abstract vernik

Upload: nimadeduniasih

Post on 04-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Abstract Vernik

    1/19

  • 8/13/2019 Abstract Vernik

    2/19

    proteins lysozyme, lactoferrin, secretory leukocyte protease inhibitor (SLPI), andpsoriasin [6, 7]. Furthermore, vernix is rich in lipids derived from the sebaceousglands. The microbicidal effects of a variety of natural lipids have been extensivelystudied in recent years. A number of free fatty acids and their 1-monoacylglycerols

    have been found to kill enveloped viruses and various bacteriain vitro [12-15]. Likeantimicrobial peptides, these active lipids affect cellular plasma membranes[12, 16] and are widespread as defence effectors in tissues exposed to microbes[9, 17-19]. Inaddition, breast milk has been shown to contain both antimicrobial lipids andpeptides [18, 20-22].The microenvironment, including ionic strength, ionic composition, and pH, hasconsiderable influence on the activity of different antimicrobial peptides[23, 24].Furthermore, synergy has been demonstrated between antimicrobial peptides andproteins, e.g. between the human cathelicidin LL-37 and lactoferrin[25] and between specific antimicrobial peptides [26, 27]. On the other hand, surfactantspartly block the microbicidal activity of LL-37[28].

    In this study, we have identified a variety of protein and lipid components of vernix,including important components regarding host defence. In addition, the combined bactericidal activity of LL-37 and the lipids of vernix was examined, indicating acooperative activity. Finally, we investigated the frequency of microbial colonizationof babies at the time of birth, and analysed the individual variation of theantimicrobial activity found in vernix.

    Go to:

    Material and methodsCollection of Vern ix ca seo sa Vernix caseosa was collected from the skin of newborns shortly after delivery, beforeany washing of the neonates. The vernix samples were placed in sterile plasticcontainers and were immediately frozen and stored at 20C until analysed. Allnewborns were without prenatal or perinatal complications, without clinical signs ofinfection.

    Peptide/protein extraction

    The vernix samples were homogenized in 60% acetonitrile containing 1% (v/v)trifluoroacetic acid (TFA) using a POLYTRON homogeniser (Kinematica AB,Littau, Switzerland), and were extracted during shaking over night at 4C. Aftercentrifugation of the extracts at 10.000 g, the supernatants were lyophilised. The

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R6http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R6http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R6http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R7http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R7http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R7http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R9http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R9http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R9http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R17http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R17http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R19http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R19http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R19http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R18http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R18http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R18http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R20http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R20http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R20http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R22http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R22http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R24http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R24http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R24http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R25http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R25http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R25http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R26http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R26http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R27http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R27http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R27http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R28http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R28http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R28http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R28http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R27http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R26http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R25http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R24http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R22http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R20http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R18http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R19http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R17http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R9http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R7http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R6
  • 8/13/2019 Abstract Vernik

    3/19

    lyophilised material was dissolved in 0.1% (TFA) and loaded onto OASIS HLBcartridges (Waters, Milford, MA, USA), which had been activated with acetonitrileand equilibrated in 0.1% aqueous TFA. After the weakly bound material had been washed away with 0.1% aqueous TFA and 10% acetonitrile in 0.1% TFA, bound

    proteins were eluted with 80% acetonitrile in 0.1% TFA and the eluate waslyophilised.

    Identification of proteins

    Samples were separated and analysed by SDS-PAGE in 10-20% tricine gels(Invitrogen, Carlsbad, CA, USA) at 125 V for 90 min. Protein bands were visualized by silver staining using Silver Xpress (Invitrogen) according to the manufacturer'sinstructions. In further SDS-PAGE runs proteins/peptides were transferred from thetricine gel onto a PVDF membrane for 70 min at 25 V. Proteins on the membranes were visualized after staining for 4 min with 0.1% Coomassie brilliant blue R-250 in45% methanol/0.35 M acetic acid, destaining for 5 min in 90% methanol/0.35 Macetic acid, and finally washed in water. The stained protein bands were cut out fromthe membrane, and N- and C-terminal sequences were determined chemically,utilizing PE-ABI Procise 494 cLC or 5HT 494 protein sequencers and an ABI 494Cinstrument (Applied Biosystems, Foster City, CA, USA), respectively.

    In-gel digestion and protein fingerprinting

    After electrophoresis, the tricine gels were fixed for 3 30 min in 2% phosphoricacid in 30% ethanol, washed for 3 20 min in 2% phosphoric acid, and equilibratedfor 30 min in equilibration buffer (2% phosphoric acid/5% aluminium sulphate/10%ethanol). The gels were then stained for 2 h in 0.01% Coomassie brilliant blue G-250in equilibration buffer, and destained for 2 1 min in water. Protein bands wereexcised manually from the Coomassie stained gels. The gel pieces were digested withtrypsin using a MassPREP robotic protein handling system (Micromass/Waters),employing a protocol previously described[29]. Tryptic fragments were analysed bymatrix-assisted laser desorption/ionisation mass spectrometry (MALDI MS)(Voyager DE-Pro, Applied Biosystems), using -cyano-4-hydroxycinnamic acid asmatrix (saturated in 70% acetonitrile) and mixed 1:1 (v/v) with the sample. Databasesearches were carried out utilizing the ProteinProspector MS-Fit program(http://prospector.ucsf.edu/ ). Peptides in chromatographic fractions were analysedfor their molecular masses by MALDI MS in the same manner as above.

    High performance liquid chromatography (HPLC) of vernix extracts

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R29http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R29http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R29http://prospector.ucsf.edu/http://prospector.ucsf.edu/http://prospector.ucsf.edu/http://prospector.ucsf.edu/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R29
  • 8/13/2019 Abstract Vernik

    4/19

    Extracts were separated by reversed phase (RP) chromatography on an KTApurifier system (Amersham Pharmacia Biotech, Uppsala, Sweden) with an RPCSource 4.6/150 (Amersham Pharmacia Biotech) column, equilibrated in 0.1%aqueous TFA. Elution was performed at a flow rate of 1 ml/min, and a gradient of

    acetonitrile from 0% to 15% in 5 min, 15% to 60% in 42 min, and 60% to 80% in 12min was employed. The effluent was monitored at 214 and 280 nm. Fractions werelyophilised and redissolved in 30 l 0.1% TFA before further analyses.

