a stochastic approach to optimize eucalypt stand...

62
Introduction Model Conclusions and Further work A Stochastic Approach to Optimize Eucalypt Stand Management Scheduling, Under Fire Risk Liliana Ferreira ESTG*, Instituto Polit´ ecnico de Leiria Joint work with: M. Constantino CIO-DEIO, Faculdade de Ciˆ encias da Universidade de Lisboa J.G. Borges; J.Garcia-Gonzalez Centro de Estudos Florestais, Instituto Superior de Agronomia ALIOS-INFORMS Buenos Aires, Argentina 6-9 June *ESTG - Escola Superior de Tecnologia e Gest˜ ao Liliana Ferreira IPL - ESTG Eucalyptus Globulus

Upload: others

Post on 07-Jun-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

A Stochastic Approach to Optimize EucalyptStand Management Scheduling, Under Fire Risk

Liliana FerreiraESTG*, Instituto Politecnico de Leiria

Joint work with:

M. ConstantinoCIO-DEIO, Faculdade de Ciencias da Universidade de Lisboa

J.G. Borges; J.Garcia-GonzalezCentro de Estudos Florestais, Instituto Superior de Agronomia

ALIOS-INFORMS Buenos Aires, Argentina 6-9 June*ESTG - Escola Superior de Tecnologia e Gestao

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 2: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Outline

1 Introduction

2 ModelStochastic Dynamic ProgrammingResultsSensitivity Analysis

3 Conclusions and Further work

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 3: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Outline

1 Introduction

2 ModelStochastic Dynamic ProgrammingResultsSensitivity Analysis

3 Conclusions and Further work

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 4: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Introduction

Forest Management:

Stand level;

Landscape level.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 5: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Introduction

Forest Management:

Stand level;

Landscape level.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 6: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Introduction

Forest Management:

Stand level;

Landscape level.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 7: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Concepts

Rotation length:

period of time since the stand is planted until it is clearcut;

Coppice cycle:

period of time since the stand regenerates until it is harvested;

Soil expectation value:

financial criterion used to make even-aged timbermanagement decisions;

present value of a perpetual series of even-aged rotations.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 8: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Concepts

Rotation length:

period of time since the stand is planted until it is clearcut;

Coppice cycle:

period of time since the stand regenerates until it is harvested;

Soil expectation value:

financial criterion used to make even-aged timbermanagement decisions;

present value of a perpetual series of even-aged rotations.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 9: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Concepts

Rotation length:

period of time since the stand is planted until it is clearcut;

Coppice cycle:

period of time since the stand regenerates until it is harvested;

Soil expectation value:

financial criterion used to make even-aged timbermanagement decisions;

present value of a perpetual series of even-aged rotations.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 10: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Research Aim

Development of an optimization forest management scheduling model:

at stand level;

with a stochastic element - wildfire risk;

Eucalyptus globulus Labill stand (even aged stand);

for short rotation coppice systems;

maximizes the soil expectation value;

finds the optimal harvest age in each cycle;

determines the optimal number of coppice cycles within a fullrotation.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 11: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Research Aim

Development of an optimization forest management scheduling model:

at stand level;

with a stochastic element - wildfire risk;

Eucalyptus globulus Labill stand (even aged stand);

for short rotation coppice systems;

maximizes the soil expectation value;

finds the optimal harvest age in each cycle;

determines the optimal number of coppice cycles within a fullrotation.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 12: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Research Aim

Development of an optimization forest management scheduling model:

at stand level;

with a stochastic element - wildfire risk;

Eucalyptus globulus Labill stand (even aged stand);

for short rotation coppice systems;

maximizes the soil expectation value;

finds the optimal harvest age in each cycle;

determines the optimal number of coppice cycles within a fullrotation.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 13: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Research Aim

Development of an optimization forest management scheduling model:

at stand level;

with a stochastic element - wildfire risk;

Eucalyptus globulus Labill stand (even aged stand);

for short rotation coppice systems;

maximizes the soil expectation value;

finds the optimal harvest age in each cycle;

determines the optimal number of coppice cycles within a fullrotation.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 14: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Research Aim

