aae450 senior spacecraft design matthew guyon week 5: february 15 th, 2007 thermal control/team...

11
AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th , 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal Protection System

Upload: blaze-palmer

Post on 21-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

Matthew GuyonWeek 5: February 15th, 2007

Thermal Control/Team Leader

Mars Rover Thermal Control System/

Ablative Thermal Protection System

Page 2: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

MR Thermal Control System

Energy for MR using completely active system

Total Peak Power 58 kW

Total Area Needed for a Two-Sided Radiator

2.91 m2

Guyon, 2

Power Number Provided by Jon Kubiak on 2-15-07

  Mass (kg) Power (kW) Volume (m3)

Coldplates 120.00   0.28

Pumps 278.40 1.33 0.99

Plumbing and Valves 90.42    

Instruments and Controls 30.14    

Fluids 30.14    

Radiators 204.43   0.08

Total 0.75 mt 1.33 kW 1.34 m3

Numbers based on code on slides 10 and 11

Page 3: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

Ablative Thermal Protection

Guyon, 3

Composite Insulation

Adhesive Bond

Honeycomb Core

Adhesive Bond

Ablative Material

TC Drawing by: Ben Jamison

0 100 200 300 400 500 600 700 8000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

dept

h (c

m)

Avcoat.m Ablation at heating point 5 for tabl = 0.017 and tinslator = 0.02

Original Depth

Ablation DepthCarbon Carbon Foam

Graphite-Carbon skin

0 100 200 300 400 500 600 700 800 900150

200

250

300

350

400

450

500

550

600

Time (sec)

Tem

p (K

)

Avcoat.m Temperature at heating point 5 for tabl

= 0.017 and tinslator

= 0.02

Outer Layer

Between Ablator and Carbon Foam

Between Carbon Foam and Composite skin

Inside wall of ship

Max temp of inner wall

Page 4: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

References• Ref 1: Larson, Wiley and Pranke, Linda. Human Spaceflight Mission Analysis and Design. St.

Louis: McGraw-Hill Companies (Pgs 513-537)

• Ref 2: “Atmospheric Reentry.” 4 Jan 2007 Wikipedia. 5 Jan 2007. <http://en.wikipedia.org/wiki/Heat_shield>

• Ref 3: “Project Legend.” Spring 2005 Purdue University. 5 Jan 2007 (Pgs 163-169) <https://engineering.purdue.edu/AAE/Academics/Courses/aae450/2005/spring>

• Ref 4: “Inconel 617 Technical Data.” HighTempMetals.com. 29 Jan 2007. <http://www.hightempmetals.com/techdata/hitempInconel617data.php>

• Ref 5: “Low density ablator composition.” Freepatentsonline.com. 29 Jan 2007. <http://www.freepatentsonline.com/6627697.html>

• Ref 6: “Orbiter Thermal Protection System.” Nasa Facts Online. 30 Jan 2007. <http://www-pao.ksc.nasa.gov/kscpao/nasafact/tps.htm>

• Ref 7: “CSM Heat Shield.” Astronautix.com. 29 Jan 2007. <http://www.astronautix.com/craft/csmhield.htm>

• Ref 8: Gilmore, David G.. Spacecraft Thermal Control Handbook. California: The Aerospace Corporation

Guyon, 4

Page 5: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

Thermal Re-Entry Protection

• Mars Entry With Aeroshell:– Absorptive System – Charring Ablator– Char Outer Shell with a Virgin Ablator

Honeycomb Core with a Back-face bonding

– Material Based on new Technology – Boeing Lightweight Ablator (BLA)

• Mars Entry With Lifting Body:– Radiative System - Insulated– Outer Shell: Metallic – Inner Shell: Thermal Insulation – Material Based on X-33 – Inconel 617

• Earth Re-Entry:– Absorptive System – Charring Ablator– Char Outer Shell with a Virgin Ablator

Honeycomb Core with a Back-face bonding

– Material based on Apollo Spacecraft – Avco 5026-39

Figures based on Larson, Wiley and Pranke, Linda, ref 1 Guyon, 5

Page 6: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

Thermal Re-Entry Protection

• Mars Entry With Aeroshell:– Excellent abrasion resistance – Radio frequency transparent,

moisture resistant, and low cost

• Mars Entry With Lifting Body:– Excellent high temperature

strength– Excellent resistance to

oxidation and a wide range of corrosive elements

• Earth Re-Entry:– Well tested– Resistant to high temperatures

experienced in Earth re-entry

  Mars  Mars Earth

  Aeroshell Lifting Body Re-entry

Material BLA Inconel 617 Avco 5026-39

Density (kg/m3) 320 8359.33 512

Thickness (m) 0.04 0.006 0.0254

Operating Temp (k)

