a. tsirigotis hellenic open university

29
A. Tsirigotis A. Tsirigotis Hellenic Open Hellenic Open University University N N eutrino eutrino E E xtended xtended S S ubmarine ubmarine T T elescope with elescope with O O ceanographic ceanographic R R esearch esearch Reconstruction, Background Reconstruction, Background Rejection Tools and Methods Rejection Tools and Methods

Upload: dorcas

Post on 22-Jan-2016

50 views

Category:

Documents


0 download

DESCRIPTION

A. Tsirigotis Hellenic Open University. N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools and Methods. Background Sources. Bioluminescence Activity. PMT Rates vs Time : Up-Looking PMTs. Background Sources. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A. Tsirigotis Hellenic Open University

A. TsirigotisA. TsirigotisHellenic Open Hellenic Open

UniversityUniversity

NNeutrino eutrino EExtended xtended SSubmarine ubmarine TTelescope with elescope with

OOceanographic ceanographic RResearchesearch

Reconstruction, Background Reconstruction, Background Rejection Tools and MethodsRejection Tools and Methods

Page 2: A. Tsirigotis Hellenic Open University

PMT Rates vs Time : Up-Looking PMTs

Bioluminescence Activity

Background Sources

Page 3: A. Tsirigotis Hellenic Open University

PMT Rates vs Time : Down-Looking PMTs

Bioluminescence Activity

Background Sources

Page 4: A. Tsirigotis Hellenic Open University

Bioluminescence Activity

Background Sources

•Light Bursts with duration 1-10sec

•Site depended

•Decreases exponentially with depth

•Seasonal variations

•Correlated with water currents

•Contributes to detector dead time

Page 5: A. Tsirigotis Hellenic Open University

Number of Collected P.E.s During Bioluminescence Activity

Bioluminescence Activity ExcludedTrigger: ≥ 4fold Coincidence

Bioluminescence Activity

Background Sources

Emitted light at the single photoelectron level

Page 6: A. Tsirigotis Hellenic Open University

Bioluminescence Contribution to the Total Trigger Rates

Total Trigger Rates

Bioluminescence Contribution to the Total Trigger Rates

Experimental Trigger Rates from Periods Without Bioluminescence

Bioluminescence Occurs for the 1.1% ± 0.1% of the Active Experimental Time

Bioluminescence Activity

Background Sources

Page 7: A. Tsirigotis Hellenic Open University

Data Collected with

4fold Majority Coincidence Trigger

Thresholds at 30 mV

Thresholds at 120 mV

Measured Total Trigger

Rates

(greater or equal to 4fold)

2.61 ± 0.02 Hz 0.12 ± 0.01 Hz

M.C. Prediction

(atmospheric muons only)

0.141 ± 0.005 Hz 0.12 ± 0.01 Hz

Background SourcesK40 beta decay

Increasing Thresholds does not affect seriously the detection efficiency

Page 8: A. Tsirigotis Hellenic Open University

single p.e.

LED Run

single p.e. pulse height distribution

two p.e.s pulse height distribution

dark current pulse height distribution

sum of the above

Data from a depth of 4000 m: PMT Pulse Height DistributionCalibration

Background SourcesK40

K40 radioactivity can be used for calibration purposes in deep sea

Page 9: A. Tsirigotis Hellenic Open University

Depth intensity curve

Background SourcesCosmic ray muon background Atmospheric muon angular distribution

Okada parameterization

Page 10: A. Tsirigotis Hellenic Open University

Background SourcesCosmic ray muon background

Down coming atmospheric muons can be misreconstructed as upcoming neutrino induced muons (mirror tracks)

By using the accumulated charge on each PMT we can reduce the mirror track background

(the reduction depends on the available degrees of freedom)

Page 11: A. Tsirigotis Hellenic Open University

Detector Preparation

Attenuation Correction

                             

                     

Reference waveform

Coaxial cable

Electronic delay lines and amplifier

Fourier Transform-Comparison

Frequency (MHz)

Frequency (MHz)

