a. takahashi, h. miyamaru, k. ochiai, t. hayashi, t ... · slide 3 aim: to seek 3d fusion in solid...

21
Takahashi, A. Studies on 3D Fusion Reactions in TiDx under Ion Beam Implantation, PowerPoint slides. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR-CANR.org. Slide 1 Studies on 3D Fusion Reactions in Titanium Deuteride under Ion Beam Implantation A. Takahashi, H. Miyamaru, K. Ochiai, T. Hayashi, T. Dairaku Osaka University 2003

Upload: duongthuy

Post on 15-Dec-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Takahashi, A. Studies on 3D Fusion Reactions in TiDx under Ion Beam Implantation, PowerPoint slides. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR-CANR.org.

Slide 1

Studies on 3D Fusion Reactions in Titanium Deuterideunder Ion Beam Implantation

A. Takahashi, H. Miyamaru, K. Ochiai,T. Hayashi, T. Dairaku

Osaka University

2003

Slide 2

D-Beam Enhances 3D-Fusionif CF DD Fusion is Stimulated

• Without Stimulationresults in 2D fusion

With Stimulation enhances 3D Fusion Rate

Lattice Trapping Potential

Slide 3

Aim: To Seek 3D Fusion in Solid

Titanium

Octahedral Site

Deuteron at Tetrahedral Site

Tita

nium

deu

terid

e

Ion Beam

Active zone

Using low energy ion beams, products of 3D fusion are detected.

Beam range

Beyond the range of incident beam, active zone will be formed by

Electron phonon interaction in metal-deuteride.

In Active zone, transient D-cluster with electron quasi-particles will induce very enhanced3D and 4D multi-body fusion reactions.

Slide 4

D+D+D 6Li* t(4.75MeV)+3He(4.75MeV) …(a)

d(15.9MeV)+4He(7.93MeV) …(b)

n+p+4He+20.1MeV

・High D-absorption (TiDx x ~ 1.8)

・Regular lattice structure (out of beam stopping range)

・Screening effect by presumed electronic quasi-particle

~Multibody Fusion in Condensed Matter~

Key Point

Possible Branches

Slide 5

Experimental Chamber and Measuring System

• TiDx (x>1.7) was cooled with Peltier device.

• E & delta-E counter telescope type charged particle detector was used for Particle Identification.

• Ek detector was used for measuring total kinetic energy of particles.

One dimensional MCA for Ek-detector

One dimensional MCA for E-detector

One dimensional MCA for ∆E-detector

MCS

L.Amp.

L.Amp.

L.Amp. A

SCA

Two-dimensional MCA for ∆E&E detectorwith coincidence unit

Aperture φ7mm

Sample:TiDx(x=1.4)on the Peltier device

Pre-Amp.

∆E-E counter telescopeat 90deg

∆E:Si 26µmE: Si 150µm

Chiller pump

Thermocouplemeter

Ek-detector at 120degSi 200µm

Deuteron beam50-300keV, 10-100µA on the

target

図5.6 固体内核反応重陽子ビーム注入実験体系図

Slide 6

Estimation of Particle-Energy-Losses by TRIM Code

• D + D p + t + 4.02 MeV• 3He + n + 3.25MeV• 3D t + 3He + 9.5 MeV

TiDx sam ple

D-Beam

Al screen foil 3µm

Range (About 1.5µm)of the im planted deuteron-beam

∆E-d etector S i 26µm

E -detecto r Si 1 50µm 2.4

M eV

0.5 6M eV

2.9 ~ 3M eVProto n

Active zone

3 .4 ~4 .4

M e V

3 .6 ~4.6M eV

H elium -34 .8 M eV

0 .2 M eV

3.5 ~3.8

M eV

4.4 ~4.7M eV

Trito n4 .8 M eV

0.9M eV

0.05 M eV

図5.16 固体内コヒーレント3体重水素核反応によるトリトン(4.75

MeV)及びヘリウム-3(4.75 MeV)の発生プロセスの概念図(ビー

ム飛程より深い領域(アクティブ・ゾーン)で発生すると推測)

Slide 7

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6 7 8 9C

ount

s/ch

anne

lEnergy(MeV)

D-D protondouble pile up

12C(d,p)13C

Spectrum A

Spectrum B

14N(d,α1)12C

D-Dproton

D-Dtriton

L.Amp. M.C.A

ApertureΦ7mm

Absorbing foilAl 3µm

SSBD

300keV deuteron beam

Pre-Amp.

TiDx

CurrentIntegrator

A

Branch (a) D+D+D t(4.75MeV)+3He(4.75MeV)

Spectrum B t(4.75MeV)?

