accelerated molecular dynamics with the bond boost … · accelerated molecular dynamics with the...

49
Accelerated Molecular Dynamics with the Bond Boost Method with the Bond Boost Method (mostly of thin-film growth) Kristen A Fichthorn Kristen A. Fichthorn The Pennsylvania State University University Park, PA 16802 USA DE-FG0207ER46414 DMR-1006452

Upload: nguyenphuc

Post on 12-Apr-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

  • Accelerated Molecular Dynamics with the Bond Boost Methodwith the Bond Boost Method

    (mostly of thin-film growth)Kristen A FichthornKristen A. Fichthorn

    The Pennsylvania State UniversityUniversity Park, PA 16802

    USA

    DE-FG0207ER46414DMR-1006452

  • Multi-Scale Simulation of Interfacesfrom First Principleso st c p es

    Solid-State Systems Molec les on S faces

    Well Understood

    Solid State SystemsThin-Film GrowthAssembly at SurfacesENERGY DOMINATES

    Molecules on SurfacesDiffusionThermal Desorptiony ENERGY DOMINATES

    DFT IS GREAT!Thermal DesorptionAdsorptionENTROPY PLAYS A ROLEDFT IS LIMITEDm

    plex

    ity

    DFT IS LIMITED

    Nanoparticles in SolutionInterparticle Forces

    Com

    W. Al-Saidi,, and KFIn preparation.Interparticle Forces

    Assembly in SolutionENTROPY PLAYS A BIG ROLEDFT IS LIMITED

    HELP!

    DFT IS LIMITED

    R. Sathiyanarayanan,, and KFSubmitted to J. Phys. Chem. C

  • Surface Phenomena Involve MultipleLength and Time ScalesLength and Time Scales

    Bautier de Mongeot et al Phys Rev Lett 91al., Phys. Rev. Lett. 91,016102 (2003).Thin-Film

    Growthe g fcc(110) Atoms Hopping (, ps)e.g. fcc(110) homoepitaxy

    Also Catalysis at Hut FormationHut Organization(m, min)y

    Surfaces, CVD, and More

    (nm, min)

    K. Fichthorn and M. Scheffler,Nature 429, 617 (2004).

  • Challenge: Reactor DesignFrom First PrinciplesFrom First PrinciplesExample: Growth of GaAs Thin Films

    Continuum Equations forFluid Flow, Heat Transfer,Mass Transfer, Kinetics in

    Kinetic Monte CarloSimulation of Growthof GaAs(001) (nm s)

    Charge-Density Contoursfor GaAs(001) fromDensity-FunctionalTheory ( ,

    a Rotating Disk Reactor (m,h)of GaAs(001) (nm, s)Theory (

    Rare-Event MethodsThis Link Needs Work!

    Kratzer and Scheffler, Comp. Sci. Eng. 2001.

    This Link ReallyNeeds Work!!!!!

  • Rare-Event Methods[e.g.,Transition-State Theory (TST)][e g , a s t o State eo y ( S )]

    )(

    )/)(exp(*)(k

    TkV

    BATSTA B

    RRR

    R*

    )/exp(*

    )/)(exp(,

    TkEq

    TkVBATSTA B

    RB

    )/exp( 00 TkEq BA

    A

    TST Search Sampling Methods

    Nudged Elastic Band Method: Henkelman and JonssonDimer Method: Henkelman and Jonsson

    TST Search, Sampling Methods

    Step and Slide Method: Miron and FichthornTransition Path Sampling: Dellago, Bolhuis, Geissler, ChandlerString Method: E, Ren, Vanden-Eijnden

    Molecular Dynamics SimulationsNaturally Find Rate Processes

  • Accelerated Molecular Dynamics(Hyperdynamics)

    A. Voter, J. Chem. Phys. 106, 11 (1997).**

    BC

    Relative Rates*

    BA

    C

    **

    ABC A

  • Accelerated Molecular Dynamics(Hyperdynamics)( yp y )

    A. Voter, J. Chem. Phys. 106, 11 (1997).

    **

    V

    ABC

    MD Time: Real Time:

    NN tN

    i

    ii i

    kTVtRWtt

    11/exp

    )(

    V

    tMD= Nt

    Th T i k i H t C t t

    kTVexpBoost The Trick is How to Construct

    V(R) and Where to Apply it

  • Accelerated Molecular DynamicsThe Bond-Boost Method

    R. Miron & K. Fichthorn, J. Chem. Phys. 119, 6210 (2003)

    Define Local Minima by Bond Lengths

    Nio

    ir ,1}{

    Empirical

    Transitions Occur via Bond Breaking

    ir EmpiricalThreshold

    Boost the Bonds: Purely Geometric

    qoi

    i

    rr

    i max

    Boost the Bonds: Purely Geometric

    )(}{~}{1

    N

    iii rVrAxV

    1i

    Envelope Function Boost per Bond

  • Details of the Bond Boost MethodBoost PotentialBoost Potential

    0maxmax )( rrVA

    NVV ii

    N

    ir

    1 rN ii

    Nominal Boost per Bond

    2

    1q

    V ii

    Envelope: Channels Boost into the Bond Most Ready to Break

    2max

    max 1fA

    to Break

    q

  • Overview of the Bond Boost MethodR. Miron & K. Fichthorn, J. Chem. Phys. 119, 6210 (2003)

  • Diffusion on Cu(100): Elementary Processes

    Adatom Hop Dimer ExchangeAdatom Exchange

    R Mi & K Fi hth

    Vacancy HopDimer Hop

    R. Miron & K. Fichthorn,J. Chem. Phys. 119, 6210(2003)

  • The Bond-Boost Method: Diffusion on Cu(100)R. Miron & K. Fichthorn,J. Chem. Phys. 119, 6210(2003)

  • The Bond-Boost Method: Diffusion on Cu(100)

    Boost = Physical Time / Simulation Time

    10(Boost)

    V(R)

    log 1

    V

    (kBT)-1 (eV-1)

    & h h exp

    TkVBoost

    B

    R. Miron & K. Fichthorn,J. Chem. Phys. 119, 6210 (2003)

  • Rare Events and the Small Barrier Problem

    Annoyingly Small Barriers

  • State-Bridging Accelerated MD toSolve the Small-Barrier Problem R i thSolve the Small Barrier Problem

    Commence

    Raise theBoost AfterA WaitingTimeWith a Low

    BoostTime

    Miron, Fichthorn, J. Chem. Phys. 115,

    Memorize and

    J. Chem. Phys. 115,2001.

    Memorize andConsolidatePairs of StatesConnected by Low

    Detect BarriersWhen TransitionsOccur, CompareT Th h ld

    Connected by LowBarriers

    To ThresholdR. Miron, K. Fichthorn,Phys. Rev. Lett. 93, 2004.

  • Co on Cu(001): Benefits of State Bridging

    State-Bridging RegularState BridgingAccelerated MD

    gAccelerated MD

  • Thin Film Growth at 250 K, F = 0.1 ML/s

    Note Cluster MobilityR. Miron, K. Fichthorn,Phys. Rev. Lett. 93, 2004.

  • State-Bridging Accelerated MD of Co/Cu(001)Heteroepitaxy: T = 250 K, F = 0.1 ML/s, = 0.54 ML MD Simulations were run for 5.4 s

    Mechanism of Bila eMechanism of BilayerIsland Formation

    R. Miron and K. Fichthorn, Phys. Rev. B 72, 115433 (2005).

  • Hut Formation in Al(110) Homoepitaxy

    Bautier de Mongeot et al., Phys. Rev. Lett. 91,016102 (2003).

    Atoms Hopping ( ps)

    016102 (2003).

    Atoms Hopping (, ps)

    Hut FormationHut Organization(m, min)Hut Formation

    (nm, min)(m, min)

    K. Fichthorn and M. Scheffler,Nature 429, 617 (2004).

  • Exchange of Al on Al(110): The CI-NEB Method in First-Principles DFT (VASP)

    In-Channel Cross-Channel

    Method in First Principles DFT (VASP)

    vs.

    E = 0.39 E = 0.38E = 0.33 and E = 0.49

    W. Zhu et al., PRL 92, 106102 (2004).

  • Accelerated AIMD (VASP): Diffusion on Al/Al(110) / ( )

    Climbing-ImageNudged ElasticNudged ElasticBand Method

    vs

    AcceleratedAIMD

    vs.

    AIMD

    Fichthorn et al., J. Phys. Cond.Matt. 21, 084212 (2009).

