accelerating (s)rf cavities - cornell universityhoff/lectures/08s_688/08s_688_080324.pdftaiwan light...

51
1 Matthias Liepe; 03/24/2008 Accelerating (S)RF Cavities Matthias Liepe

Upload: others

Post on 23-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

1Matthias Liepe; 03/24/2008

Accelerating (S)RF Cavities

Matthias Liepe

Page 2: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

2Matthias Liepe; 03/24/2008

Outline

• Accelerating cavities– DC accelerators– RF cavities– Examples

• RF Cavity Fundamentals– Pill box cavity– Figures of merit– Accelerating mode– Multicell cavities and circuit models

• RF Cavity Design– NC vs. SC– Objectives and cell shapes– RF codes

Page 3: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

3Matthias Liepe; 03/24/2008

Accelerating cavities

• Accelerating cavities– DC accelerators– RF cavities– Examples

Page 4: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

4Matthias Liepe; 03/24/2008

DC Accelerators

• Use high DC voltage to accelerate particles

• No work done by magnetic fields

Cockroft and Walton's electrostatic accelerator (1932)

Protons were accelerated and slammed into lithium atoms

producing helium and energy.

Page 5: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

5Matthias Liepe; 03/24/2008

DC Accelerators: Limitations

⇒⇒⇒⇒ Use time-varying fields!

Page 6: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

6Matthias Liepe; 03/24/2008

Example of Time Varying Fields: Drift Tube Linac

Page 7: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

7Matthias Liepe; 03/24/2008

Example of Time Varying Fields: Drift Tube Linac

Page 8: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

8Matthias Liepe; 03/24/2008

RF Cavities

Page 9: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

9Matthias Liepe; 03/24/2008

RF Cavities

• Time dependent electromagnetic field inside metal box

Page 10: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

10Matthias Liepe; 03/24/2008

Taiwan Light Source cryomodule

Introduction to RF Cavities

• The main purpose of using RF cavities in accelerators is to provide energy gain to charged-particle beams

• The highest achievable gradient, however, is not always optimal for an accelerator. There are other factors (both machine-dependent and technology-dependent) that determine operating gradient of RF cavities and influence the cavity design, such as accelerator cost optimization, maximum power through an input coupler, necessity to extract HOM power, etc.

• In many cases requirements are competing.

Page 11: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

11Matthias Liepe; 03/24/2008

CW High-Current Storage Rings (colliders and light sources)

• NC or SC• Relatively low

gradient (1…9 MV/m)

• Strong HOM damping (Q ~ 102)

• High average RF power (hundreds of kW)

CESR cavities

KEK cavity

PEP II Cavity

Page 12: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

12Matthias Liepe; 03/24/2008

Pulsed Linacs (ILC, XFEL, …)

• High gradients

• Moderate HOM damping reqs.

• High peak RF power

ILC: 21,000 cavities!

12

12

ILC / XFEL cavities

Page 13: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

13Matthias Liepe; 03/24/2008

Traveling Wave Cavities

Page 14: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

14Matthias Liepe; 03/24/2008

CW low-current linacs (CEBAF, ELBE)

• SRF cavities• Moderate to low

gradient (8…20 MV/m)

• Relaxed HOM damping requirements

• Low average RF power (5…13 kW)

CEBAF cavities

ELBE cryomodule

Page 15: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

15Matthias Liepe; 03/24/2008

CW High-Current ERLs

• SRF cavities• Moderate

gradient (15…20 MV/m)

• Strong HOM damping (Q = 102…104)

• Low average RF power (few kW)

Cornell ERL cavities

BNL ERL cavity

Page 16: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

16Matthias Liepe; 03/24/2008

RF Cavity Fundamentals

• RF Cavity Fundamentals (Standing wave cavities)– Cavity eigenmodes– Figures of merit– Accelerating mode– Multicell cavities and circuit model

Page 17: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

17Matthias Liepe; 03/24/2008

RF Cavities and their Eigenmodes I

Page 18: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

18Matthias Liepe; 03/24/2008

RF Cavities and their Eigenmodes II

Page 19: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

19Matthias Liepe; 03/24/2008

RF Cavities and their Eigenmodes III

Page 20: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

20Matthias Liepe; 03/24/2008

RF Cavities and their Eigenmodes IV

Page 21: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

21Matthias Liepe; 03/24/2008

Accelerating Mode

• Time dependent electromagnetic field inside metal box

Page 22: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

22Matthias Liepe; 03/24/2008

Figures of Merit - 1Accelerating Voltage & Accelerating Field (v = c f or Particles)

Enter Exit

, here, is flight time factor (for pill-box with this length d only, other shapes can have a different value of T ).

