1, ..., n} , |S| = k

�k

�Pi2S viv⇤i

��

✓1�

qkd

◆2dn

Page 34: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Restricted Invertibility (Bourgain-Tzafriri)

Special case: For with for every there is a so that

v1, ..., vn 2 Cd

k d S ⇢ {1, ..., n} , |S| = k

�k

�Pi2S viv⇤i

��

✓1�

qkd

◆2dn

Is far from singular on the span of  {vi}i2S

Pi viv

⇤i = I

Page 35: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

�1(vv⇤) = v⇤v = kvk2 ⇡ dn

Restricted Invertibility (Bourgain-Tzafriri)

For with for every there is a so that

v1, ..., vn 2 Cd

k d S ⇢ {1, ..., n} , |S| = k

�k

�Pi2S viv⇤i

��

✓1�

qkd

◆2dn

For says , while  

k = 1 �1(vv⇤) & dn

Similar bound for k a constant fraction of d!  

Pi viv

⇤i = I

Page 36: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Method of proof

Let be chosen uniformly from {v1, ..., vn}r1, ..., rk

1. is real rooted E�

hXrjr

⇤j

i(x)

the  characteris*c  polynomial  in  the  variable  x of  the  matrix  inside  the  brackets  

Page 37: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Method of proof

Let be chosen uniformly from {v1, ..., vn}r1, ..., rk

1. is real rooted

2.

the  k-­‐th  root  of  the  polynomial  

�k

⇣E�

hXrjr

⇤j

i(x)⌘� 1�

rk

d

!2d

n

E�

hXrjr

⇤j

i(x)

Page 38: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Method of proof

Let be chosen uniformly from {v1, ..., vn}r1, ..., rk

1. is real rooted

2.

3. With non-zero probability

�k

⇣�

hXrjr

⇤j

i(x)

⌘� �k

⇣E�

hXrjr

⇤j

i(x)

�k

⇣E�

hXrjr

⇤j

i(x)⌘� 1�

rk

d

!2d

n

E�

hXrjr

⇤j

i(x)

Because  is  an  interlacing  family  of  polynomials  

Page 39: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Method of proof

Let be chosen uniformly from {v1, ..., vn}r1, ..., rk

1. is real rooted

2.

3. With non-zero probability

�k

⇣�

hXrjr

⇤j

i(x)

⌘� �k

⇣E�

hXrjr

⇤j

i(x)

�k

⇣E�

hXrjr

⇤j

i(x)⌘� 1�

rk

d

!2d

n

E�

hXrjr

⇤j

i(x)

Because  is  an  interlacing  family  of  polynomials  

Page 40: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Rank-1 updates of characteristic polynomials

As ,

Lemma: For a symmetric matrix A,

E�

⇥A+ r

j

r

⇤j

⇤(x) = (1� 1

n

@

x

)�[A](x)

E rjr⇤j = 1nI

Pi viv

⇤i = I

Page 41: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Rank-1 updates of characteristic polynomials

As ,

Lemma: For a symmetric matrix A,

Proof: follows from rank-1 update for determinants:

det(A+ uu⇤) = det(A)(1 + u⇤A�1u)

E�

⇥A+ r

j

r

⇤j

⇤(x) = (1� 1

n

@

x

)�[A](x)

E rjr⇤j = 1nI

Pi viv

⇤i = I

Page 42: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The expected characteristic polynomial

Lemma: For a symmetric matrix A,

Corollary:

E�

⇥A+ r

j

r

⇤j

⇤(x) = (1� 1

n

@

x

)�[A](x)

E�

hPk

j=1 rjr⇤j

i(x) = (1� 1

n

@

x

)kxd

Page 43: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Roots Lemma: if is real rooted, so is

p(x) (1� c@

x

)p(x)

p(x)

Page 44: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Roots Lemma: if is real rooted, so is

p(x) (1� c@

x

)p(x)

p(x)p

0(x)

Page 45: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Roots Lemma: if is real rooted, so is

p(x) (1� c@

x

)p(x)

p(x)p

0(x)

�p

0(x)

Page 46: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Roots Lemma: if is real rooted, so is

p(x) (1� c@

x

)p(x)

p(x)

�p

0(x)

Page 47: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Roots Lemma: if is real rooted, so is

p(x) (1� c@

x

)p(x)

p(x)