    EB = 0.38 eV EB = 0.33 eV

  • The Boost in ab initio MD

    s~ s

    VexpBoost

    kT

    pBoost

  • Temperature-Programmed DesorptionK. Becker, M. Mignogna, K. Fichthorn,

    pB

    d

    B

    d

    p TkE

    kE

    T

    02

    lnln

    Ed d

    , g g , ,PRL 102, 046101 (2009).

    pp

    Tkdt Bdexp0

    tTT 0 P. A. Redhead, Vacuum12, 203 (1962).

  • Simulation of TPD

    vs.

    Large Molecules DontWork in Lattice Models.

    Goal: To SimulateGoal: To SimulateTPD with MD!!

  • Accelerated MD of Adsorbed Alkanes

    OPLS All-Atom Force Field [1]

    2eqiib KV )()(

    LJtbintra VVVV

    3

    1jijit j1V2

    1V cos)(

    Constrained Bond Stretching: RATTLE [2]Steeles Potential for Molecule-Surface Interaction [3]

    [1] J l J A Ch S 118 11225 (1996)[1] Jorgensen et al., J. Am. Chem. Soc. 118, 11225 (1996) [2] H.C. Andersen, J. Comput. Phys. 52, 24 (1983)[3] W. A. Steele, Surf. Sci. 36, 317 (1973)

  • Many Local Minima, Fast TransitionsBut Desorption is the Slow Step

    Desorption Barrier

    Diffusion/Torsion Barrier

  • Accelerated MD of TPD withthe Bond Boost Method

    NVVVVAV max 1;)1()1(;)R(

    )()R(

    the Bond-Boost Method

    iiinterisii

    i VVVVNV

    ,2,1

    11 ;)1()1( ; )R()R(

    Weaken Molecule-Molecule +Molecule-Surface Attraction

    eqicomi

    zzA

    ,

    2

    max ;1

    Molecule Surface Attraction

    eqzq

    Funnels Boost into Molecule Farthest from the Surface )(

    iV RFarthest from the Surface t )(exp

    i B

    i

    TkVt

    K. Becker, M. Mignogna, K. FichthornPRL 102,046101 (2009).

  • Accelerated MD of TPD

    T = T0 + t; = Heating Rate

    i jej nkTVtt /expi j

    desorptionsK. Becker, M. Mignogna, K. Fichthorn, PRL 102, 046101 (2009).

  • TPD: Simulation vs. Experiment

    K. Paserba and A. Gellman, J. Chem. Phys. 115, 6737 (2001)y , ( )

    T0 = 120 KDefects

    T0 120 K1 ML Initially = 2 K/s

    Total Time: 15 s

    CoverageCoverageCalibration K. Becker, M. Mignogna, K. Fichthorn,

    PRL 102, 046101 (2009).

  • A Total Differential Analysis

    exp1 Ed d

    Constant

    ),(

    exp0

    TkTkdt B

    )(J. Taylor and W. Weinberg,Surf. Sci. 78, 259 (1978).

    J. B. Miller, et al., J. Chem.Phys. 87, 6725 (1987).

    This is DifficultThis is DifficultExperimentallyK. Becker, M. Mignogna, K. Fichthorn, PRL 102, 046101 (2009).

  • Desorption EnergyAnd Prefactor

    Repulsion??

    And Prefactor

    kSQ / BkSoo eQ

    Q /

    ?

    How Can This Happen?Large prefactors because of loss in rotational entropy.K Fichthorn and R Miron Phys RevK. Fichthorn and R. Miron, Phys. Rev. Lett. 89, 196103 (2002).

  • Multi-Exponential Time Distribution

    tki ieatP )(

    Fast, Second-Layer

    i

    i eatP )(

    Fast, Second LayerDesorption

    +Slow, First-LayerDesorption

    +

    = 1 ML

    Desorption

    1 ML160 K

  • Second-Layer Desorption Can OccurAt (S b) Monola e Co e ageAt (Sub) Monolayer Coverage

