a two-layer approach. christian bourdarias, mehmet ersoy...

47
Air entrainment in transient flows in closed water pipes A two-layer approach. Christian Bourdarias, Mehmet Ersoy and St´ ephane Gerbi LAMA, Universit´ e de Savoie, Chamb´ ery, France Modelling 2009 June 22 - 26, 2009 Roznov pod Radhostem Czech Republic S. Gerbi (LAMA, UdS, Chamb´ ery) Air entrainment in transient flows Modelling 2009 1 / 31

Upload: others

Post on 12-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air entrainment in transient flows in closed water pipesA two-layer approach.

Christian Bourdarias, Mehmet Ersoy and Stephane Gerbi

LAMA, Universite de Savoie, Chambery, France

Modelling 2009June 22 - 26, 2009

Roznov pod RadhostemCzech Republic

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 1 / 31

Page 2: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Table of contents

1 Physical motivations and the mathematical modelisationPrevious worksThe modelisation

Fluid Layer : incompressible Euler’s EquationsAir Layer : compressible Euler’s EquationsThe two-layer model

2 The kinetic formulation and the kinetic schemeThe kinetic formulationThe kinetic scheme and numerical experimentsNumerical experiment

3 Done and to do

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 2 / 31

Page 3: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Table of contents

1 Physical motivations and the mathematical modelisationPrevious worksThe modelisation

Fluid Layer : incompressible Euler’s EquationsAir Layer : compressible Euler’s EquationsThe two-layer model

2 The kinetic formulation and the kinetic schemeThe kinetic formulationThe kinetic scheme and numerical experimentsNumerical experiment

3 Done and to do

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 3 / 31

Page 4: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air entrainment in transient flows in closed pipes

The air entrainment appears in the transient flow in closed pipes notcompletely filled: the liquid flow (as well as the air flow) is free surface.

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 4 / 31

Page 5: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Some closed pipes

a forced pipe a sewer in Paris

The Orange-Fish Tunnel (in Canada)

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 5 / 31

Page 6: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Previous works

the homogeneous model: a single fluid is considered where soundspeed depends on the fraction of airM. H. Chaudhry et al. 1990 and Wylie an Streeter 1993

the drift-flux model: the velocity fields are expressed in terms of themixture center-of-mass velocity and the drift velocity of the vaporphaseIshii et al. 2003, Faille and Heintze 1999.

The two-fluid model : a compressible and incompressible model arecoupled via the interface. PDE of 6 equationsTiselj, Petelin et al. 1997, 2001.

Rigid water columnHamam and McCorquodale 1982, Zhou, Hicks et al 2002

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 6 / 31

Page 7: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Previous works

the homogeneous model: a single fluid is considered where soundspeed depends on the fraction of airM. H. Chaudhry et al. 1990 and Wylie an Streeter 1993

the drift-flux model: the velocity fields are expressed in terms of themixture center-of-mass velocity and the drift velocity of the vaporphaseIshii et al. 2003, Faille and Heintze 1999.

The two-fluid model : a compressible and incompressible model arecoupled via the interface. PDE of 6 equationsTiselj, Petelin et al. 1997, 2001.

Rigid water columnHamam and McCorquodale 1982, Zhou, Hicks et al 2002

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 6 / 31

Page 8: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Previous works

the homogeneous model: a single fluid is considered where soundspeed depends on the fraction of airM. H. Chaudhry et al. 1990 and Wylie an Streeter 1993

the drift-flux model: the velocity fields are expressed in terms of themixture center-of-mass velocity and the drift velocity of the vaporphaseIshii et al. 2003, Faille and Heintze 1999.

The two-fluid model : a compressible and incompressible model arecoupled via the interface. PDE of 6 equationsTiselj, Petelin et al. 1997, 2001.

Rigid water columnHamam and McCorquodale 1982, Zhou, Hicks et al 2002

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 6 / 31

Page 9: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Previous works

the homogeneous model: a single fluid is considered where soundspeed depends on the fraction of airM. H. Chaudhry et al. 1990 and Wylie an Streeter 1993

the drift-flux model: the velocity fields are expressed in terms of themixture center-of-mass velocity and the drift velocity of the vaporphaseIshii et al. 2003, Faille and Heintze 1999.

