abb case study: optimal control and...

41
ABB Case Study: ABB Case Study: Optimal Control and Analysis Optimal Control and Analysis T. Geyer, M. T. Geyer, M. Morari Morari , , M. Larsson M. Larsson Automatic Control Laboratory Automatic Control Laboratory ETH Zurich ETH Zurich ABB ABB

Upload: others

Post on 12-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

ABB Case Study: ABB Case Study: Optimal Control and AnalysisOptimal Control and Analysis

T. Geyer, M. T. Geyer, M. MorariMorari, , M. LarssonM. Larsson

Automatic Control LaboratoryAutomatic Control LaboratoryETH ZurichETH Zurich ABBABB

Page 2: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

1. Overview

2. Modeling

3. Optimal Control Problem

4. Sensitivity Analysis

5. Conclusions and Outlook

OutlineOutline

Page 3: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

1. Overview

2. Modeling

3. Optimal Control Problem

4. Sensitivity Analysis

5. Conclusions and Outlook

Page 4: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

ABB Case Study: ABB Case Study: OverviewOverview

Generator 1:Ø infinite bus

Generator 2:Ø internal controller (AVR)

Transformer:Ø internal controller (FSM)

Load:Ø aggregate dynamic load

Page 5: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Collapse ScenarioCollapse Scenario

2. tap changer control

3. generator overexcitationlimiter activated

4. voltage collapse

1. load recovery

Line tripping (L3) at t=100s ...

... leads to voltage collapse.

Page 6: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Why do we need Control?Why do we need Control?

Ø Power system designed for N-1 stability

Ø Power system collapse extremely expensive

Ø Time-constants rather small

Ø Power system operated closer to stability limit

because of• deregulation of energy market• environmental concerns• increase of electric power demand

Page 7: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

1. Overview

2. Modeling

3. Optimal Control Problem

4. Sensitivity Analysis

5. Conclusions and Outlook

Page 8: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Generator 2: Generator 2: OverviewOverview

purpose:Ø generates limited power

assume:

Ø quasi-steady state behaviour

2 (static) components:

Ø automatic voltage regulator (AVR)

Ø synchronous machine

Page 9: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Generator 2: Generator 2: ModelModel

Synchronous machine

static I/O-behaviour

generates elect.power

AVR saturating P-controller with input nonlinearity

controls terminalvoltage V2m

Page 10: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Transformer: Transformer: OverviewOverview

purpose: Ø steps down voltageØ controls load-voltage V4m

by adjusting tap ratio 1:n

2 components:Ø transformerØ controller of tap ratio

manipulated variable:Ø voltage reference V4m,ref

Page 11: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Transformer: Transformer: ControllerController

input nonlinearity:

logic:

finite state machine:

Page 12: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Transformer: Transformer: EquationsEquations

transformer equations:

Ø nonlinear equationsØ relate V3, V4, I3, I4

depending on n

block diagram:

Page 13: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

purpose:Ø power consumption

assume: aggregate dynamic load Ø aggregate: distribution network with

various loads (motors, heating, lighting)Ø dynamic: self-restoring following a

disturbance

manipulated variable:Ø load shedding sL

Load: Load: OverviewOverview

Page 14: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Load: Load: Self RestorationSelf RestorationFollowing a disturbance in the supply voltage, the active and reactive powersdrawn by the load are restored by internal controllers (like thermostats).

Page 15: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Load: Load: ModelModelactive power:

reactive power:

whereand = load shedding (discrete manipulated var.)

output equations:

block diagram:

Page 16: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Linear Linear SubmodelsSubmodels

generator 1:Ø infinite busØ supplies constant voltage V1 = 1.03

capacitor bank:Ø stabilizes power systemØ discrete manipulated variable

network: Ø algebraic equations at the buses

according to Kirchhoff’s laws

Page 17: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Hybrid ModelHybrid ModelHybrid system:Ø saturationØ finite state machine with logicØ nonlinearitiesà pwa functionsØ discrete manipulated variables

Dimensions: Ø 2 ordinary diff. equationsØ 29 algebraic equations:

Ø11 linear, 18 nonlinear

Ø 3 states:Ø2 continuous, 1 discrete

Ø 3 manipulated variables:Ø1 continuous, 2 discrete

Page 18: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Hybrid Model Hybrid Model ((ctdctd.).)

approximate by PWA functions

2 ODEs, 29 algebraic constraints saturation, FSM, logic

nonlinear DAE: discrete events:

Page 19: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

MLD FormulationMLD Formulation

where: auxiliary binary variablesauxiliary continuous variables

if problem is well-posed: for a given and the inequality

defines uniquely and .