E-∆E Counter Telescope Pile-up reduction technique

Spectrum A 3He(4.75MeV)?

Slide 8

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6 7 8

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6 7 8Energy( MeV )

Coun

ts/ch

anne

l

E-detector

∆E-detectorEnergy( MeV )

Coun

ts/ch

anne

l

D-D proton(∆p=0.55MeV)D-D triton( ∆t=0.7MeV)

3D Helium -3

pileup

D-D proton(2.4MeV)

D-D proton pileup

3D triton?

No “sholder ”

Branch (a) D+D+D t(4.75MeV)+3He(4.75MeV)

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6 7 8 9 10Energy(MeV)

Cou

nts/

chan

nel

without pilup reductionwith pileup reduction

3D triton

D-D proton

D-D triton

14N(d,α1)12C

[3He by 3D]/[p by 2D] = 1.1E-4

[t by 3D]/[p by 2D] = 1.2E-4

[3D]/[2D] = 1.15E-4

Slide 9

Spectra by delta-E Detector; TiDx Sample

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

0 1 2 3 4 5 6

Energy MeV

Cou

nts/

ch h3-dash

∆E-spectrum (x104) at 100 keV

∆E-spectrum (x102) at 200 keV

∆E-spectrum (x1) at 300 keV

∆E-spectrum (x106) at 70 keV

∆E-spectrum (x108) at 100 keVt2

730 keV • Data are taken for 50, 70, 100, 150, 200 and 300 keV of D-beam energy

• Peak around 3.5 MeV may correspond to 3He by 3D fusion

• To this evaluation, integral counts in h3-dash window were used

50keV

Slide 10

Yields by h3-dash ([3D]) vs. 2D Yields and Impurity Reaction

• Energy Dependence of h3-dash yields show much slower decrease than that of possible impurity reactions.

• Data for h3-dash were reproduced for 4 times.

1.0 E -2 0

1.0 E -1 9

1.0 E -1 8

1.0 E -1 7

1.0 E -1 6

1.0 E -1 5

1.0 E -1 4

1.0 E -1 3

1.0 E -1 2

1.0 E -1 1

1.0 E -1 0

0 50 1 00 1 50 20 0 25 0 30 0 35 0

In c id en t ene rgy k e V

* *1 3C (d ,α )

*9Be(d ,α )

9B e(d ,p)*O ur exp erim ent**Reference d ata

(D .M axs on NIM ,1993)

D D p ro to n

h-dash3rd e x perim en t

h -d ash4 th e xp e rim e nt

Rea

ctio

n ra

te o

f D

-D a

nd h

-d

図5.12 重水素ビームの入射クーロン数で規格化したh3-dash収量比

の入射エネルギー依存性

Slide 11

D-Beam Energy Dependence of [3D]/[2D] Ratios

• [3D]/[2D] Yield Ratios by Experiment are in the order of 1E-4 to 1E-3.

• Increasing trend in lower energy region than 100 keVmay result in indirect 3D reactions.

• Theoretical values by the conventional Random Nuclear Reaction Theory has given [3D]/[2D] ratio to be in the order of 1E-30

• Experiment shows 1E+26 anomalous enhancement.

1.E- 07

1 .E- 06

1 .E- 05

1 .E- 04

1 .E- 03

1 .E- 02

1 .E- 01

0 50 100 150 200 250 300 350

D+ beam energy keV

h-da

sh y

ield

/[D

-D

Indirect effect?E nhancement

Direc t e ffect?

図5.14 D-Dプロトン収量比で規格化したh-dash収量比のエネルギー依存性

Slide 12

Branch (b) D+D+D d(15.9MeV)+4He(7.93MeV)

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6 7Energy(MeV)

Cou

nts/

Ch.

500µm did not stop unknown signals which should have high energy

3D Fusion emits 15.9 deuterons.

Particle identification by E-∆E Counter Telescope

Unknown signals

Slide 13

Absorbing foilTi : 500µmTitanium deuteride

(TiD)

Deuteron15.9MeV 4.9MeV

∆E=1.5MeV

3.2MeV

∆E-detectorSi-66.5µm

E-detectorSi-200µm

E=3.2MeV10.9MeVEnergy loss

L.Amp.

Absorbing foil

Pre-Amp.

TiDx

Pre-Amp.

L.Amp.