The two-fluid model : a compressible and incompressible model arecoupled via the interface. PDE of 6 equationsTiselj, Petelin et al. 1997, 2001.

Rigid water columnHamam and McCorquodale 1982, Zhou, Hicks et al 2002

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 6 / 31

Page 10: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The setting

Figure: Geometric characteristics of the domain

We have then the first natural coupling:

Hw (t, x) + Ha(t, x) = 2R(x) .

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 7 / 31

Page 11: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Fluid layer: incompressible Euler’s Equations

Figure: Cross-section of the domain

Incompressible Euler’s equations

div(Uw) = 0, on R× Ωt,w

∂t(Uw) + div(Uw ⊗Uw) +∇Pw = F, on R× Ωt,w

where Uw(t, x , y , z) = (Uw ,Vw ,Ww ) the velocity , Pw (t, x , y , z) thepressure , F the gravity strength.S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 8 / 31

Page 12: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Fluid layer model: mean value on Ωw

A(t, x) =

∫Ωw

dydz : the wetted area,

u the mean value of the speed

u(t, x) =1

A(t, x)

∫Ωw

Uw (t, x , y , z) dydz ,

Q(t, x) = A(t, x)u(t, x) the discharge.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 9 / 31

Page 13: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Fluid layer model: mean value on Ωw

A(t, x) =

∫Ωw

dydz : the wetted area,

u the mean value of the speed

u(t, x) =1

A(t, x)

∫Ωw

Uw (t, x , y , z) dydz ,

Q(t, x) = A(t, x)u(t, x) the discharge.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 9 / 31

Page 14: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Fluid layer model: mean value on Ωw

A(t, x) =

∫Ωw

dydz : the wetted area,

u the mean value of the speed

u(t, x) =1

A(t, x)

∫Ωw

Uw (t, x , y , z) dydz ,

Q(t, x) = A(t, x)u(t, x) the discharge.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 9 / 31

Page 15: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Fluid layer model: mean value on Ωw

A(t, x) =

∫Ωw

dydz : the wetted area,

u the mean value of the speed

u(t, x) =1

A(t, x)

∫Ωw

Uw (t, x , y , z) dydz ,

Q(t, x) = A(t, x)u(t, x) the discharge.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 9 / 31

Page 16: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Fluid layer model: mean value on Ωw

A(t, x) =

∫Ωw

dydz : the wetted area,

u the mean value of the speed

u(t, x) =1

A(t, x)

∫Ωw

Uw (t, x , y , z) dydz ,

Q(t, x) = A(t, x)u(t, x) the discharge.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 9 / 31

Page 17: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Fluid layer model: mean value on Ωw

Fluid layer model

∂tA + ∂xQ = 0

∂tQ + ∂x

(Q2

A+ APa(ρ)/ρ0 + gI1(x ,A) cos θ

)= −gA∂xZ

+gI2(x ,A) cos θ

+Pa(ρ)/ρ0 ∂xA

g : the gravity constant, θ: the angle

I1(x ,A) =

∫ hw

−R(hw − z)σ(x , z) dz the hydrostatic pressure

I2(x ,A) =

∫ hw

−R(hw − z)∂xσ(x , z) dz the pressure source term

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 9 / 31

Page 18: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air Layer : compressible Euler’s Equations

Compressible Euler’s equations

∂tρa + div(ρaUa) = 0, on R× Ωt,a

∂t(ρaUa) + div(ρaUa ⊗Ua) +∇Pa = 0, on R× Ωt,a

where Ua(t, x , y , z) = (Ua,Va,Wa) the velocity , Pa(t, x , y , z) the pressure, ρa(t, x , y , z) the density.

Equation of state: isentropic and isothermal

Pa(ρ) = k ργ with k =pa

ργa

γ is set to 7/5

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 10 / 31

Page 19: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air layer model: mean value on Ωa

A(t, x) =

∫Ωa

dydz : the pseudo wetted area,

v the mean value of the speed

v(t, x) =1

A(t, x)

∫Ωa

Ua(t, x , y , z) dydz ,

M = ρ/ρ0A, D = Mv rescaled air mass and air discharge.

c2a =

∂p

∂ρ= kγ

(ρ0M

A

)γ−1

, the air sound speed.