… leads to 49 , 86 variables and 409 constraints

Page 20: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

1. Overview

2. Modeling

3. Optimal Control Problem

4. Sensitivity Analysis

5. Conclusions and Outlook

Page 21: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Ø Control objectives: Ø stabilize V4m

Ø min. load shedding sL

Ø keep bus voltages withincertain limits V2m, V3m, V4m

ØManipulated variables:Ø ultc voltage reference: V4m,ref

Ø capacitor switching: sC

Ø load shedding: sL

Ø Fault:Ø line outage

Control ProblemControl Problem

Page 22: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Model Predictive ControlModel Predictive Control

subject to

Ø MLD model:

Ø Soft constraints on bus voltages:

Page 23: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Controller StructureController Structure

Controller of tap changer highly sensitive to

à Decompose MPC in cascaded controller

staticMPC

prediction model with as man. variable

• MPC sets tapping strategy

• Static controller chooses accordingly

• Mechanical wear results from tap changes

Page 24: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Tuning of Cost FunctionTuning of Cost Function

choose such that:

Ø nominal control (no constraint violated):

allow ultc voltage reference and capacitor bank

Ø emergency control (constraints violated):

allow all controls including load-shedding

Penalty on u:

Page 25: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Tuning of Cost Function (Tuning of Cost Function (ctdctd.).)Penalty on violation of soft constraints:

violation of i-th constraint

slack

Page 26: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Preliminary ResultsPreliminary Results

fault

capacitor bankswitching

stop tapping

constraint violation

Page 27: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Compensation for Output ErrorCompensation for Output Error

nonlinear DAE: discrete events:

filtered

… leads to reduced output error

Page 28: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

1. Overview

2. Modeling

3. Optimal Control Problem

4. Sensitivity Analysis

5. Conclusions and Outlook

Page 29: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Nonlinear Hybrid MPCNonlinear Hybrid MPCQuestions:• Is the MPC cost function tuned properly?• How large is the max. tolerable approximation error?

à Simulate nonlinear hybrid MPC with exact model

Implementation:• branch on discrete inputs over prediction horizon• use bound techniques• Simulink (Modelica): used to simulate the model response

and to evaluate the cost function

Page 30: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Nominal CaseNominal Caset=120s: cap. switching

t=180, 570s:constraint viol.predicted

no load shed.

Page 31: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Parameter Uncertainty: P0 +0.5%Parameter Uncertainty: P0 +0.5%t=120s: cap. switching

no load shed.

small offset in bus voltages

Page 32: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

1. Overview

2. Modeling

3. Optimal Control Problem

4. Sensitivity Analysis

5. Conclusions and Outlook

Page 33: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

ConclusionsConclusions

Ø MPC cost function:• use cascaded control scheme,

• penalize tap changes,

• allow for short constraint violations and

• prediction horizon N=2 sufficient.

Ø Max. tolerable approximation error:• small parameter uncertainties lead to output offset,

• if P0 > +1%: nominal control moves can’t stabilize system,

• system parameters and structure are known very accurately (PMU)

except P0 (variations of up to 0.3% per minute)

à high accuracy for PWA approximation mandatory

Page 34: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

OutlookOutlookØ Reformulate MLD model using subdivided model

Ø Compensate for output error

Ø Reduce computational time

• search heuristics

• exploit model structure

Ø Large-scale power system

Ø Reachability analysis

Ø Controllability and observability

Page 35: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Reformulation of MLD ModelReformulation of MLD Model

formulate as MLD modelapproximate by PWA functions with 4 real inputs

for all 16 combinations of discrete inputs

nonlinear DAE: discrete events:

Page 36: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

The endThe end

Page 37: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Penalty on V4m,ref and P0 +0.5%Penalty on V4m,ref and P0 +0.5%t=120s: cap. switching

t=180s:constraint viol.predicted, but change in V4m,ref not effective

t=210s: load shed.

Page 38: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Penalize all Constraint Viol. and P0 +0.5%Penalize all Constraint Viol. and P0 +0.5%constraint viol.for k=0 penalized, too

t=120s: cap. switching

t=840s:constraint viol.NOT predicted

t=870s:load shedding

Page 39: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

Static StateStatic State--EstimationEstimation

nonlinear DAE: discrete events:

… leads to reduced output error

Page 40: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

G

Instability: line outageInstability: line outage

old operating pointinstability

Page 41: ABB Case Study: Optimal Control and Analysiscse.lab.imtlucca.it/~bemporad/hybrid/cc/meetings/ascona02... · 2002-11-12 · ABB Case Study: Optimal Control and Analysis T. Geyer, M

G

Countermeasures: load sheddingCountermeasures: load shedding

old operating point

new operating point