    Microbial strains and culture conditions

    Bacillus megaterium strain Bm11, Escherichia coli strain D21, groupB Streptococcus (GBS), a clinical isolate verified by Phadebact Strep B test (BouleDiagnostic AB, Huddinge, Sweden), andCandida albicans (ATCC 14053) wereutilized in a screening assay to monitor the antimicrobial activity of the vernixextracts. Prior to each experiment, microbial cells were seeded from frozen stocks(70C) onto agar plates, in Luria Bertani (LB) medium (GibcoBRL, Lifetechnologies, Paisley, Scotland) for the bacterial strains, and in YM medium (DifcoLaboratories, Detroit, MI, USA) for the yeast strain. The agar plates were incubatedover night at 37C. Bacterial colonies were then picked from the plates andsuspended in LB broth, while yeast cells were suspended in YM broth, and bothtypes of cultures were incubated at 37C under shaking, until desired cell density wasreached.

    Inhibition zone assay

    Thin plates (1mm) of 1% agarose containing 6 104 bacterial cells/ml were preparedin LB medium supplemented with medium E[30]. The assay forC. albicans wasperformed in the same manner except that YM medium was used. Wells of 3 mm indiameter were punched in the agarose layer, and samples in 3 l 0.1% TFA wereloaded into each well. After overnight incubation at 37C for GBS, and 30C for allother microbes, inhibition zone diameters were recorded.

    Lipid extraction A lipid extract of vernix was obtained by the method described by Folch et al.[31],using 1.3 g vernix homogenized in a Potter-Elvehjem homogenizer (Kontes, Vineland, NJ, USA) with a chloroform:methanol mixture (2:1, v:v) containing butylated hydroxytoluene (BHT; 5 mg/100ml) as antioxidant. After one hourshaking at room temperature, and centrifugation at 3000 rpm for 10 min, methanol

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R30http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R30http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R30http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R31http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R31http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R31http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R31http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R30
  • 8/13/2019 Abstract Vernik

    5/19

    and saline were added to the liquid phase (final ratio; chloroform:methanol:saline,1:1:0.8, v:v:v) and re-extraction was carried out followed by centrifugation. Thechloroform phase was evaporated with N2 and the total lipids were dissolved inchloroform and stored at 30C.

    Thin-layer chromatography (TLC)

    Lipid extract (30 mg) was separated on thin-layer plates (Adsorbosil soft layer, Alltech, Deerfield, IL, USA) using a mobile phase of petroleum ether/diethylether/acetic acid (80:20:1, v:v:v). The lipid components were visualized with 10%Rhodamine 6G in distilled water and then scraped from the plate and transferredinto centrifuge tubes, in which they were extracted twice with hexane. The twohexane extracts were combined and the solvents were evaporated with N2. Each lipidextract was then dissolved in 23 l of chloroform and analysed for antimicrobialactivity utilizing a modified inhibition zone assay (see below).

    Gas chromatography (GC)

    The free fatty acids were converted into fatty acid methyl esters by incubation in 14% boron trifluoride/methanol (Sigma Chemical Co., St. Louis, MO, USA) for 45 min at110C. The methyl esters were analysed by high resolution gas liquidchromatography (Agilent 6890 N, Agilent Technologies, Palo Alto, CA, USA)equipped with a flame ionization detector and a Chrompack CP-WAX 52 CB

    polyethylene glycol column (25 m 0.32 mm i.d 0.2 m). Injector and detectortemperatures were maintained at 235C and 250C, respectively. The oven wasprogrammed to have an initial temperature of 90C for 2 min, then raised to 165C by 30C /min, and to 225C by 3C /min, and finally held isothermal for 6 min. Thecarrier gas was hydrogen at 31.8 kPa. Peaks obtained were identified and calibratedagainst those of standards (Nu-Chek-Prep, Sigma, Elysian, MN, USA).

    Modified inhibition zone assay

    A modified inhibition zone assay was developed for the screening of lipidcomponents separated by TLC, and to evaluate interaction between the total lipidfraction of vernix and the human cathelicidin LL-37. B. megaterium was used as thetest organism. The samples were loaded on top of the agarose (without use of wells)at 4C. Lipid stock ( 650 g/l) was made and diluted to the desired concentration inchloroform. A solution of the human cathelicidin LL-37 (2 g/l) was prepared inchloroform containing 0.7 % TFA, giving a turbid solution. The LL-37 solution,

  • 8/13/2019 Abstract Vernik

    6/19

    mixed in a 1:1 ratio with different dilutions of the lipid stock, gave final lipidconcentrations of 300, 30, 7, 3, and 0.3 g/l, in chloroform containing 0.35% TFA.Each peptide-lipid sample (3 l) w as loaded onto the agarose plates and incubatedovernight at 30C. The inhibition zones (mm) were analysed by two-tailed Mann-

    Whitney's U test. The differences in activity were regarded significant when the p- value were less or equal to 0.05.

    Colonization analysis

    Immediately after birth samples were collected from the auditory canals, the axillae,and the groins of newborn babies using a sterile cotton-tipped pin (Copan steriletransport swab, Brescia, Italy), and cultured for microbes by plating less than 12 hafter collection according to standard procedures.