�p

0(x)

+   +  -­‐   -­‐   +  

Page 48: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Roots

Lemma: if is real rooted, so is p(x) (1� c@

x

)p(x)

E�

hPk

j=1 rjr⇤j

i(x) = (1� 1

n

@

x

)kxd

So, is real rooted E�

hPkj=1 rjr

⇤j

i(x)

Page 49: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Lower bound on the kth root

E�

hPk

j=1 rjr⇤j

i(x) = (1� 1

n

@

x

)kxd

a scaled associated Laguerre polynomial

= x

d�k(1� 1n

@

x

)dxk

= x

d�kL

d�kk (nx)

Page 50: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Lower bound on the kth root

E�

hPk

j=1 rjr⇤j

i(x) = (1� 1

n

@

x

)kxd

a scaled associated Laguerre polynomial

Let  R  be  a  k-­‐by-­‐d  matrix  of  independent          N (0, 1/n)

= x

d�kL

d�kk (nx)

E�[RR

T ] = L

d�kk (nx)

E�[RTR] = x

d�kL

d�kk (nx)

Page 51: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Lower bound on the kth root

E�

hPk

j=1 rjr⇤j

i(x) = (1� 1

n

@

x

)kxd

a scaled associated Laguerre polynomial

�k

⇣E�

hXrjr

⇤j

i(x)⌘� 1�

rk

d

!2d

n

(Krasikov ‘06)

= x

d�kL

d�kk (nx)

Page 52: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Proof: the polynomials form an interlacing family.

3. With non-zero probability

�k

⇣�

hXrjr

⇤j

i(x)

⌘� �k

⇣E�

hXrjr

⇤j

i(x)

pi1,i2,...,ik(x) = �

⇥vi1v

⇤i1 + · · ·+ vikv

⇤ik

⇤(x)

Page 53: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Interlacing

Polynomial

interlaces

if

q(x) =Qd�1

i=1 (x� �i)

p(x) =Qd

i=1(x� ↵i)

↵1 �1 ↵2 · · ·↵d�1 �d�1 ↵d

Page 54: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Interlacing

Polynomial

interlaces

if

q(x) =Qd�1

i=1 (x� �i)

p(x) =Qd

i=1(x� ↵i)

↵1 �1 ↵2 · · ·↵d�1 �d�1 ↵d

For example, interlaces p(x)@

x

p(x)

Page 55: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Interlacing

Polynomial

interlaces

if

q(x) =Qd�1

i=1 (x� �i)

p(x) =Qd

i=1(x� ↵i)

↵1 �1 ↵2 · · ·↵d�1 �d�1 ↵d

If generalize to allow same degree,

Cauchy’s interlacing theorem says

interlaces �[A](x)�[A+ vv

⇤](x)

�d

Page 56: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

p1(x)

Common Interlacing

and have a common interlacing if can partition the line into intervals so that each contains one root from each polynomial  

p2(x)

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

Page 57: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

p1(x)

Common Interlacing

and have a common interlacing if can partition the line into intervals so that each contains one root from each polynomial  

p2(x)

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

Page 58: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

If have a common interlacing, then

Common Interlacing p1(x), p2(x), . . . , pn(x)

min

j�k(pj) �k

✓Ejpj

◆ max

j�k(pj)

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

Page 59: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

If have a common interlacing, then

Common Interlacing p1(x), p2(x), . . . , pn(x)

min

j�k(pj) �k

✓Ejpj

◆ max

j�k(pj)

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

Page 60: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

If have a common interlacing, then

Common Interlacing p1(x), p2(x), . . . , pn(x)

min

j�k(pj) �k

✓Ejpj

◆ max

j�k(pj)

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  All  are    non-­‐nega*ve    here  

All  are  non-­‐posi*ve  here  

So,  the  average  has  a  root  between  the  smallest  and  largest  kth  roots    

Page 61: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Without a common interlacing

(x+ 1)(x+ 2) (x� 1)(x� 2)

Page 62: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Without a common interlacing

(x+ 1)(x+ 2) (x� 1)(x� 2)

x

2 + 4

Page 63: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Without a common interlacing (x+ 4)(x� 1)(x� 8)

(x+ 3)(x� 9)(x� 10.3)