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 11 / 31

Page 20: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air layer model: mean value on Ωa

A(t, x) =

∫Ωa

dydz : the pseudo wetted area,

v the mean value of the speed

v(t, x) =1

A(t, x)

∫Ωa

Ua(t, x , y , z) dydz ,

M = ρ/ρ0A, D = Mv rescaled air mass and air discharge.

c2a =

∂p

∂ρ= kγ

(ρ0M

A

)γ−1

, the air sound speed.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 11 / 31

Page 21: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air layer model: mean value on Ωa

A(t, x) =

∫Ωa

dydz : the pseudo wetted area,

v the mean value of the speed

v(t, x) =1

A(t, x)

∫Ωa

Ua(t, x , y , z) dydz ,

M = ρ/ρ0A, D = Mv rescaled air mass and air discharge.

c2a =

∂p

∂ρ= kγ

(ρ0M

A

)γ−1

, the air sound speed.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 11 / 31

Page 22: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air layer model: mean value on Ωa

A(t, x) =

∫Ωa

dydz : the pseudo wetted area,

v the mean value of the speed

v(t, x) =1

A(t, x)

∫Ωa

Ua(t, x , y , z) dydz ,

M = ρ/ρ0A, D = Mv rescaled air mass and air discharge.

c2a =

∂p

∂ρ= kγ

(ρ0M

A

)γ−1

, the air sound speed.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 11 / 31

Page 23: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air layer model: mean value on Ωa

A(t, x) =

∫Ωa

dydz : the pseudo wetted area,

v the mean value of the speed

v(t, x) =1

A(t, x)

∫Ωa

Ua(t, x , y , z) dydz ,

M = ρ/ρ0A, D = Mv rescaled air mass and air discharge.

c2a =

∂p

∂ρ= kγ

(ρ0M

A

)γ−1

, the air sound speed.

1 Averaged values in the Euler’s Equations

2 Equality of the pressure of air and water at the free surface Pa = Pw

on fs

3 No slip condition on the bottom

4 Averaged nonlinearity ' Nonlinearity of the averaged

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 11 / 31

Page 24: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Air layer model: mean value on Ωa

A(t, x) =

∫Ωa

dydz : the pseudo wetted area,

v the mean value of the speed

v(t, x) =1

A(t, x)

∫Ωa

Ua(t, x , y , z) dydz ,

M = ρ/ρ0A, D = Mv rescaled air mass and air discharge.

c2a =

∂p

∂ρ= kγ

(ρ0M

A

)γ−1

, the air sound speed.

Air layer model∂tM + ∂xD = 0

∂tD + ∂x

(D2

M+

M

γc2a

)=

M

γc2a ∂x(A)

.

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 11 / 31

Page 25: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The two-layer model

A+ A = S where S = S(x) denotes the pipe section

Two-layer model

∂tM + ∂xD = 0

∂tD + ∂x

(D2

M+

M

γc2a

)=

M

γc2a ∂x(S − A)

∂tA + ∂xQ = 0

∂tQ + ∂x

(Q2

A+ gI1(x ,A) cos θ + A

c2a M

γ (S − A)

)= −gA∂xZ

+gI2(x ,A) cos θ

+c2a M

γ (S − A)∂xA

.

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 12 / 31

Page 26: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Table of contents

1 Physical motivations and the mathematical modelisationPrevious worksThe modelisation

Fluid Layer : incompressible Euler’s EquationsAir Layer : compressible Euler’s EquationsThe two-layer model

2 The kinetic formulation and the kinetic schemeThe kinetic formulationThe kinetic scheme and numerical experimentsNumerical experiment

3 Done and to do

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 13 / 31

Page 27: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The kinetic setting

χ(ω) = χ(−ω) ≥ 0 ,

∫Rχ(ω)dω = 1,

∫Rω2χ(ω)dω = 1 .