Development of an optimization forest management scheduling model:

at stand level;

with a stochastic element - wildfire risk;

Eucalyptus globulus Labill stand (even aged stand);

for short rotation coppice systems;

maximizes the soil expectation value;

finds the optimal harvest age in each cycle;

determines the optimal number of coppice cycles within a fullrotation.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 15: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Research Aim

Development of an optimization forest management scheduling model:

at stand level;

with a stochastic element - wildfire risk;

Eucalyptus globulus Labill stand (even aged stand);

for short rotation coppice systems;

maximizes the soil expectation value;

finds the optimal harvest age in each cycle;

determines the optimal number of coppice cycles within a fullrotation.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 16: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Research Aim

Development of an optimization forest management scheduling model:

at stand level;

with a stochastic element - wildfire risk;

Eucalyptus globulus Labill stand (even aged stand);

for short rotation coppice systems;

maximizes the soil expectation value;

finds the optimal harvest age in each cycle;

determines the optimal number of coppice cycles within a fullrotation.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 17: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Outline

1 Introduction

2 ModelStochastic Dynamic ProgrammingResultsSensitivity Analysis

3 Conclusions and Further work

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 18: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Dynamic Programming

Resolution of de subproblems, through a network, ina recursive form!

Subproblem 1

…Subproblem 2 Subproblem N‐1

Subproblem N

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 19: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Stochastic dynamic programming

Stages

States

Decisions

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 20: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Stochastic dynamic programming

Stages

States

Decisions

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 21: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Stochastic dynamic programming

Stages

States

Decisions

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 22: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Stochastic dynamic programming

Stages

States

Decisions

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 23: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Stage

Stage:

characterized by the cumulative number of harvests during thelifetime of a plantation (n)

0 1 st …

Stage 1 Stage 2 Stage 3

2 nd 3 rd

harvest harvest harvest

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 24: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

State

State:

characterized by the number of years since the stand was planted(Tn) 0 1 st …

Stage 1 Stage 2 Stage 3

2 nd 3 rd

harvest harvest harvest

TTn

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 25: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Decisions

Decisions:

definition of planned duration for coppice cycle (In);

number of selected sprouts by stool (Vn);

number of fuel treatments (Mn).

(Tn)

Início do estágio n

Início do estágio n+1

Crescimento / Incêndio

Estágio n

(Tn+1)

Corte talhadia ou finalLimpezas de mato (Mn)

Selecção de varasVn

3 anos

In

 

(Tn)

Beginningnth stage

Beginning(n+1)th stage

Growth / Fire

nth stage

(Tn+1)

Coppice or clear cutShrub cleaning (Mn)

Sprout selectionVn

3 years

In

 

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 26: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Decisions

Decisions:

definition of planned duration for coppice cycle (In);

number of selected sprouts by stool (Vn);

number of fuel treatments (Mn).

(Tn)

Início do estágio n

Início do estágio n+1

Crescimento / Incêndio

Estágio n

(Tn+1)

Corte talhadia ou finalLimpezas de mato (Mn)

Selecção de varasVn

3 anos

In

 

(Tn)

Beginningnth stage

Beginning(n+1)th stage

Growth / Fire

nth stage

(Tn+1)

Coppice or clear cutShrub cleaning (Mn)

Sprout selectionVn

3 years

In

 

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 27: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Decisions

Decisions:

definition of planned duration for coppice cycle (In);

number of selected sprouts by stool (Vn);

number of fuel treatments (Mn).

(Tn)

Início do estágio n

Início do estágio n+1

Crescimento / Incêndio

Estágio n

(Tn+1)

Corte talhadia ou finalLimpezas de mato (Mn)

Selecção de varasVn

3 anos

In

 

(Tn)

Beginningnth stage

Beginning(n+1)th stage

Growth / Fire

nth stage

(Tn+1)

Coppice or clear cutShrub cleaning (Mn)

Sprout selectionVn

3 years

In

 

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 28: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Dynamic Programming Network

E1 E2 E31st harvest 2nd harvest

Number of harvests

Timen

0

3rd harvest

10

S10

S16

S20

S21

S32 S48

E4 4st harvest

S40

S41

S64

11

S11

.