Page 64: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Without a common interlacing (x+ 4)(x� 1)(x� 8)

(x+ 3)(x� 9)(x� 10.3)

(x+ 3.2)(x� 6.8)(x� 7)

Page 65: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

If have a common interlacing, then

Common Interlacing p1(x), p2(x), . . . , pn(x)

min

j�k(pj) �k

✓Ejpj

◆ max

j�k(pj)

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

Page 66: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

is an interlacing family

if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

Ei [ p2,i ]Ei [ p1,i ]

p2,2p2,1p1,1 p1,2

Ei,j [ pi,j ]

Interlacing Family of Polynomials {p�(x)}�

Ei [ p3,i ]

p2,3p1,3 p3,1 p3,2 p3,3

Page 67: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

is an interlacing family

For , set

Ei [ p2,i ]

p2,2p2,1p1,1 p1,2

Ei,j [ pi,j ]

Interlacing Family of Polynomials {p�(x)}�

Ei [ p3,i ]

p2,3p1,3 p3,1 p3,2 p3,3

� 2 {1, .., n}k pi1,...,ih = Eih+1,...,ik pi1,...,ik

Ei [ p1,i ]

Page 68: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

is an interlacing family

For , set

Interlacing Family of Polynomials {p�(x)}�

� 2 {1, .., n}k pi1,...,ih = Eih+1,...,ik pi1,...,ik

p2,2p2,1p1,1 p1,2 p2,3p1,3 p3,1 p3,2 p3,3

p1 p2

p;

p3

Page 69: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Interlacing Family of Polynomials Theorem: There is an so that

p2,2p2,1p1,1 p1,2 p2,3p1,3 p3,1 p3,2 p3,3

p1 p2

p;

p3

i1, ..., ik

�k(pi1,...,ik) � �k (p;)

Page 70: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

It remains to prove that the polynomials form an interlacing family.

Will imply that with non-zero probability

�k

⇣�

hXrjr

⇤j

i(x)

⌘� �k

⇣E�

hXrjr

⇤j

i(x)

pi1,i2,...,ik(x) = �

⇥vi1v

⇤i1 + · · ·+ vikv

⇤ik

⇤(x)

Interlacing Family of Polynomials

Page 71: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Common interlacings

have a common interlacing iff for every convex combination

p1(x), p2(x), . . . , pn(x)

Pj µj = 1, µj � 0

Pj µjpj(x)

is real rooted

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

Page 72: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Common interlacings

have a common interlacing iff for every distribution on

p1(x), p2(x), . . . , pn(x)

is real rooted

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

µ {1, ..., n}

Ej⇠µ pj(x)

Page 73: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Common interlacings

have a common interlacing iff for every distribution on

p1(x), p2(x), . . . , pn(x)

is real rooted

µ {1, ..., n}

Ej⇠µ pj(x)

Proof: by similar picture. (Dedieu ‘80, Fell ‘92, Chudnovsky-Seymour ‘07)

Page 74: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An interlacing family

pi1,i2,...,ik(x) = �

⇥vi1v

⇤i1 + · · ·+ vikv

⇤ik

⇤(x)

Nodes on the tree are labeled with

pi1,...,ih(x) = Eih+1,...,ik pi1,...,ik(x)

We need to show that for each the polynomials i1, ..., ih

pi1,...,ih,j(x) have a common interlacing

Page 75: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An interlacing family

pi1,i2,...,ik(x) = �

⇥vi1v

⇤i1 + · · ·+ vikv

⇤ik

⇤(x)

Nodes on the tree are labeled with

pi1,...,ih(x) = Eih+1,...,ik pi1,...,ik(x)

We need to show that for each the polynomials i1, ..., ih

pi1,...,ih,j(x) have a common interlacing

Proof: = (1� 1

n

@

x

)k�h�1�

⇥v

i1v⇤i1+ · · ·+ v

ihv⇤ih

+ v

j

v

⇤j

⇤(x)

Page 76: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An interlacing family We need to show that for each the polynomials i1, ..., ih

pi1,...,ih,j(x) have a common interlacing

Proof:

Cauchy’s interlacing theorem implies All interlace  

⇥vi1v

⇤i1 + · · ·+ vihv

⇤ih + vjv

⇤j

⇤(x)