The Gibbs equilibrium is defined by:

Mα(t, x , ξ) =Aαbαχ

(ξ − uα

)

b2α =

c2a

Mif α = a

gI1(x ,A)

Acos θ +

c2a M

γ (S − A)if α = w

.

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 14 / 31

Page 28: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The macroscopic variables

Macroscopic unknowns:

(Aα,Qα, uα) =

(A,Q, u) if α = w(M,D, v) if α = a

Aα =

∫RMα(t, x , ξ) dξ

Qα =

∫RξMα(t, x , ξ) dξ

Q2α

Aα+ b2

αAα =

∫Rξ2Mα(t, x , ξ) dξ

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 15 / 31

Page 29: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The kinetic formulation

The kinetic formulation

The couple of functions (Aα,Qα )is a strong solution of the two-layersystem if and only if Mα satisfies the kinetic transport equations:

∂tMα + ξ∂XMα + φα∂ξMα = Kα(t, x , ξ) for α = a and α = w

for some collision term Kα(t, x , ξ) which satisfies for a.e. (t, x)∫R

Kα dξ = 0 ,

∫Rξ Kαd ξ = 0 .

The function φα is defined by:

φα =

− c2

a

S − A∂x(S − A) if α = A

g∂xZ − gI2(x ,A)

Acos θ − M

S − Ac2a ∂x ln(A) if α = W

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 16 / 31

Page 30: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The mesh and discrete unknowns

The mesh

W nα,i = (An

α,i ,Qnα,i ), un

α,i =Qnα,i

Anα,i

: approximation of the mean value of

(Aα,Qα) and the velocity uα on mi at time tn.

φnα,i1mi (X ) approximation of φα on mi at time tn

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 17 / 31

Page 31: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Kinetic level

On [tn, tn+1[ the transport equation becomes:

∂tf (t, x , ξ) + ξ · ∂

∂xf (t, x , ξ) = 0

with f (tn, x , ξ) =Mni (ξ) =M(An

i ,Qni , ξ)for x ∈ mi

Finite Volume Scheme

f n+1i (ξ) =Mn

i (ξ) +∆t

∆xξ (M−

i+ 12

(ξ)−M+i− 1

2

(ξ))

Discontinuity of the flux at xi+1/2 due to the jump of φα

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 18 / 31

Page 32: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Macroscopic level: integrate on ξ

∫R

(1ξ

) [f n+1i (ξ) =Mn

i (ξ) +∆t

∆xξ (M−

i+ 12

(ξ)−M+i− 1

2

(ξ))

]dξ

f n+1i (ξ) is not a Gibbs Equilibrium

Un+1i =

(An+1

i

Qn+1i

)def=

∫R

(1ξ

)f n+1i (ξ) dξ

−→ Mn+1i defined without using the collision kernel

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 19 / 31

Page 33: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The kinetic scheme

Un+1i = Un

i +∆t

∆x(F−

i+ 12

− F +i− 1

2

)

with:

F±i+ 1

2

=

∫Rξ

(1ξ

)M±

i+ 12

(ξ) dξ

What about the kinetic fluxes M±i+ 1

2

(ξ) ?

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 20 / 31

Page 34: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The kinetic scheme

Un+1i = Un

i +∆t

∆x(F−

i+ 12

− F +i− 1

2

)

with:

F±i+ 1

2

=

∫Rξ

(1ξ

)M±

i+ 12

(ξ) dξ

What about the kinetic fluxes M±i+ 1

2

(ξ) ?

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 20 / 31

Page 35: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The generalised characteristics

Generalised characteristics method in the plane (x , ξ) on the equation:

∂tMα + ξ∂XMα + φα∂ξMα = Kα(t, x , ξ) for α = a and α = w

At the interface xi+1/2.

∆φα,i+1/2 =

−(c2

a ) ln

((S − Ai+1)

(S − Ai )

)if α = a

g (Zi+1 − Zi )−˜( c2

aM

S − A

)1

γln(Ai+1/Ai ) if α = w

.