    Go to:

    Results

    Identification of proteins in vernix

    Proteins/peptides were extracted from vernix (3 g) combined from 8 neonates.Utilizing silver stained SDS-PAGE the pattern revealed 6 abundant protein bands(fig. 1). Vernix extracts from 10 newborn individuals analysed in the same mannershowed similar patterns of abundant proteins (1-10 in fig. 1). However, the levels of

    the proteins vary between the extracts. After transfer of the proteins to a PVDFmembrane, 5 of the 6 proteins were identified by N-terminal sequence analysis ashaemoglobin -chain, cystatin A (stefin A), calgranulin A (S100A8, MRP-8, p8, L1light chain), ubiquitin, and uteroglobin related protein 1 (UGRP-1) (SCGB3A2, HIN-2) (fig. 1 and table 1). The cystatin A identified was found to lack the N-terminalmethionine, as has been shown to be characteristic of cystatin A of epidermal origin[32]. Further characterization involved C-terminal sequence analysis of haemoglobin and UGRP -1(table 1), as well as peptide mass fingerprinting after in gel digestion(on sample number 8, fig. 1). By the latter method, 3 more variants of UGRP-1 wereidentified (table 1), in addition to haemoglobin chain, lysozyme C, haemoglobin chain, psoriasin (S100A7), calgranulin B (S100A9, MRP-14, p14, L1 heavy chain),and caspase 14 precursor (table 1).

    Figure 1

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R32http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R32http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R32http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R32http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2
  • 8/13/2019 Abstract Vernik

    7/19

    Gel electrophoresis of proteins in vernix caseosa. Peptide/protein extracts (5g) from 10 individual babies (nr1-10), and from a vernix mixture of eight babies (mix), were separated by SDS-PAGE and visualised by silver staining. The proteins...

    Table 1 Proteins identified in vernix by MALDI MS, N- and C-terminal sequence analysesand peptide mass fingerprinting

    The protein/peptide extract of the combined vernix sample from 8 neonates (fig. 1) was separated by RP HPLC(fig. 2), and proteins in fractions were furthercharacterized by direct sequence analysis(table 1) and MALDI MS. In fractionscorresponding to peak 10(fig. 2), all UGRP-1 variants were identified. In addition,after separation on SDS-PAGE and blotting onto a PVDF membrane, several moreproteins were identified by N-terminal sequence analysis(table 1). These wereapolipoprotein C-1, apolipoprotein A-II, calgranulin C (S100A12), UGRP-2(SCGB3A1 /HIN-1), profilaggrin, lymphocyte antigen Ly6E, squamous cell

    carcinoma antigen 1 and/or 2, transthyretin, and the hypothetical protein FLJ40379.The mass spectrometric analyses on the fraction corresponding to peak 1 in fig.2 revealed three different masses for ubiquitin corresponding to variant C-terminalforms (table 1).

    Figure 2 Protein separation and antimicrobial activity. HPLC separation of 4.5 mgprotein/peptide extract originating from 8 neonates is shown in (A). After separationfractions were dissolved in 30l 0.1% aqueous TFA and screened for activityagainst ...

    Lipid composition of vernix and antibacterial activity

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T1/
  • 8/13/2019 Abstract Vernik

    8/19

  • 8/13/2019 Abstract Vernik

    9/19

    the other lipid concentrations, nor the negative control (chloroform with 0.35%TFA) exhibited any activity. Notably, the activity of 3 g L L-37 was enhanced whenmixed with lipids in certain proportions(fig. 4). A maximum of 5.6 mm in zonediameter was recorded at a lipid:peptide ratio of 3:1. The antibacterial activity of

    samples with a ratio of 3:1 and 7:1 was significantly increased versus that with LL-37alone, p = 0.005 and p = 0.031, respectively.

    Figure 4 Bactericidal interactions of LL-37 and vernix lipids. LL-37 (3g) was mixed withdifferent amounts of vernix lipid extract in chloroform with 0.35% TFA. The lipidamount in the samples is given as mass ratio (lipid:peptide). The positive control...

    Identification of chlorhexidine in vernix

    The highest activity against both E. coli and GBS was recorded in fractionscorresponding to peak 2 (fig. 2). The component giving rise to this activity wasisolated by two consecutive RP chromatographic steps, utilizing Vydac C18 (4.6 250) mm and C8 (2.1 150) mm columns (The Separations Group, Hesperia, CA,USA), respectively. The active component eluted at 38.6% acetonitrile in the first runusing 0.1% heptafluorobutiric acid as a counter-ion, and at 32.4% acetonitrile in thesecond run using 0.1% TFA as a counter-ion. This component gave rise to symmetricabsorbancy peaks at both 214 nm and 280 nm. Utilizing nanoelectrospray massspectrometry in the positive ion mode, the isotopic composition of a cluster ofprotonated molecules at m/z 505 indicated the presence of two chlorines in thecompound. The accurate molecular mass 504.203 obtained at a working resolutionof 15500 (full-width at half maximum) was used to calculate possible elementalcompositions and to search in the database registry created by Chemical AbstractService (CAS), hosted by the Scientific & Technical Information Network (STN) inKarlsruhe, Germany. One alternative (C22H30Cl2N10) corresponded to theantimicrobial substance clorhexidine. Comparison of the collision-induceddissociation spectrum with that of authentic chlorhexidine showed that thecompound was chlorhexidine.

    Antimicrobial activity in protein/peptide extracts of vernix

    Vernix samples were collected from 88 neonates, and peptides and proteinsextracted from each sample. The extracts were screened for antimicrobial activity

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F4/
  • 8/13/2019 Abstract Vernik

    10/19

    against four different microbial species, i.e. B. megaterium (71 samples), E. coli (86samples), GBS (88 samples), andC. albicans (81 samples). All samples analysedexhibited activity againstC. albicans and B. megaterium , while 78% were activeagainst GBS and 31% against E. coli (fig. 5). The highest activity was recorded

    against B. megaterium and GBS, an average of 8.4 and 8.3 mm zone diameters,respectively. Intermediate activity was obtained againstC. albicans (7.3 mm), andthe lowest activity was recorded against E. coli (5.6 mm). High variation ofantibacterial activity was observed against all bacteria. In contrast, low variation inantifungal activity was noted againstC. albicans . The samples exhibiting activityagainst E. coli , ( in fig. 5), are clustered in the higher activity range against bothGBS and B. megaterium . However, samples active against E. coli () have similaractivity distribution against C. albicans as the samples that exhibit no activityagainst E. coli (fig. 5), showing different origin of the antibacterial and antifungalactivities in vernix.