.

.

.

.

.

.

.

.

.

.

.

12

13

14

15

16

20

21

22

23

24

25

26

27

32

.

.

.

.

S30

S31

30

31

32

33

34

35

36

37

48

.

.

.

.

42

40

41

42

43

44

45

46

47

64

.

.

.

.

58

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 29: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Dynamic Programming Network

DP network nodes translate the possible states for each stage;

DP network arcs take into consideration the range of decisionsthat have to be taken for each state;

Aim: determine the optimal policy - a function that associatesto each state one set of management decisions (e.g. fueltreatment, sprout selection, coppice cycles and rotationlength).

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 30: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Dynamic Programming Network

DP network nodes translate the possible states for each stage;

DP network arcs take into consideration the range of decisionsthat have to be taken for each state;

Aim: determine the optimal policy - a function that associatesto each state one set of management decisions (e.g. fueltreatment, sprout selection, coppice cycles and rotationlength).

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 31: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Dynamic Programming Network

DP network nodes translate the possible states for each stage;

DP network arcs take into consideration the range of decisionsthat have to be taken for each state;

Aim: determine the optimal policy - a function that associatesto each state one set of management decisions (e.g. fueltreatment, sprout selection, coppice cycles and rotationlength).

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 32: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Fire Risk

Fire risk was incorporated through wildfire and damage scenarios

A scenario defines a particular typeof fire, characterized by:

the time of fire occurrence;

its intensity.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 33: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Fire Risk

Fire risk was incorporated through wildfire and damage scenarios

A scenario defines a particular typeof fire, characterized by:

the time of fire occurrence;

its intensity.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 34: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Fire Risk

Set of all possible scenarios J = J1∪ J2

J1 includes:

the scenario where a fire does not occur during a stage;

all the scenarios involving the occurrence of wildfires withoutmortality, that allow the stand’s growth;

J2 includes:

the set of scenarios involving wildfires with death of trees thatforce a clearcut of the stand.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 35: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Fire Risk

Set of all possible scenarios J = J1∪ J2

J1 includes:

the scenario where a fire does not occur during a stage;

all the scenarios involving the occurrence of wildfires withoutmortality, that allow the stand’s growth;

J2 includes:

the set of scenarios involving wildfires with death of trees thatforce a clearcut of the stand.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 36: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Stochastic Dynamic Programming

Fire Risk

Set of all possible scenarios J = J1∪ J2

J1 includes:

the scenario where a fire does not occur during a stage;

all the scenarios involving the occurrence of wildfires withoutmortality, that allow the stand’s growth;

J2 includes:

the set of scenarios involving wildfires with death of trees thatforce a clearcut of the stand.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 37: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Model Building

Model Functions

G FunctionG Function

F FunctionS Function

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 38: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Model Building

Model

The model was defined as follows:

Determine Z = F1(0)− CP (1)

Fn(Tn) = maxIn ∈ ΨnVn ∈ ΘnMn ∈ Πn

{Gn(Tn, In, Vn,Mn), Sn(Tn)} , n = 1, ...,N (2)

FN+1(TN+1) = SN+1(TN+1) (3)

Gn(Tn, In, Vn,Mn) =∑

j∈J1pj (Tn, In, Vn,Mn)

[B jn(Tn, In, Vn)− CV j

n(Tn)− Ljn(Tn, In,Mn) + Fn+1(Tn + In)]

+∑

j∈J2pj (Tn, In, Vn,Mn)

[B jn(Tn, In, Vn)− CV j

n(Tn)− Ljn(Tn,Hj ,Mn) + Sn(Tn + H j )

](4)

Tn+1 = Tn + In, with n = 1, ...,N and T1 = 0 (5)