• Frequency • For maximum acceleration we need

so that the field always points in the same direction as the bunch traverses the cavity•Accelerating voltage then is

•Accelerating field is

Page 23: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

23Matthias Liepe; 03/24/2008

Figures of Merit - 2Dissipated Power, Stored Energy, Cavity Quality (Q)

•Surface currents (∝ H) result in dissipation proportional to the surfaceresistance (Rs):

•Stored energy is:

•Dissipation in the cavity wall given bysurface integral:

UTrf Pc

= 2 π•Define Quality (Q) as

which is ~ 2 π number of cycles it takes to dissipate the energy stored in the cavity Easy way to measure Q• Qnc ≈ 104, Qsc ≈ 1010

Page 24: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

24Matthias Liepe; 03/24/2008

Figures of Merit for Cavity Design - 3Geometry Factor - G

Page 25: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

25Matthias Liepe; 03/24/2008

Accelerating ππππ-mode:

Accelerating voltage:

(((( ))))∫∫∫∫

++++

−−−−========

2/

2/

/

chargegain energy maximum L

L

czizacc dzeEV ωωωω

Shunt-impedance: Quality factor:

( )dis

acca P

VR

2

=dis

L PU

Qωωωω====

( )U

V

Q

R

Q

R acc

L

a

ω

2

==

Figures of Merit for Cavity Design - 4Shunt Impedance (R a)

Page 26: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

26Matthias Liepe; 03/24/2008

Figures of Merit for Cavity Design - 4Shunt Impedance (R a)

•Ra/Q only depends on the cavity geometry This quantity is also used for determining the level of mode excitation by charges passing through the cavity.

• Shunt impedance (Ra) determines how much acceleration one gets for a given dissipation (analogous to Ohm’s Law)

Another important figure of merit is

To maximize acceleration (Pc given), must maximize shunt impedance.

To minimize losses (Pc) in the cavity, we must maximize G*Ra/Q0:

)/()/)(()/( 0

2

00

2

00

22

QRG

RV

RQRQR

V

QRQ

V

R

VP

a

sc

sas

c

a

c

a

cc ⋅

⋅=⋅

=⋅

==

Page 27: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

27Matthias Liepe; 03/24/2008

Typical Values for Single Cells

270 Ω88 Ω /cell

2.552 Oe/MV/m

Cornell SC 500 MHz

Current is high, it excites a lot of Higher Order Modes, so the hole is made big to propagate HOMs, and this is why Hpk and Epk grew, and R/Q drops.

Diff. applications – diff. trade-offs.

Page 28: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

28Matthias Liepe; 03/24/2008

inputcoupler

inputcoupler

inputcoupler

inputcoupler

inputcoupler

inputcoupler

inputcoupler

inputcoupler

inputcoupler

active (acceleration)passive

higher fill-factor:

F =

⇒ lower costs

⇒ better beam

active length

total length

fewer

• input couplers

• waveguide elements

• RF control systems

• …

Multicell Cavities: Why?

Page 29: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

29Matthias Liepe; 03/24/2008

Multicell Cavities: Why?

Example: 500 GeV Linear Collider

21,024 9-cell cavities: 27.8 km (17.3 miles)

189,216 1-cell cavities: 75.4 km (46.8 miles)

IP

linac 1 linac 2

Page 30: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

30Matthias Liepe; 03/24/2008

Multicell Cavities and Cell-to-Cell Coupling

Page 31: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

31Matthias Liepe; 03/24/2008

Cell-to-Cell Coupling

Single Cell:

TM 010 mode

Coupled Cells

Page 32: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

32Matthias Liepe; 03/24/2008

Two Coupled Cells: TM010 Modes

2 coupled cells 2 TM010 modes

n coupled cells n TM010 modes

Page 33: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

33Matthias Liepe; 03/24/2008

Two Coupled Cells: TM010 Modes

Page 34: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

34Matthias Liepe; 03/24/2008

Cell-to-Cell Coupling

Coupling factor: ( ) dsuhec

k zS

cci

rrr ⋅×= ∫0ω

electric boundarycondition

magnetic boundarycondition

z z

Page 35: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

35Matthias Liepe; 03/24/2008

A Circuit Model: Let’s start at the Beginning:Step 1.1

Solve Maxwell’s equationsfor given boundary conditions

⇓⇓⇓⇓orthogonal eigenmodes

⇓⇓⇓⇓orthononal eigenfunctions

1,2,... m , )(),(

)(),(

2/)()(

)()(

)(

)(

========

====

++++ ππππωωωω

ωωωω

itimm

timm

m

m

erHtrH

erEtrE

rrrr

rrrr

)(2

)(e (m)(m)0(m) rE

Ur

rrrr εεεε====

mnV

dvrr δδδδ====∫∫∫∫ )(e)(e (n)(m) rrrr

)(2

)(h (m)(m)0(m) rH

Ur

rrrr µµµµ====

mnV

dvrr δδδδ====∫∫∫∫ )(h)(h (n)(m) rrrr

Page 36: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

36Matthias Liepe; 03/24/2008

A Circuit Model: Step 1.2

)(),(

)(),(

2/)()(

)()(

)(

)(

ππππωωωω

ωωωω

itimm

timm

m

m

erHtrH

erEtrE

++++====

====rrrr

rrrr

)(2

)(e (m)(m)0(m) rE

Ur

rrrr εεεε====)(2

)(h (m)(m)0(m) rH

Ur

rrrr µµµµ====

With Maxwell’s equations in vacuum:

and the eigenmodes

and the normalized eigenfunctions

we get the relations

tE

H∂∂∂∂∂∂∂∂====××××∇∇∇∇r

rr

0εεεεt

HE

∂∂∂∂∂∂∂∂−−−−====××××∇∇∇∇r

rr

0µµµµ

)()(

)( mm

m ec

hrrr ωωωω====××××∇∇∇∇ )(

)()( m

mm h

ce

rrr ωωωω====××××∇∇∇∇

Page 37: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

37Matthias Liepe; 03/24/2008

A Circuit Model: Step 1Eigenmodes: Example: Pillbox-Cavity

electric field magnetic field

⇒⇒⇒⇒ acceleration

lowest frequency mode:

transverse magnetic

0 ⇒⇒⇒⇒ monopole mode

z

Page 38: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

38Matthias Liepe; 03/24/2008

A Circuit Model: Step 1Eigenmodes: Example: Single Cell TESLA Cavity

magnetic fieldelectric fieldTM010 :

Accelerating mode:

Page 39: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

39Matthias Liepe; 03/24/2008

Circuit Model Step 2: Expansion in Eigenmodes

Each time dependent field in a cavity can be written as a sum of the cavity eigenfunctionswith time dependent amplitudes:

∑∑∑∑ΕΕΕΕ====m

mm rettrE )()(ˆ),( )()( rrrr

time dependent amplitude

eigenfunction

∑∑∑∑====m

mm rhtHtrH )()(ˆ),( )()( rrrr

time dependent amplitude

eigenfunction

Page 40: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

40Matthias Liepe; 03/24/2008

Circuit Model: Step 3.1

Insert expansion of fields into Maxwell’s equations in vacuum:

tE

H∂∂∂∂∂∂∂∂====××××∇∇∇∇r

rr

0εεεε

⇓⇓⇓⇓

(((( )))) (((( )))) (((( )))) (((( ))))redt

tEdre

ctH m

m

mm

m

m

m rrrr )()(

0)(

)()( ˆ

ˆ ∑∑∑∑∑∑∑∑ ==== εεεεωωωω

⇓⇓⇓⇓

(((( )))) (((( )))) 1,2...m , 0ˆˆ )(0

)()(

========−−−− tEdtd

tHc

mmm

εεεεωωωω

insert eigenmode-expansion of fields…

use orthogonality of eigenmodes:

…and the equations from page 37

multiply by e(m) and integrate over cavity volume

Page 41: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

41Matthias Liepe; 03/24/2008

Circuit Model: Step 3.2

Insert expansion of fields into Maxwell’s equations:

tH

E∂∂∂∂

∂∂∂∂−−−−====××××∇∇∇∇r

rr

0µµµµ

⇓⇓⇓⇓

(((( )))) (((( )))) (((( )))) (((( ))))rhdt

tHdrh

ctE m

m

mm

m

m

m rrrr )()(

0)(

)()( ˆ

ˆ ∑∑∑∑∑∑∑∑ −−−−==== µµµµωωωω

⇓⇓⇓⇓

(((( )))) (((( )))) 1,2...m , 0ˆˆ )(0

)()(

========++++ tHdtd

tEc

mmm

µµµµωωωω

insert eigenmode-expansion of fields…

use orthogonality of eigenmodes:

…and the equations from page 37

multiply by h (m) and integrate over cavity volume

Page 42: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

42Matthias Liepe; 03/24/2008

Circuit Model: Step 3.3Differential Equation for the Eigenmode Amplitudes

(((( )))) (((( )))) 1,2...m , 0ˆˆ )(0

)()(

========−−−− tEdtd

tHc

mmm

εεεεωωωω

(((( )))) (((( )))) 1,2...m , 0ˆˆ )(0

)()(

========++++ tHdtd

tEc

mmm

µµµµωωωω

⇓⇓⇓⇓

(((( )))) (((( )))) (((( )))) 1,2...m , 0ˆ ˆ )(2 )()(2

2========++++ tEtE

dt

d mmm ωωωω

amplitude of eigenmode #m

⇒⇒⇒⇒⇒⇒⇒⇒ Differential equation of an oscillator (we Differential equation of an oscillator (we will add losses and a generator later)!will add losses and a generator later)!

Page 43: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

43Matthias Liepe; 03/24/2008

Circuit Model: Step 4Coupled Cells

TM010 modes in couples cells:

N coupled cells ⇒⇒⇒⇒ N coupled oscillators

⇒⇒⇒⇒ N coupled differential equations:

TM 010 field amplitude in

cell #n

TM 010eigenfrequency

of cell #n

cell-to-cell coupling factor

N-cell structure

⇒⇒⇒⇒ N coupled differential equations

(((( )))) (((( )))) N1,2...,n , 0ˆˆ2

ˆˆ2

ˆˆ1

21

222

2========−−−−++++−−−−++++++++ ++++−−−− nnnnnnnnn EE

KEE

KEE

dt

d ωωωωωωωωωωωω

Page 44: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

44Matthias Liepe; 03/24/2008

Circuit Model: Step 5Equivalent Circuit Model (TM010 Modes only)

(((( )))) (((( )))) N1,2...,n , 0ˆˆ2

ˆˆ2

ˆˆ1

21

222

2========−−−−++++−−−−++++++++ ++++−−−− nnnnnnnnn EE

KEE

KEE

dt

d ωωωωωωωωωωωω

substitute:

nn LC

12 ====ωωωω 1,1,

1, 22 ++++++++

++++ ======== nnnn

nnn k

CC

K

Page 45: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

45Matthias Liepe; 03/24/2008

Circuit Model: Step 6Eigenmode Equation for the TM010 Modes

(((( )))) (((( )))) N1,2...,n , 0ˆˆ2

ˆˆ2

ˆˆ1

201

20

202

2========−−−−++++−−−−++++++++ ++++−−−− nnnnnn EE

KEE

KEE

dt

d ωωωωωωωωωωωω

steady state ansatz

)(12

0

)()(

1

,1,1

,13,22,11,2

3,23,22,12,1

2,12,1

1

1

1

1j

N

jj

N

NNNN

NNNN A

A

A

A

kk

kkkk

kkkk

kk

====

++++++++++++

−−−−++++++++−−−−−−−−++++

−−−−−−−−

−−−−−−−−−−−−

MMOωωωω

ωωωω

eigenvector #j eigenfrequency of mode #j

Eigenvector: TMEigenvector: TM010010 cell amplitudes of a cell amplitudes of a TMTM010010 eigenmode of a multicell cavity.eigenmode of a multicell cavity.

Page 46: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

46Matthias Liepe; 03/24/2008

TM010 EigenmodesExample: 9-Cell Cavity (1)

An

An

An

An

An An

An

cell #

cell #

cell #

cell #

cell #

cell #

Page 47: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

47Matthias Liepe; 03/24/2008

TM010 EigenmodesExample: 9-Cell Cavity (2)

An

An An

accelerating mode: ππππ cell-to-cell phase advance

cell #

cell #

cell #

Page 48: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

48Matthias Liepe; 03/24/2008

Circuit Model: Step 7Add Losses and a Generator

generator current

losses:

ndis

nn P

UR

LQ

,0

ωωωωωωωω ========

Page 49: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

49Matthias Liepe; 03/24/2008

Simulation Example:TM010 Eigenmode-Spectrum of a 9-Cell Cavity

ampl

itude

(ce

ll #1

) [

dBA

]

Page 50: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

50Matthias Liepe; 03/24/2008

Dispersion Relation

The working point. If it is too close to the neighbor point this neighbor mode can also be excited. To avoid this, more cell-to-cell coupling is needed: broader aperture.

Page 51: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688_080324.pdfTaiwan Light Source cryomodule Introduction to RF Cavities • The main purpose of using RF

51Matthias Liepe; 03/24/2008

Mode Beating during Cavity Filling