    Figure 5 Antimicrobial activity of crude protein/peptide extracts of vernix against B.megaterium , E. coli , GBS, andC. albicans . Extracts exhibiting activty against E.coli are marked with .

    Fractions from the RP chromatography (fig. 2) were screened for antibacterialactivity against GBS and E. coli (fig. 2). Anti-streptococcal activity was detected infractions distributed over more than half of the chromatogram, which indicates thatmany different components in vernix are responsible for this activity. On the otherhand, the activity against E. coli was found in a much narrower range, only infractions corresponding to peak 1 and 2(fig. 2). As explained above the most activecomponent in these fractions is chlorhexidine. This indicates that chlorhexidine isthe major contributor of total E. coli activity, and that vernix samples found activeagainst E. coli are possibly contaminated by higher levels of chlorhexidine thansamples with no E. coli activity. In samples active against E. coli , a part of the highactivity against B. megaterium and GBS is concluded to originate fromchlorhexidine. Notably, if we exclude the E. coli active samples (marked in fig. 5),the activity range against B. megaterium decreases remarkably, while the activityrange against GBS is still high.

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/
  • 8/13/2019 Abstract Vernik

    11/19

  • 8/13/2019 Abstract Vernik

    12/19

    shedding of the vernix in late pregnancy may suggest that the level of protection hasto be adjusted to allow proper colonization of the normal flora.Several proteins now identified are expressed in skin such as cystatin A, profilaggrin,psoriasin and calgranulin C. Due to the close contact of vernix and amniotic fluid,

    they share some of the same components. This is now shown regarding calgranulin Aand B, proteins previously known to be present in amniotic fluid[35]. The origin ofUGRP-1 may be the lungs, and a transfer of this protein to vernix may occur via theamniotic fluid. Blood may be another source of the identified proteins in vernix.Using mass fingerprinting, we identified not only - and - haemoglobin but also -haemoglobin. During the last two trimesters of pregnancy the foetus produces -haemoglobin, which is replaced by -haemoglobin after birth, enabling an efficienttransfer of oxygen from the blood of the mother to the foetus. Thus, the -haemoglobin detected in vernix originates from the foetus.Calgranulin A, B, and C, and psoriasin all belong to the S100 family of calcium binding proteins. The S-100 family of proteins has 2 calcium binding motifs of theEF-hand type [36]. These proteins have been shown to exhibit chemotacticproperties and may play a role in the pathogenesis of epidermal diseases[36].Notably, an N-terminal fragment of profilaggrin, with sequence similarity to the twoEF-hands [37], was also identified in vernix.Calprotectin is an antifungal and antibacterial complex consisting of a heterodimerof calgranulin A and calgranulin B[38]. Both subunits were identified, revealing that

    the active holoprotein is present in vernix. Accordingly, the crude peptide/proteinextract of vernix exhibited good antifungal activity. However, after separation of theprotein extract by RP-HPLC we could not detect any antifungal activity in thecollected fractions (data not shown). Our interpretation of this difference is that thetwo subunits of calprotectin have been separated upon HPLC, leading to loss ofactivity. Calprotectin is suggested to kill microbes by chelating zinc, therebydepriving microbes of an essential metal ion[39]. This mode of action has also beendescribed for lactoferrin and psoriasin, the latter being a major E. coli -killingcompound in human skin [33].

    Calgranulin C was first identified on the surface of onchoceral worms in humansubcutaneous nodules [40]. It is proposed to be released by activated neutrophilsand thereby attack and kill nematodes [40]. Thus, the presence of calgranulin C in vernix contributes to the protective role of vernix.Cystatin A is a protease inhibitor that is mainly expressed by epithelial andpolymorphonuclear cells[41,42]. Cystatin A is also a minor cross-linking component

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R35http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R35http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R35http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R37http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R37http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R37http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R38http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R38http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R38http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R39http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R39http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R39http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R33http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R33http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R33http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R40http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R40http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R40http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R40http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R40http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R41http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R41http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R42http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R42http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R42http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R42http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R41http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R40http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R40http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R33http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R39http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R38http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R37http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R36http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R35
  • 8/13/2019 Abstract Vernik

    13/19

    of the cornified cell envelope[43] and a part of the mechanical barrier of the skin.Unlike cystatin C, cystatin A has not been shown to possess any direct antimicrobialeffect. However, cystatin A has been suggested to be a first line protector againstcysteine proteases released from infectious micro-organisms and parasites[44].

    Thus, cystatin A could have a dual role in the innate defence of the foetus.Our results reveal that UGRP-1 (HIN-2/SCGBA2) is one of the major proteins in vernix, whereas UGRP-2 (HIN-1 /SCGBA1) is not as abundant. These proteins are both expressed at high levels in neonatal lungs by different subsets of secretory cells within the surface and glandular epithelia[45]. UGRP-1 has been shown to bind bacteria and to the macrophage scavenger receptor MARCO [46], indicatingopsonizing properties. In the lungs of mice the expression of UGRP-1 is upregulated by IL-10[47], while it is downregulated by IL-5[48], suggesting that UGRP-1 is atarget of anti-inflammatory pathways. In vernix, we have characterised three novelforms of UGRP-1, which are N-terminally differently processed. These forms mayhave altered binding affinities to bacteria, leading to enhancement of the opsonizingspectra. Vitamin A has been detected at high levels in vernix[49] and is proposed to serve asa nutritional depot of vitamin A. Vitamin A is secreted from the amniotic epitheliuminto the amniotic fluid, and is taken up by vernix[49]. Our results show thattransthyretin is present in vernix, a protein that binds to the retinol binding protein, which in turn binds vitamin A.