= (1� 1n

@

x

)k�h�1�

⇥v

i1v⇤i1+ · · ·+ v

ihv⇤ih

+ v

j

v

⇤j

⇤(x)

⇥vi1v

⇤i1 + · · ·+ vihv

⇤ih

⇤(x)

Page 77: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An interlacing family We need to show that for each the polynomials i1, ..., ih

pi1,...,ih,j(x) have a common interlacing

Proof:

Cauchy’s interlacing theorem implies have a common interlacing  

⇥vi1v

⇤i1 + · · ·+ vihv

⇤ih + vjv

⇤j

⇤(x)

= (1� 1n

@

x

)k�h�1�

⇥v

i1v⇤i1+ · · ·+ v

ihv⇤ih

+ v

j

v

⇤j

⇤(x)

Page 78: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An interlacing family Proof:

Cauchy’s interlacing theorem implies have a common interlacing. So, for all distributions is real rooted.  

⇥vi1v

⇤i1 + · · ·+ vihv

⇤ih + vjv

⇤j

⇤(x)

Ej⇠µ �⇥vi1v

⇤i1 + · · ·+ vihv

⇤ih + vjv

⇤j

⇤(x)

µ

= (1� 1n

@

x

)k�h�1�

⇥v

i1v⇤i1+ · · ·+ v

ihv⇤ih

+ v

j

v

⇤j

⇤(x)

Page 79: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An interlacing family Proof:

Cauchy’s interlacing theorem implies have a common interlacing. So, for all distributions is real rooted. And, is also real rooted for every distribution .  

⇥vi1v

⇤i1 + · · ·+ vihv

⇤ih + vjv

⇤j

⇤(x)

Ej⇠µ �⇥vi1v

⇤i1 + · · ·+ vihv

⇤ih + vjv

⇤j

⇤(x)

µ

Ej⇠µ

(1� 1n

@

x

)k�h�1�

⇥v

i1v⇤i1+ · · ·+ v

ihv⇤ih

+ v

j

v

⇤j

⇤(x)

= (1� 1n

@

x

)k�h�1�

⇥v

i1v⇤i1+ · · ·+ v

ihv⇤ih

+ v

j

v

⇤j

⇤(x)

µQED  

Page 80: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Method of proof

Let be chosen uniformly from {v1, ..., vn}r1, ..., rk

1. is real rooted

2.

3. With non-zero probability

�k

⇣�

hXrjr

⇤j

i(x)

⌘� �k

⇣E�

hXrjr

⇤j

i(x)

�k

⇣E�

hXrjr

⇤j

i(x)⌘� 1�

rk

d

!2d

n

E�

hXrjr

⇤j

i(x)

Because  is  an  interlacing  family  of  polynomials  

Page 81: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

In part 2

Will use the same approach to prove Weaver’s conjecture, and thereby Kadison-Singer But, employ multivariate analogs of these arguments and a direct bound on the roots of the polynomials.

Page 82: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Main Theorem

For all if all and then exists a partition into S1 and S2 with  

↵ > 0

kvik ↵

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer  

eigs(P

i2Sjviv⇤i ) 1

2 + 3↵

Pviv⇤i = I

Page 83: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

eigs

0

BB@

X

i2S1

viv⇤i 0

0X

i2S2

viv⇤i

1

CCA 12 + 3↵

We want

Page 84: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

We want

roots

0

BB@�

2

664

X

i2S1

viv⇤i 0

0

X

i2S2

viv⇤i

3

775 (x)

1

CCA 12 + 3↵

Page 85: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

We want

Consider expected polynomial with a random partition.  

roots

0

BB@�

2

664

X

i2S1

viv⇤i 0

0

X

i2S2

viv⇤i

3

775 (x)

1

CCA 12 + 3↵

Page 86: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Method of proof

1.  Prove expected characteristic polynomial has real roots

2.  Prove its largest root is at most  

3.  Prove is an interlacing family, so exists a partition whose polynomial

has largest root at most  

1/2 + 3↵

1/2 + 3↵

Page 87: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The Expected Polynomial Indicate choices by :  �1, ...,�n i 2 S�i

p�1,...,�n(x) = �

2

664

X

i:�i=1

viv⇤i 0

0X

i:�i=2

viv⇤i

3

775 (x)