M.C.A

M.M.C.A

M.C.A

SSBD200µm

∆E Si-66.5µm

Branch (b) D+D+D d(15.9MeV)+4He(7.93MeV)

Home-made∆E -E Was mounted

To make counter telescope

With 15.9 MeVdeuteron emission,

∆E detector takes 1.5 MeV and E-det 3.2 MeV

300keV deuteron beam

Slide 14

ブランチ(b) D+D+D d(15.9MeV)+4He(7.93MeV)

1

13

25

37

49

61

73

85 97

109

121

133

145

157

169

181

193

205

217

229

241

253 S 1

S 1 2

S 2 3

S 3 4

S 4 5

S 5 6

S 6 7

S 7 8

S 8 9

S 1 00

S 1 11

S 1 22

S 1 33

S 1 44

S 1 55

S 1 66

S 1 77

S 1 88

S 1 99

S 2 10

S 2 21

S 2 32

S 2 43

S 2 54

4 - 5

3 - 4

2 - 3

1 - 2

0 - 1

Energy of E detector(Channel)

Ener

gy o

f ∆E

dete

ctor

(Cha

nnel

)Two dimensional charged particle spectrum

measured by E-∆E counter telescope

Branch

Slide 15

Branch (b) D+D+D d(15.9MeV)+4He(7.93MeV)

Measured energies are considerably scattered.

Ti500µm filter makes considerable energy struggling.

0

20

40

60

80

100

120

0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 6.00E+06 7.00E+06

TRIM calculation gave simulation

Energy struggling from 4.5 to 6 MeV wasEstimated by TRIM

Measured particles can be 15.9 MeVDeuterons from 3D fusion reaction

Energy(keV)

Cou

nts/

Ch.

Slide 16

[Random 3D Fusion Yield]~7.8×10-30

[D-D fusion Yield]

Branch (b) D+D+D d(15.9MeV)+4He(7.93MeV)

* 3D→ d(15.9MeV)+4He(7.93MeV) yield was 1025 times enhanced.

[3D deuteron yield]~4.4×10-4

[D-Dproton yield]

[3D→ d(15.9MeV)+4He(7.93MeV)]~2.2×10-4

[D-D fusion Yield]

D+D→p+t+4.0MeV (50%)

* 3D-multibody fusion has roughly 1:1 branching ratio for

branch (a) 3He(4.75MeV)+t(4.75MeV)

branch (b) d(15.9MeV)+4He(7.93MeV)

Slide 17

Experiment with Si beam

Merits

* Si beam can be used only for excitation.

We can discuss about whether multi-body fusion reaction contains only direct

Beam effect or with indirect 3D fusion reactions which is true CF phenomenon.

* No impurity reactions → easy to detect aimed signals

L.Amp. M.C.A

ApertureΦ0.5mm

Absorbing foilAl 3µmSSBD

at 150 degree

2MeV silicon beam

Pre-Amp.

TiDx

2D fusion reactions by knocked-on cascade

Will be detected and what ?

Slide 18

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8

Energy (MeV)

Cou

nts/C

h.

Si beam Irradiation Experiment

In 3 MeV~4MeV region, we detected some signals

Which suggests unusual reactions.

3D → 3He(4.75MeV)+t(4.75MeV) ??

Slide 19

Prediction for Si beam Experiment

3D → 3He(4.75MeV)+t(4.75MeV) makes What energy deposits?

Tita

nium

deu

terid

eSilicone Beam

Active zone

SSBDat 150 degree

Detected unusual signals may be these triton and He-3 by 3D fusion.

However, due to poor statistics, we need further study to conclude.

3.93He

4.5t

Estimated

Energy (MeV)Charged particle

Beam range ~ 1.7µm Active Zone is assumed as1.7 µm

Slide 20

2.2×10-43HeE-∆E counter telescope

p

d

3D ?

t

Result

2.0×10-4Pile-up Reduction

Deuteron

With variousAbsorption foils

ProtonHDDP(19.1MeV)+4He(4.75MeV)

4.4×10-4E-∆E counter telescopeDeuteron(b) 3DD(15.9MeV)+4He(7.9MeV)

SSBDSilicon

(a) 3D3He(4.75MeV)+t(4.75MeV)

Ratio to D-DMethodBeamReaction Branch

Conclusions

* E-∆E measurements gave detection of t, 3He and high energy d.

3D fusion branching (a) and (b) → 1:1

Slide 21

Conclusions-2

• Experimental [3D]/[2D] yield ratios were in the order of 1E-3 to 1E-4, compared with 1E-30 by random nuclear reaction theory.

• Anomalous enhancement ratio of 1E26 suggests that electron screening effect on d-d Coulomb repulsion in TiDx lattice dynamics is far greater than that of Thomas-Fermi gas model.

• EQPET (Transient Electronic Quasi-Particle Expansion Theory) model can basically explain the unusual enhancement of screening effect.