    Like lipids previously isolated from human stratum corneum and sebum [50, 51],our results demonstrate inhibitory effects of the free fatty acids in vernix against theGram-positive bacterium B. megaterium . We also demonstrate that palmitoleic acid(C16:1) and linoleic acid (C18:2), known to exhibit potent antimicrobial activity[14, 52], are a considerable part of the total free fatty acids. The long-chainunsaturated fatty acids found in vernix (C20 to C22 in table 2) are also antimicrobialand the activity is enhanced with an increase of the number of double bonds[15].Like antimicrobial peptides[53], fatty acids and monoacylglycerols disintegrate thelipid envelope of viruses[15] and bacterial plasma membranes [12, 16].

    Considering the high lipid content of vernix (10%)[3], it seems possible that lipidsinfluence the function of other components of vernix. It has been demonstrated thatother factors such as salts and pH, influence the conformation of the humancathelicidin LL-37[23]. Therefore we speculate that the lipid fraction of vernix canexhibit similar functions. Under our experimental conditions, lipids isolated from

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R43http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R43http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R44http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R44http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R45http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R45http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R45http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R46http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R47http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R47http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R47http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R48http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R48http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R48http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R50http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R50http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R51http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R51http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R51http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R14http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R14http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R14http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R52http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R52http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R52http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R53http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R53http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R53http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R3http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R3http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R3http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R23http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R3http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R16http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R12http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R53http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R15http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/table/T2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R52http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R14http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R51http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R50http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R49http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R48http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R47http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R46http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R45http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R44http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#R43
  • 8/13/2019 Abstract Vernik

    14/19

    vernix enhanced the antimicrobial potency of LL-37. Thus, LL-37 can be active in alipid-rich environment. When studying the antimicrobial activity in peptide/protein extracts of vernix, wefound a high antimicrobial activity against bacteria and fungi. The most active

    antibacterial compound against E. coli and GBS in these samples was isolated andidentified as chlorhexidine. Chlorhexidine is a microbicidal substance of vaginalcream used as a lubricant during vaginal examination prior to delivery. For thisreason, some of the vernix samples were found to contain chlorhexidine. We notedthat the samples with E. coli activity (labelled x in fig. 5) also exhibited activityagainst B. megaterium and GBS. Since we demonstrated that the main componentactive against E. coli was chlorhexidine, we speculated that high E. coli activityindicates higher degree of chlorhexidine in these samples. To minimize thecontribution of chlorhexidine we excluded the samples active against E. coli from theanalyses. This showed that the interindividual variation of activity is high againstGBS and lower against B. megaterium and C. albicans . Similarly the colonisationdata could also be affected by chlorhexidin. However, when the E. coli positivesamples were removed, only small differences in colonisation were observed (datanot shown).In conclusion, we have characterized proteins and lipids that add novel protectivefunctions to vernix, such as antifungal properties, opsonizing features, proteaseinhibiton, and parasite inactivation. In addition, the antimicrobial action of LL-37

    can be potentiated by the lipids in vernixin vitro , stressing the importance of themicroenvironment for the function of antimicrobial components.Go to:

    Acknowledgements

    This work was supported by grants from The Icelandic Research Fund for GraduateStudents, The Swedish Foundation for International Cooperation in Research andHigher Education (STINT), and The Swedish Research Council (no. 11217, 13X-3532). We thank Ella Cederlund, Carina Palmberg, Marie Sthlberg, Gunvor Alvelius, and Monica Lindh for excellent assistance. We also thank Milan Chromekand Annelie Brauner, for the GBS strain.

    Go to:

    References

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/#ui-ncbiinpagenav-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315785/figure/F5/
  • 8/13/2019 Abstract Vernik

    15/19

    1. Bergstrom S. Infection-related morbidities in the mother, fetus and neonate. JNutr. 2003;133:1656S 1660S. [PubMed]

    2. Romero R, Chaiworapongsa T, Espinoza J. Micronutrients and intrauterineinfection, preterm birth and the fetal inflammatory response syndrome. JNutr. 2003;133:1668S 1673S.[PubMed]

    3. Hoeger PH, Schreiner V, Klaassen IA, Enzmann CC, Friedrichs K, Bleck O.Epidermal barrier lipids in human vernix caseosa: corresponding ceramide patternin vernix and fetal skin. Br J Dermatol.2002;146:194 201. [PubMed]

    4. Shulak B. The Antibacterial Action of Vernix Caseosa. Harper HospBull. 1963;21:111 117.[PubMed]

    5. Sprunt K, Redman WM. Vernix Caseosa and Bacteria. Am J DisChild. 1964;107:125 130. [PubMed]

    6. Akinbi HT, Narendran V, Pass AK, Markart P, Hoath SB. Host defense proteins in vernix caseosa and amniotic fluid. Am J Obstet Gynecol. 2004;191:20902096. [PubMed]

    7. Yoshio H, Tollin M, Gudmundsson GH, Lagercrantz H, Jornvall H, Marchini G, etal. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid:implications for newborn innate defense.Pediatr Res. 2003;53:211 216.[PubMed]

    8. Marchini G, Lindow S, Brismar H, Stabi B, Berggren V, Ulfgren AK, et al. Thenewborn infant is protected by an innate antimicrobial barrier: peptide antibioticsare present in the skin and vernix caseosa. Br J Dermatol. 2002;147:11271134.[PubMed]

    9. Zasloff M. Antimicrobial peptides of multicellularorganisms. Nature. 2002;415:389 395. [PubMed]

    10. Lehrer RI, Ganz T, Selsted ME. Defensins: endogenous antibiotic peptides ofanimal cells. Cell.1991;64:229 230. [PubMed]