Page 88: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

0

BB@

X

i2S1

viv⇤i 0

0X

i2S2

viv⇤i

1

CCA =X

i

aia⇤i

The Expected Polynomial

ai =

✓vi0

◆for i 2 S1 ai =

✓0

vi

◆for i 2 S2

�i = 1 �i = 2

Page 89: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

Theorem: It only depends on and, is real-rooted  

E�[P

i aia⇤i ]

Ai = E aia⇤i

Page 90: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Ai = E aia⇤i

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

E�[P

i aia⇤i ] = µ(A1, ..., An)

Theorem: It only depends on and, is real-rooted  

Tr (Ai) = Tr (E aia⇤i ) = ETr (aia⇤i ) = E kaik2

Page 91: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

The constant term is the mixed discriminant of  A1, . . . , An

E�[P

i aia⇤i ] = µ(A1, ..., An)

Page 92: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The constant term When diagonal and , is a matrix permanent. d = n cd

0

@

1

A

0

@

1

A

0

@

1

A

0

@

1

A

A1 A2 Ad

Page 93: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The constant term

is minimized when  

Proved by Egorychev and Falikman ‘81. Simpler proof by Gurvits (see Laurent-Schrijver)

If and  P

Ai = I Tr(Ai) = 1

When diagonal and , is a matrix permanent. Van der Waerden’s Conjecture becomes  

d = n cd

cd Ai =1

nI

Page 94: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The constant term

is minimized when  

This was a conjecture of Bapat.

If and  P

Ai = I Tr(Ai) = 1

For Hermitian matrices, is the mixed discriminant Gurvits proved a lower bound on :  cd

cd

cd

Ai =1

nI

Page 95: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Other coefficients One can generalize Gurvits’s results to prove lower bounds on all the coefficients.

is minimized when  

If and  P

Ai = I Tr(Ai) = 1

Ai =1

nI|ck|

But, this does not imply useful bounds on the roots  

Page 96: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Stable Polynomials

A multivariate generalization of real rootedness.

p 2 IR[z]Complex roots of come in conjugate pairs.  

So, real rooted iff no roots with positive complex part.  

Page 97: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Stable Polynomials

Isomorphic  to  Gårding’s  hyperbolic  polynomials    Used  by  Gurvits  (in  his  second  proof)  

is real stable if

it has no roots in the upper half-plane

for all i

implies

p 2 IR[z1, . . . , zn]

imag(zi) > 0p(z1, . . . , zn) 6= 0

Page 98: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Stable Polynomials

Isomorphic  to  Gårding’s  hyperbolic  polynomials    Used  by  Gurvits  (in  his  second  proof)  

is real stable if

it has no roots in the upper half-plane

for all i

implies

p 2 IR[z1, . . . , zn]

imag(zi) > 0p(z1, . . . , zn) 6= 0

See surveys of Pemantle and Wagner

Page 99: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Stable Polynomials

Borcea-Brändén ‘08: For PSD matrices

is real stable

det[z1A1 + · · ·+ znAn]

A1, . . . , An

Page 100: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Real Stable Polynomials

implies is real rooted

real stable p(z1, ..., zn)

p(x, x, ..., x)

implies is real stable

real stable p(z1, ..., zn)

(Lieb Sokal ‘81)

(1� @zi) p(z1, ..., zn)

Page 101: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

nY

i=1

1� @zi

!det

nX

i=1

zi

Ai

!���z1=···=zn=x

Real Roots

µ(A1, . . . , An)(x) =

So, every mixed characteristic polynomial is real rooted.  

Page 102: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

p�1,...,�n(x) = �

2

664

X

i:�i=1

viv⇤i 0

0X

i:�i=2

viv⇤i

3

775 (x)

Our Interlacing Family Indicate choices by :  �1, ...,�n i 2 S�i

p�1,...,�k(x) = E�k+1,...,�n

[ p�1,...,�n ] (x)

Page 103: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Interlacing

p1(x) and have a common interlacing iff p2(x)

�p1(x) + (1� �)p2(x) is real rooted for all  0 � 1

We need to show that is real rooted.  

�p�1,...,�k,1(x) + (1� �)p�1,...�k,2(x)

Page 104: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Interlacing

p1(x) and have a common interlacing iff p2(x)

�p1(x) + (1� �)p2(x) is real rooted for all  0 � 1

We need to show that is real rooted.  