    S d L D tiSecond-Layer Desorptionat = 0.75

  • Multiple Time Scales at All Coverages

    8

    10

    Fast Desorption of

    6

    8 Fast Desorption ofIsolated Molecules

    +4

    LnP

    t +

    Slow Desorption ofMolecules in Islands

    0

    2L Molecules in Islands

    -2 = 0.25T 160 K0 10 20 30 40 50 60

    t sT = 160 K

  • Rate Processes in Pentane Desorption

    Second-Layer Molecules Ed = 32.5 kJ/mol0 = 9.2E+11

    Ed = 36.5 kJ/mol

    0 9

    Isolated Molecules 0 = 5.5E+12

    Molecules in Islands

    Ed = 58.1 kJ/mol0 = 2.4E+17

    K. Becker, M. Mignogna, K. Fichthorn, PRL 102, 046101 (2009).

  • Coverage Dependence of KineticsIsland Desorption

    IncreasingSecond-LayerFewer

    EntropyEntropy GainyDesorption

    Isolated Molecule

    IsolatedMoleculesEntropy

    LossIsolated Molecule

    Second-Layer

  • What is the Structure of a Real GaAs(001)2(2x4) Surface?GaAs(001)2(2x4) Surface?

    (2x4) Unit Cell

    STMUnit Cell

    Hypothesis: Disordering Involves Shifting of DimerD.W. Pashley, J.H. Neave, B.A. Joyce,

    Surf. Sci. 582, 189 (2005)Involves Shifting of Dimer Rows and Trenches

    How Does this Surface Disorder?How Does this Surface Disorder?What Does This Mean forDiffusion and Growth??

    ArsenicGallium

  • Modified Tersoff Potential for GaAs

    ARc VBVfE 1C ff ijAijijijijRijiji

    ijc

    ijpot rVrBrVrfE ,2

    ,..., N1 rr

    Pair: Pair:

    Cutoff

    Three Body:Pair: Repulsive

    Pair: AttractiveBond Order

    K. Fichthorn et al., Phys. Rev. B 83, 195328 (2011)

  • Regular MD of GaAs (001): T = 600 K

  • Barrier Energy for As Dimer Breaking

  • Regular MD of GaAs (001)

    T =600K

    24 084 24 09024 0890.0 ns 24.084 ns 24.090 ns24.089 ns

    24.216 ns 24.217 ns 24.224 ns

  • n-Bond-Boost MethodAchieve Systematic TemporalCoarse-Graining by Increasing n

    n = 3 lose information about kineticsof two transitions

    n = 2 lose information about kineticsf i l i i

    n=1 lose information about vibrationin minima

    of single transitions

    N

    njjj

    nn

    iiii rVL

    AArVA

    LnNLV

    1

    1

    1

    r

    Nnn AAAA ,,min,, 11 n N, L > 0 (e.g., L = nN)

  • n-Bond-Boost Method in a Model 3-Bond System

  • n-Bond-Boost Method: 3-Bond System

  • n-Bond-Boost Method: 2 As Trench Dimers Breaking

    Th bl t b t dThe blue atoms were boosted

  • 2-Bond Boost, T = 600 KTotal Time 26 sTotal Time = 26 s

  • 4-Bond Boost, T = 600 KTotal Time 14 msTotal Time = 14 ms

  • Conclusions: Progress in Accelerated MDThe Big Problem is Multiple Time-Scale

    PhenomenaC lid ti P l f Sh ll St t Consolidating Pools of Shallow StatesR. Miron & K. Fichthorn, Phys. Rev. Lett. 93, 2004;

    Phys. Rev. B72, 035415, 2005.

    Focusing on Only One Transition TypeK. Becker, M. Mignogna, K. Fichthorn, PRL 102, 046101 (2009)

    n-Bond BoostLin and Fichthorn, In Progress.

  • CollaboratorsMozhgan Alimohammadi

    AlumniDr Yogesh TiwaryMozhgan Alimohammadi

    Azar ShahrazHaijun Feng

    Dr. Yogesh TiwaryDr. Yushan WangDr. Kelly Becker

    d l iJin HongDr. Yangzheng LinDr. Ya Zhou

    Dr. Radu Alex MironDr. Jee-Ching WangDr. Som PalDr. Ya ZhouFritz Haber InstituteProf.-Dr. Matthias SchefflerProf -Dr Peter KratzerProf.-Dr. Peter KratzerDr. Thomas Hammerschmidt

    FundingNSF ECC-0085604, IGERT DGE-9987598, DMR-0514336,

    DMR-1006452ACS PRF, DOE DE-FG0207ER46414