    11. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with acommon proregion and a variable C-terminal antimicrobial domain. FEBSLett. 1995;374:1 5. [PubMed]

    http://www.ncbi.nlm.nih.gov/pubmed/12730481http://www.ncbi.nlm.nih.gov/pubmed/12730481http://www.ncbi.nlm.nih.gov/pubmed/12730483http://www.ncbi.nlm.nih.gov/pubmed/12730483http://www.ncbi.nlm.nih.gov/pubmed/12730483http://www.ncbi.nlm.nih.gov/pubmed/11903227http://www.ncbi.nlm.nih.gov/pubmed/11903227http://www.ncbi.nlm.nih.gov/pubmed/11903227http://www.ncbi.nlm.nih.gov/pubmed/14042885http://www.ncbi.nlm.nih.gov/pubmed/14042885http://www.ncbi.nlm.nih.gov/pubmed/14042885http://www.ncbi.nlm.nih.gov/pubmed/14091817http://www.ncbi.nlm.nih.gov/pubmed/14091817http://www.ncbi.nlm.nih.gov/pubmed/14091817http://www.ncbi.nlm.nih.gov/pubmed/15592296http://www.ncbi.nlm.nih.gov/pubmed/15592296http://www.ncbi.nlm.nih.gov/pubmed/15592296http://www.ncbi.nlm.nih.gov/pubmed/12538777http://www.ncbi.nlm.nih.gov/pubmed/12538777http://www.ncbi.nlm.nih.gov/pubmed/12538777http://www.ncbi.nlm.nih.gov/pubmed/12452861http://www.ncbi.nlm.nih.gov/pubmed/12452861http://www.ncbi.nlm.nih.gov/pubmed/12452861http://www.ncbi.nlm.nih.gov/pubmed/11807545http://www.ncbi.nlm.nih.gov/pubmed/11807545http://www.ncbi.nlm.nih.gov/pubmed/11807545http://www.ncbi.nlm.nih.gov/pubmed/1988144http://www.ncbi.nlm.nih.gov/pubmed/1988144http://www.ncbi.nlm.nih.gov/pubmed/7589491http://www.ncbi.nlm.nih.gov/pubmed/7589491http://www.ncbi.nlm.nih.gov/pubmed/7589491http://www.ncbi.nlm.nih.gov/pubmed/7589491http://www.ncbi.nlm.nih.gov/pubmed/1988144http://www.ncbi.nlm.nih.gov/pubmed/11807545http://www.ncbi.nlm.nih.gov/pubmed/12452861http://www.ncbi.nlm.nih.gov/pubmed/12538777http://www.ncbi.nlm.nih.gov/pubmed/15592296http://www.ncbi.nlm.nih.gov/pubmed/14091817http://www.ncbi.nlm.nih.gov/pubmed/14042885http://www.ncbi.nlm.nih.gov/pubmed/11903227http://www.ncbi.nlm.nih.gov/pubmed/12730483http://www.ncbi.nlm.nih.gov/pubmed/12730481
  • 8/13/2019 Abstract Vernik

    16/19

    12. Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H. Killing of Gram-positive cocci by fatty acids and monoglycerides. Apmis. 2001;109:670678. [PubMed]

    13. Thormar H, Bergsson G. Antimicrobial effects of lipids. In: Pandalai SG,editor. Recent developments in antiviral research. Vol. 1. Trivandrum, India:Transworld Research Network; 2001. pp. 157 173.

    14. Kabara JJ. Fatty acids and derivatives as antimicrobial agents. In: Kabara JJ,editor. The Pharmacological Effect of Lipids. St. Louis, MO, USA: The American OilChemists Society; 1978. pp. 1 14.

    15. Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T. Inactivation ofenveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob

    Agents Chemother. 1987;31:27 31.[PMC free article] [PubMed] 16. Bergsson G, Arnfinnsson J, Karlsson SM, Steingrimsson O, Thormar H. In vitroinactivation of Chlamydia trachomatis by fatty acids andmonoglycerides. Antimicrob Agents Chemother.1998;42:2290 2294. [PMC freearticle] [PubMed]

    17. Isaacs CE, Kim KS, Thormar H. Inactivation of enveloped viruses in human bodily fluids by purified lipids. Ann N Y Acad Sci. 1994;724:457 464. [PubMed]

    18. Isaacs CE, Thormar H. The role of milk-derived antimicrobial lipids as antiviraland antibacterial agents. Adv Exp Med Biol. 1991;310:159 165.[PubMed]

    19. Bibel DJ, Miller SJ, Brown BE, Pandey BB, Elias PM, Shinefield HR, et al. Antimicrobial activity of stratum corneum lipids from normal and essential fattyacid-deficient mice. J Invest Dermatol.1989;92:632 638. [PubMed]

    20. Murakami M, Dorschner RA, Stern LJ, Lin KH, Gallo RL. Expression andsecretion of cathelicidin antimicrobial peptides in murine mammary glands andhuman milk. Pediatr Res. 2005;57:10 15.[PubMed]

    21. Isaacs CE, Kashyap S, Heird WC, Thormar H. Antiviral and antibacterial lipids inhuman milk and infant formula feeds. Arch Dis Child. 1990;65:861 864. [PMC freearticle] [PubMed]