�p�1,...,�k,1(x) + (1� �)p�1,...�k,2(x)

It is a mixed characteristic polynomial, so is real-rooted.  

�k+1 = 1Set with probability Keep uniform for  

��i i > k + 1

Page 105: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An upper bound on the roots

Theorem: If and then  

PAi = I Tr(Ai) ✏

max-root (µ(A1, ..., An)(x)) (1 +p✏)2

Page 106: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An upper bound on the roots

Theorem: If and then  

PAi = I Tr(Ai) ✏

max-root (µ(A1, ..., An)(x)) (1 +p✏)2

An upper bound of 2 is trivial (in our special case). Need any constant strictly less than 2.  

Page 107: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An upper bound on the roots

Theorem: If and then  

PAi = I Tr(Ai) ✏

max-root (µ(A1, ..., An)(x)) (1 +p✏)2

µ(A1, . . . , An)(x) =

nY

i=1

1� @zi

!det

nX

i=1

zi

Ai

!���z1=···=zn=x

Page 108: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An upper bound on the roots

Define: is an upper bound on the roots of if  

(w1, ..., wn)p(z1, ..., zn)

p(z1, ..., zn) > 0 for  (z1, ..., zn) � (w1, ..., wn)

−8 −6 −4 −2 0 2 4 6 8 10−8

−6

−4

−2

0

2

4

6

8

10

w

Page 109: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An upper bound on the roots

Define: is an upper bound on the roots of if  

(w1, ..., wn)p(z1, ..., zn)

p(z1, ..., zn) > 0 for  (z1, ..., zn) � (w1, ..., wn)

−8 −6 −4 −2 0 2 4 6 8 10−8

−6

−4

−2

0

2

4

6

8

10

w

Eventually set z1, ..., zn = x

so want  w1 = · · · = wn

Page 110: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

−8 −6 −4 −2 0 2 4 6 8 10−8

−6

−4

−2

0

2

4

6

8

10

Action of the operators

p(x, y)

Page 111: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Action of the operators

−8 −6 −4 −2 0 2 4 6 8 10 12−8

−6

−4

−2

0

2

4

6

8

10

p(x, y)(1� @y)p(x, y)

Page 112: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Action of the operators

−8 −6 −4 −2 0 2 4 6 8 10 12−8

−6

−4

−2

0

2

4

6

8

10

p(x, y)(1� @y)p(x, y)

(1� ✏@y)p(x, y) ⇡ p(x, y � ✏)

Page 113: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The roots of

Define:  

(1� @

x

)p(x)

↵-max(�1, ...,�n) = max

n

u :

P 1u��i

= ↵o

↵-max(p(x)) = ↵-max(roots(p))

Theorem (Batson-S-Srivastava): If is real rooted and  

p(x) ↵ > 0

↵-max((1� @

x

)p(x)) ↵-max(p(x)) +

1

1� ↵

Page 114: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The roots of (1� @

x

)p(x)

Theorem (Batson-S-Srivastava): If is real rooted and  

p(x) ↵ > 0

↵-max((1� @

x

)p(x)) ↵-max(p(x)) +

1

1� ↵

Proof: Define   Set , so  

u = ↵-max(p(x)) �p(u) = ↵

Suffices to show for all  

�p�p0(u+ �) �p(u)

� � 11�↵

�p(u) =p0(u)

p(u)=

X

i

1

u� �i= @u log p(u)

Page 115: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The roots of (1� @

x

)p(x)

Define  �p(u) =p0(u)

p(u)=

X

i

1

u� �i

Set , so  u = ↵-max(p(x)) �p(u) = ↵

Suffices to show for all  

�p�p0(u+ �) �p(u)

� � 11�↵

�p(u)� �p(u+ �) ���0

p(u+ �)

1� �p(u+ �)

(algebra)  

Page 116: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The roots of (1� @

x

)p(x)

Define  

�p(u)� �p(u+ �) ���0

p(u+ �)

1� �p(u+ �)

�p(u) convex for implies  u > max(p(x))

�p(u)� �p(u+ �) � �(��0p(u+ �))

Monotone decreasing implies only need  

� � 1

1� �p(u+ �)

�p(u) =p0(u)

p(u)=

X

i

1

u� �i

Page 117: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The roots of (1� @

x

)p(x)

�p(u) convex for implies  u > max(p(x))

�p(u)� �p(u+ �) � �(��0p(u+ �))

Monotone decreasing implies only need  

� � 1

1� �p(u+ �)

and that   � � 1

1� ↵=

1

1� �p(u) suffices.  