Nonconservative product at the interface : f (x ,W )∂xW ' f (Wi+1 −Wi )

f =

∫ 1

0f (xi+1/2,Φ(s,Wi ,Wi+1)) ds Φ the characteristics line

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 21 / 31

Page 36: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

∆φα,i±1/2: jump condition for a particle with the kinetic speed ξ which isnecessary to:

be reflected: the particle has not enough kinetic energy ξ2/2 tooverpass the potential barrer with potential energy ∆φα,overpass the potential barer with a positive speed,overpass the potential barer with a negative speed,

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 22 / 31

Page 37: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The kinetic fluxes

Expression of M−i+ 1

2

M−α,i+1/2(ξ) =

positive transmission︷ ︸︸ ︷1ξ>0Mn

α,i (ξ) +

reflection︷ ︸︸ ︷1ξ<0,ξ2−2g∆φα,i+1/2<0M

nα,i (−ξ)

+ 1ξ<0,ξ2−2g∆φα,i+1/2>0Mnα,i+1

(−√ξ2 − 2g∆φα,i+1/2

)︸ ︷︷ ︸

negative transmission

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 23 / 31

Page 38: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

The kinetic fluxes

Expression of M+i+ 1

2

M+α,i+1/2(ξ) =

negative transmission︷ ︸︸ ︷1ξ<0Mn

α,i+1(ξ) +

reflection︷ ︸︸ ︷1ξ>0,ξ2+2g∆φα,i+1/2<0M

nα,i+1(−ξ)

+ 1ξ>0,ξ2+2g∆φα,i+1/2>0Mnα,i

(√ξ2 + 2g∆φα,i+1/2

)︸ ︷︷ ︸

positive transmission

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 23 / 31

Page 39: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Properties

We choose:

χ(ω) =1

2√

31[−√

3,√

3](ω)

Properties of the kinetic scheme

We assume a CFL condition. Then

the kinetic scheme keeps the wetted area Anα,i positive,

the kinetic scheme preserves the still water/air steady state,

Drying and flooding are treated.

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 24 / 31

Page 40: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Upstream and Downstream

Horizontal circular pipe : L = 100 m D = 2 m.Inital steady state: Qw = 0 m3/s and yw = 0.2 m.Upstream water height is increasing in 25 s at yw = 0.4 mAt downstream and upstream :ρa = 1.29349 kg/m3 or 1.29349 10−2 kg/m3 and Qa = 0 m3/s

(a) Downstream Air and Water discharge (b) Upstream Water piezomeric head

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 25 / 31

Page 41: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Piezomeric head for ρa = 1.29349 10−2 kg/m3 at the middle of the pipe

(c) Single fluid (d) Piezometric head of water

(e) Air pressure

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 26 / 31

Page 42: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Piezomeric head for ρa = 1.29349 kg/m3 at the middle of the pipe

(f) Single fluid (g) Piezometric head of water

(h) Air pressure

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 27 / 31

Page 43: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

All in 1

Single fluid

ρa = 1.29349 10−2 kg/m3

ρa = 1.29349 kg/m3

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 28 / 31

Page 44: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Table of contents

1 Physical motivations and the mathematical modelisationPrevious worksThe modelisation

Fluid Layer : incompressible Euler’s EquationsAir Layer : compressible Euler’s EquationsThe two-layer model

2 The kinetic formulation and the kinetic schemeThe kinetic formulationThe kinetic scheme and numerical experimentsNumerical experiment

3 Done and to do

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 29 / 31

Page 45: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Conclusion

Easy scheme even if the two-layer system is not hyperbolic

Good properties : total entropy, well-balanced.

To do

Air entrapment and mixed flows

Condensation/Evaporation

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 30 / 31

Page 46: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Conclusion

Easy scheme even if the two-layer system is not hyperbolic

Good properties : total entropy, well-balanced.

To do

Air entrapment and mixed flows

Condensation/Evaporation

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 30 / 31

Page 47: A two-layer approach. Christian Bourdarias, Mehmet Ersoy ...ersoy.univ-tln.fr/documents/slides/Modelling2009.pdf · ows in closed water pipes A two-layer approach. Christian Bourdarias,

Thank you for your attention

S. Gerbi (LAMA, UdS, Chambery) Air entrainment in transient flows Modelling 2009 31 / 31