    22. Jia HP, Starner T, Ackermann M, Kirby P, Tack BF, McCray PB., Jr. Abundanthuman beta-defensin-1 expression in milk and mammary gland epithelium. JPediatr. 2001;138:109 112.[PubMed]

    http://www.ncbi.nlm.nih.gov/pubmed/11890570http://www.ncbi.nlm.nih.gov/pubmed/11890570http://www.ncbi.nlm.nih.gov/pubmed/11890570http://www.ncbi.nlm.nih.gov/pmc/articles/PMC174645/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC174645/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC174645/http://www.ncbi.nlm.nih.gov/pubmed/3032090http://www.ncbi.nlm.nih.gov/pubmed/3032090http://www.ncbi.nlm.nih.gov/pubmed/3032090http://www.ncbi.nlm.nih.gov/pmc/articles/PMC105821/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC105821/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC105821/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC105821/http://www.ncbi.nlm.nih.gov/pubmed/9736551http://www.ncbi.nlm.nih.gov/pubmed/9736551http://www.ncbi.nlm.nih.gov/pubmed/9736551http://www.ncbi.nlm.nih.gov/pubmed/8030973http://www.ncbi.nlm.nih.gov/pubmed/8030973http://www.ncbi.nlm.nih.gov/pubmed/8030973http://www.ncbi.nlm.nih.gov/pubmed/1808991http://www.ncbi.nlm.nih.gov/pubmed/1808991http://www.ncbi.nlm.nih.gov/pubmed/1808991http://www.ncbi.nlm.nih.gov/pubmed/2649598http://www.ncbi.nlm.nih.gov/pubmed/2649598http://www.ncbi.nlm.nih.gov/pubmed/2649598http://www.ncbi.nlm.nih.gov/pubmed/15531744http://www.ncbi.nlm.nih.gov/pubmed/15531744http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1792470/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1792470/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1792470/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1792470/http://www.ncbi.nlm.nih.gov/pubmed/2169227http://www.ncbi.nlm.nih.gov/pubmed/2169227http://www.ncbi.nlm.nih.gov/pubmed/2169227http://www.ncbi.nlm.nih.gov/pubmed/11148522http://www.ncbi.nlm.nih.gov/pubmed/11148522http://www.ncbi.nlm.nih.gov/pubmed/11148522http://www.ncbi.nlm.nih.gov/pubmed/11148522http://www.ncbi.nlm.nih.gov/pubmed/2169227http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1792470/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1792470/http://www.ncbi.nlm.nih.gov/pubmed/15531744http://www.ncbi.nlm.nih.gov/pubmed/2649598http://www.ncbi.nlm.nih.gov/pubmed/1808991http://www.ncbi.nlm.nih.gov/pubmed/8030973http://www.ncbi.nlm.nih.gov/pubmed/9736551http://www.ncbi.nlm.nih.gov/pmc/articles/PMC105821/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC105821/http://www.ncbi.nlm.nih.gov/pubmed/3032090http://www.ncbi.nlm.nih.gov/pmc/articles/PMC174645/http://www.ncbi.nlm.nih.gov/pubmed/11890570
  • 8/13/2019 Abstract Vernik

    17/19

    23. Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B.Conformation-dependent antibacterial activity of the naturally occurring humanpeptide LL-37. J Biol Chem. 1998;273:3718 3724. [PubMed]

    24. Gudmundsson GH, Agerberth B. Neutrophil antibacterial peptides,multifunctional effector molecules in the mammalian immune system. J ImmunolMethods. 1999;232:45 54. [PubMed]

    25. Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 isexpressed in epithelia of the human lung where it has broad antimicrobial activity atthe airway surface. Proc Natl Acad Sci USA. 1998;95:9541 9546. [PMC freearticle] [PubMed]

    26. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al.

    Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N EnglJ Med. 2002;347:1151 1160.[PubMed]

    27. Singh PK, Tack BF, McCray PB, Jr., Welsh MJ. Synergistic and additive killing byantimicrobial factors found in human airway surface liquid. Am J Physiol Lung CellMol Physiol. 2000;279:L799 805. [PubMed]

    28. Wang Y, Walter G, Herting E, Agerberth B, Johansson J. Antibacterial activitiesof the cathelicidins prophenin (residues 62 to 79) and LL-37 in the presence of alung surfactant preparation. Antimicrob Agents Chemother. 2004;48:2097

    2100. [PMC free article] [PubMed] 29. Hirschberg D, Tryggvason S, Gustafsson M, Bergman T, Swedenborg J, Hedin U,et al. Identification of endothelial proteins by MALDI-MS using a compact discmicrofluidic system. Protein J.2004;23:263 271.[PubMed]

    30. Vogel HJ, Bonner DM. Acetylornithinase of Escherichia coli: partial purificationand some properties. J Biol Chem. 1956;218:97 106. [PubMed]

    31. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and

    purification of total lipides from animal tissues. J Biol Chem. 1957;226:497509. [PubMed]

    32. Takeda A, Kaji H, Nakaya K, Nakamura Y, Samejima T. Comparative studies onthe primary structure of human cystatin as from epidermis, liver, spleen, andleukocytes. J Biochem (Tokyo)1989;105:986 991.[PubMed]

    http://www.ncbi.nlm.nih.gov/pubmed/9452503http://www.ncbi.nlm.nih.gov/pubmed/9452503http://www.ncbi.nlm.nih.gov/pubmed/9452503http://www.ncbi.nlm.nih.gov/pubmed/10618508http://www.ncbi.nlm.nih.gov/pubmed/10618508http://www.ncbi.nlm.nih.gov/pubmed/10618508http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21374/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21374/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21374/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21374/http://www.ncbi.nlm.nih.gov/pubmed/9689116http://www.ncbi.nlm.nih.gov/pubmed/9689116http://www.ncbi.nlm.nih.gov/pubmed/9689116http://www.ncbi.nlm.nih.gov/pubmed/12374875http://www.ncbi.nlm.nih.gov/pubmed/12374875http://www.ncbi.nlm.nih.gov/pubmed/12374875http://www.ncbi.nlm.nih.gov/pubmed/11053013http://www.ncbi.nlm.nih.gov/pubmed/11053013http://www.ncbi.nlm.nih.gov/pubmed/11053013http://www.ncbi.nlm.nih.gov/pmc/articles/PMC415589/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC415589/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC415589/http://www.ncbi.nlm.nih.gov/pubmed/15155206http://www.ncbi.nlm.nih.gov/pubmed/15155206http://www.ncbi.nlm.nih.gov/pubmed/15214497http://www.ncbi.nlm.nih.gov/pubmed/15214497http://www.ncbi.nlm.nih.gov/pubmed/15214497http://www.ncbi.nlm.nih.gov/pubmed/13278318http://www.ncbi.nlm.nih.gov/pubmed/13278318http://www.ncbi.nlm.nih.gov/pubmed/13278318http://www.ncbi.nlm.nih.gov/pubmed/13428781http://www.ncbi.nlm.nih.gov/pubmed/13428781http://www.ncbi.nlm.nih.gov/pubmed/13428781http://www.ncbi.nlm.nih.gov/pubmed/2768224http://www.ncbi.nlm.nih.gov/pubmed/2768224http://www.ncbi.nlm.nih.gov/pubmed/2768224http://www.ncbi.nlm.nih.gov/pubmed/2768224http://www.ncbi.nlm.nih.gov/pubmed/13428781http://www.ncbi.nlm.nih.gov/pubmed/13278318http://www.ncbi.nlm.nih.gov/pubmed/15214497http://www.ncbi.nlm.nih.gov/pubmed/15155206http://www.ncbi.nlm.nih.gov/pmc/articles/PMC415589/http://www.ncbi.nlm.nih.gov/pubmed/11053013http://www.ncbi.nlm.nih.gov/pubmed/12374875http://www.ncbi.nlm.nih.gov/pubmed/9689116http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21374/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21374/http://www.ncbi.nlm.nih.gov/pubmed/10618508http://www.ncbi.nlm.nih.gov/pubmed/9452503
  • 8/13/2019 Abstract Vernik