Page 118: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The roots of (1� @

x

)p(x)

�p(u) convex for implies  u > max(p(x))

�p(u)� �p(u+ �) � �(��0p(u+ �))

Monotone decreasing implies only need  

� � 1

1� �p(u+ �)

and that   � � 1

1� ↵=

1

1� �p(u) suffices.  

Page 119: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

The roots of (1� @

x

)p(x)

Theorem (Batson-S-Srivastava): If is real rooted and  

p(x) ↵ > 0

↵-max((1� @

x

)p(x)) ↵-max(p(x)) +

1

1� ↵

Gives a sharp upper bound on the roots of associated Laguerre polynomials. The analogous argument with the min gives the lower bound that we claimed before.  

Page 120: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An upper bound on the roots

Theorem: If and then  

PAi = I Tr(Ai) ✏

max-root (µ(A1, ..., An)(x)) (1 +p✏)2

µ(A1, . . . , An)(x) =

nY

i=1

1� @zi

!det

nX

i=1

zi

Ai

!���z1=···=zn=x

Page 121: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A robust upper bound

Define: is an -upper bound on if it is an -max, in each , and  

(w1, ..., wn)p(z1, ..., zn)

↵i zi ↵i ↵

Theorem: If  is an -upper bound on , then ↵ pw

w + �ej is an -upper bound on , ↵ p� @zjp

� � 11�↵ for

Page 122: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A robust upper bound Theorem: If  is an -upper bound on , and ↵ pw

w + �ej is an -upper bound on , ↵ p� @zjp

� � 11�↵

Proof: Same as before, but need to know that  

is decreasing and convex in , above the roots  zj

@zip(z1, . . . , zn)

p(z1, . . . , zn)

Page 123: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A robust upper bound Proof: Same as before, but need to know that  

is decreasing and convex in , above the roots  zj

@zip(z1, . . . , zn)

p(z1, . . . , zn)

Follows from a theorem of Helton and Vinnikov ’07:  

Every bivariate real stable polynomial can be written  

det(A+Bx+ Cy)

Page 124: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A robust upper bound Proof: Same as before, but need to know that  

is decreasing and convex in , above the roots  zj

@zip(z1, . . . , zn)

p(z1, . . . , zn)

Or, as pointed out by Renegar, from a theorem Bauschke, Güler, Lewis, and Sendov ’01

Or, by a theorem of Brändén ‘07.  

Or, see Terry Tao’s blog for a (mostly) self-contained proof

Page 125: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

An upper bound on the roots

Theorem: If and then  

PAi = I Tr(Ai) ✏

max-root (µ(A1, ..., An)(x)) (1 +p✏)2

Page 126: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A probabilistic interpretation

For independently chosen random vectors with finite support  

a1, ..., an

such that and  ���E

⇥aia

Ti

⇤��� ✏E⇥ P

i aiaTi

⇤= I

then  Pr

"�����X

i

aiaTi

����� (1 +p✏)2

#> 0

Page 127: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Main Theorem

For all if all then exists a partition into S1 and S2 with  

↵ > 0

kvik ↵

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer  

eigs(P

i2SjvivTi ) 1

2 + 3↵

Page 128: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Anderson’s Paving Conjecture ‘79

Reduction by Casazza-Edidin-Kalra-Paulsen ’07 and Harvey ’13:

There exist an and a k so that if all and then exists a partition of into k parts s.t.  

✏ > 0

PvivTi = I

{1, . . . , n}

eigs(P

i2SjvivTi ) 1� ✏

kvik2 1/2

Can prove using the same technique

Page 129: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

A conjecture

If and then  

PAi = I Tr(Ai) ✏

max-root (µ(A1, ..., An)(x))

is largest when Ai =✏dI

Page 130: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Questions

How do operations that preserve real rootedness move the roots and the Stieltjes transform?  

Can the partition be found in polynomial time?  

What else can one construct this way?  

Page 131: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR …cs- · 2014-05-19 · Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)