2000 2100 3033

Heat Rejection (W/cm2)

91.18 110.80 481.40

Total Mass (kg/m2)

16.42 50.76 18.74

Guyon, 6Numbers Based on Ref Slide 7

Page 7: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

Thermal Re-Entry Protection

  Mars   Earth

  Aeroshell Lifting Body Re-entry

Material BLA Inconel 617 Avco 5026-39

Density (kg/m^3) 320 8359.33 512

Thickness (m) 0.04 0.006 0.0254

Operating Temp (k) 2000 2100 3033

Heat Rejec (W/cm^2)

=(0.0000000567*C7^5)/(C7-10)/100^2

=(0.0000000567*D7^5)/(D7-10)/100^2

=(0.0000000567*E7^5)/(E7-10)/100^2

Total Mass (kg/m^2) =C5*C6+3.62 =D5*D6+0.6 =E5*E6+5.74

Guyon, 7

Numbers for Material, Density, Thickness, Operating Temp, Heat rejection and Total mass come from research with the references of 1-8

Page 8: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

Thermal Re-Entry Protection

0 100 200 300 400 500 600 700 8000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

depth

(cm

)

Avcoat.m Ablation at heating point 5 for tabl

= 0.017 and tinslator

= 0.02

Original Depth

Ablation DepthCarbon Carbon Foam

Graphite-Carbon skin

Guyon, 8SODDIT Code Graphs 2-14-07

Page 9: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

Thermal Re-Entry Protection

0 100 200 300 400 500 600 700 800 900150

200

250

300

350

400

450

500

550

600

Time (sec)

Tem

p (

K)

Avcoat.m Temperature at heating point 5 for tabl

= 0.017 and tinslator

= 0.02

Outer Layer

Between Ablator and Carbon Foam

Between Carbon Foam and Composite skin

Inside wall of ship

Max temp of inner wall

Guyon, 9SODDIT Code Graphs 2-14-07

Page 10: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

MR Thermal Control System  Mass (kg) Power (kW) Volume(m3)

Heat Exchangers 17 + 0.25 * capacity in kW 00.016 + 0.0012 * capacity in

kW

Coldplates 12 * capacity in kW 0 0.028 * capacity in kW

Pumps with Accumulator 4.8 * loop capacity in kW

0.023 * loop capacity in kW 0.017 * loop capacity in kW

Plumbing and Valves Add 15% to active system Negligible Negligible

Instruments and Controls Add 5% to active system Negligible Negligible

Fluids Add 5% to active system 0 Negligible

Heat Pumps 8 * capacity in kW Varies Negligible

Fixed Radiators 5.3 per m2 Negligible 0.02 per m2

MLI 1-3 per m2 Negligible 0.01 per m2

Heat Pipes 0.000294 * capacity in W * (length in m)2 02.03E-7 * capacity in W *

(length in m)2

Guyon, 10

Ref 1: Larson

Page 11: AAE450 Senior Spacecraft Design Matthew Guyon Week 5: February 15 th, 2007 Thermal Control/Team Leader Mars Rover Thermal Control System/ Ablative Thermal

AAE450 Senior Spacecraft Design

MR Thermal Control System

Guyon, 11

Energy (W) 58000.00

Condction KA(T2-T1)/(X2-X1)

k (w/mk) 237.00

thickness (m) 0.04

Convection hA(T2-T1)

h (w/m^2k) 50.00

dela T 80.00

ratiation AEST^4

Eps (Anodized Aluminum-black) 0.84

S (Stephan-Boltzmann constant) 5.67E-08

T (surface) 375.00

area (m^2) 2.91

Rho of AL (kg/m^3) 2700.00

mass (kg) 299.79

  Mass (kg) Power (kW) Volume (m3)

Coldplates 120.00   0.28

Pumps 278.40 1.33 0.99

Plumbing and Valves 90.42    

Instruments and Controls 30.14    

Fluids 30.14    

Radiators 204.43   0.08

Total 0.75 mt 1.33 kW 1.34 m3

Numbers from my own research and code