    18/19

  • 8/13/2019 Abstract Vernik

    19/19

    44. Pavlova A. Mechanism of action of mammalian cyctatins:studies of inhibition ofcysteine endo- and exopeptidases by cystatin A and C. Swedish University of Agricultural Sciences; Uppsala: 2003. Thesis.

    45. Reynolds SD, Reynolds PR, Pryhuber GS, Finder JD, Stripp BR. SecretoglobinsSCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and humanairways. Am J Respir Crit Care Med.2002;166:1498 1509. [PubMed]

    46. Bin LH, Nielson LD, Liu X, Mason RJ, Shu HB. Identification of uteroglobin-related protein 1 and macrophage scavenger receptor with collagenous structure as alung-specific ligand-receptor pair. J Immunol. 2003;171:924 930. [PubMed]

    47. Srisodsai A, Kurotani R, Chiba Y, Sheikh F, Young HA, Donnelly RP, et al.Interleukin-10 induces uteroglobin-related protein (UGRP) 1 gene expression in lung

    epithelial cells through homeodomain transcription factor T/EBP/NKX2.1. J BiolChem. 2004;279:54358 54368. [PubMed]

    48. Chiba Y, Srisodsai A, Supavilai P, Kimura S. Interleukin-5 reduces the expressionof uteroglobin-related protein (UGRP) 1 gene in allergic airwayinflammation. Immunol Lett. 2005;97:123 129.[PMC free article] [PubMed]

    49. Rosenzweig E. [The vernix caseosa as a depot for vitamin A.] Gynaecologia. 1953;136:369 376.[PubMed]

    50. Miller SJ, Aly R, Shinefeld HR, Elias PM. In vitro and in vivo antistaphylococcalactivity of human stratum corneum lipids. Arch Dermatol. 1988;124:209215.[PubMed]

    51. Wille JJ, Kydonieus A. Palmitoleic acid isomer (C16:1delta6) in human skinsebum is effective against gram-positive bacteria. Skin Pharmacol Appl SkinPhysiol. 2003;16:176 187.[PubMed]

    52. Kabara JJ. Lipids as host-resistance factors of human milk. NutrRev. 1980;38:65 73. [PubMed]

    53. Shai Y. Mode of action of membrane active antimicrobialpeptides. Biopolymers. 2002;66:236 248.[PubMed]

    http://www.ncbi.nlm.nih.gov/pubmed/12406855http://www.ncbi.nlm.nih.gov/pubmed/12406855http://www.ncbi.nlm.nih.gov/pubmed/12406855http://www.ncbi.nlm.nih.gov/pubmed/12847263http://www.ncbi.nlm.nih.gov/pubmed/12847263http://www.ncbi.nlm.nih.gov/pubmed/15485815http://www.ncbi.nlm.nih.gov/pubmed/15485815http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1343456/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1343456/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1343456/http://www.ncbi.nlm.nih.gov/pubmed/15626484http://www.ncbi.nlm.nih.gov/pubmed/15626484http://www.ncbi.nlm.nih.gov/pubmed/15626484http://www.ncbi.nlm.nih.gov/pubmed/13142428http://www.ncbi.nlm.nih.gov/pubmed/13142428http://www.ncbi.nlm.nih.gov/pubmed/3341800http://www.ncbi.nlm.nih.gov/pubmed/3341800http://www.ncbi.nlm.nih.gov/pubmed/3341800http://www.ncbi.nlm.nih.gov/pubmed/12677098http://www.ncbi.nlm.nih.gov/pubmed/12677098http://www.ncbi.nlm.nih.gov/pubmed/12677098http://www.ncbi.nlm.nih.gov/pubmed/7383442http://www.ncbi.nlm.nih.gov/pubmed/7383442http://www.ncbi.nlm.nih.gov/pubmed/12491537http://www.ncbi.nlm.nih.gov/pubmed/12491537http://www.ncbi.nlm.nih.gov/pubmed/12491537http://www.ncbi.nlm.nih.gov/pubmed/7383442http://www.ncbi.nlm.nih.gov/pubmed/12677098http://www.ncbi.nlm.nih.gov/pubmed/3341800http://www.ncbi.nlm.nih.gov/pubmed/13142428http://www.ncbi.nlm.nih.gov/pubmed/15626484http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1343456/http://www.ncbi.nlm.nih.gov/pubmed/15485815http://www.ncbi.nlm.nih.gov/pubmed/12847263http://www.ncbi.nlm.nih.gov/pubmed/12406855