Ph

ase

(rad

)A

mp

litu

de

Signal processing

Page 12: A. Tsirigotis Hellenic Open University

Sample

AD

C C

oun

ts

40 MHz Clock Waveform Capture

Event by Event Sampling Interval Variation (Constant Temperature)

RMS=0.006 ns

Time (ns)

Software to Hardware Trigger Time Difference (arbitrary time offset)

σ=0.7ns

Signal processing

Page 13: A. Tsirigotis Hellenic Open University

Signal processing

Frequency (MHz)

Frequency (MHz)

Ph

ase

(rad

)A

mp

litu

de

raw data

baseline subtraction

attenuation correction

Off

s et

(AD

C c

oun

ts)

Sample

AT

WD

co

un

ts

ATWD sample number

Vo

ltag

e (

mV

)

Time (ns)

Vo

ltag

e (

mV

)

Time (ns)

Page 14: A. Tsirigotis Hellenic Open University

Signal processing V

olta

ge

(m

V)

Time (ns)

Vo

ltag

e (

mV

)

Time (ns)

Before the F.F.T and the attenuation corrections

After the F.F.T and the attenuation corrections

Time (ns)

Vol

tage

(m

V)

Rise Time

16 ns

9 ns

Double pulse disentangling Correction for overflow

Page 15: A. Tsirigotis Hellenic Open University

Signal processing

Arrival time definition…

Arrival time

Vo

ltag

e (

mV

)

Time (ns)

Page 16: A. Tsirigotis Hellenic Open University

LED Calibration Data

Gain Monitors

Data from a depth of 4000 mCalibration Run

Time Difference (ns)

Nu

mb

er o

f E

ven

tsN

um

ber

of

Eve

nts

Time Difference (ns)

<Δt>: 0.6 ± 0.1 ns

σ : 3.3 ± 0.1 ns

<Δt>: 0.2 ± 0.1 ns

σ : 3.3 ± 0.1 ns

Page 17: A. Tsirigotis Hellenic Open University

Data from a depth of 4000 m: Calibration Run

Page 18: A. Tsirigotis Hellenic Open University

Reconstructed Waveforms

Input to the Fitter

Page 19: A. Tsirigotis Hellenic Open University

Track Reconstruction. . .

Page 20: A. Tsirigotis Hellenic Open University

Run: 81_127 Event: 1789

Input to the Fitter

Page 21: A. Tsirigotis Hellenic Open University

Run: 81_127 Event: 1789

Fit ResultsBest fit

Page 22: A. Tsirigotis Hellenic Open University

Run: 81_127 Event: 1789

Pictorial Representation

Page 23: A. Tsirigotis Hellenic Open University

PreliminaryPreliminaryPreliminaryPreliminary

Data

σ=0.94±0.2

M.C. Prediction (atmospheric muons)

Data Points

Page 24: A. Tsirigotis Hellenic Open University

PreliminaryPreliminaryTotal number of p.e.s per TrackTotal number of p.e.s per Track

M.C. Prediction (atmospheric muons)

Data Points

Page 25: A. Tsirigotis Hellenic Open University

PreliminaryPreliminary

Zenith Angular DistributionZenith Angular Distribution

• χ2 probability > 0.1

• track selection according to the charge-likelihood

• more than 4.5 p.e.s per hit per track

M.C. Prediction (atmospheric muons)

Data Points

Page 26: A. Tsirigotis Hellenic Open University

Extension to many floors

•Each floor runs independently (floor sub-event)

•An event is a collection of several floor sub-events when certain

requirements (e.g. timing) are fullfilled

• Online event-building

•Offline track reconstruction

Many Towers

• Track segment fit: using the PMT’s of each Tower

• Global fit: using matched track segments.

•Second iteration to collect more points

One Tower

Trivially the best strategy is to use all the PMT’s independent of tower

This is depended on the trigger, data transmission (e.g. optoelectronics)

and DAQ architecture

Page 27: A. Tsirigotis Hellenic Open University

Event 2213 – Run 78 – BFile 70

Page 28: A. Tsirigotis Hellenic Open University

Event 2213 – Run 78 – BFile 70

Best Fit

Page 29: A. Tsirigotis Hellenic Open University

Event 2213 – Run 78 – BFile 70