Sn(Tn) =F1(0)− CR

(1 + i)Tn, with n = 2, ...,N + 1 and S1(T1) = 0 (6)

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 39: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Model Building

Backward Method

Starts at the last stage;

Iterative process:

- to start the process it is necessary to use an estimate for the ”bareland nodes”(value of the rotations to perpetuity);

- Stopping condition: |Estimate value − solution| < small value;

- the convergence of the process can be proved using the fixed pointtheorem;

- the convergence is usually achieved after few iterations.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 40: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Model Building

Return Function

B jn(Tn, In,Vn) = R j

n(Tn, In,Vn) + Sal jn(Tn,Vn) (7)

R jn(Tn, In,Vn) =

P1

(1 + i)Tn+In× Vol(n, In,Vn) , j ∈ J1

P1

(1 + i)Tn+H j×(1− pmj

)× Vol(n,H j ,Vn), j ∈ J2

(8)

Sal jn(Tn,Vn) =

0 , j ∈ J1

P2

(1 + i)Tn+H j× pmj × Vol(n,H j ,Vn), j ∈ J2

(9)

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 41: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Model Building

Costs

Sprout selection cost:

CV jn(Tn) =

CV × NVn

(1 + i)Tn+3, if I jn > 3

0 , otherwise

(10)

CV = cost per sprout of doing sprout selection;

NVn = number of sprouts at nth stage.

Fuel treatment cost:

Ljn(Tn, Ijn,Mn) =

I jn∑l=1

L

(1 + i)Tn+l× PMn(l , I jn,Mn) (11)

PMn(l, I jn,Mn) =

1, if is carried out a fuel treatment, in lth year of jth scenario, with l = 1, ..., I jn

0, otherwise

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 42: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Outline

1 Introduction

2 ModelStochastic Dynamic ProgrammingResultsSensitivity Analysis

3 Conclusions and Further work

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 43: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Economic Parameters

Prices:

Timber stumpage price: 36 e/m3;Salvage price: 27 e/m3;Discount rate: 4%

Operational Costs:

( / )Operation Fixed cost (€/ha) Variable Cost

Shrub removal 167        ‐‐

l b f lPlantation cost 725 0.14€×number of plants

Sprout selection cost ‐‐‐ 0.15€×number of sprouts 

i b f lConversion cost 1204 0.14€×number of plants

Table 1 ‐ Source: CAOF's Database of ANEFA 

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 44: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

States

Decision Possible values

Harvest age Ψn = {10, 11, …, 16}

Sprouts selected Θn = {1; 1.5; 2}

Shrub cleaning Πn = {1, 2, 3}

Table 2 ‐ Possible values for management decisions

Stage States

1 T = {0}

2 T = {1, 2, ..., 16}

3 T = {11, 12, ..., 32}

4 T = {21, 22, ..., 48}

5 T = {31, 32, ..., 64}

Table 3 ‐ Possible states for stochastic model

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 45: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Vegetation growth models

Globulus 3.0 - a growth and production model developed forPortuguese eucalypt stands (Tome et al.,2006);

Understory growth was estimated according to a modeldeveloped by (Botequim et al., 2009):

Biom = 17.745×(

1− exp−(0.085×understory age+0.004∗AB))

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 46: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Vegetation growth models

Globulus 3.0 - a growth and production model developed forPortuguese eucalypt stands (Tome et al.,2006);

Understory growth was estimated according to a modeldeveloped by (Botequim et al., 2009):

Biom = 17.745×(

1− exp−(0.085×understory age+0.004∗AB))

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 47: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Wildfire occurrence and damage models

1 Fire risk model: provides annual wildfire risk probability foreven aged eucalypt stands in Portugal

PfAge =1

1 + e−(−2.4368+0.0815×Biom−0.0671×Age−0.0671×AspSW+0.000613×N+0.0373×Dg)

2 Damage model: gives the proportion of dead trees in thestand, if mortality occurs

pam =1

1 + e−(0.8537+0.00244×Alt+0.0197×Slope−0.0851×AB+0.2246×Sd)

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 48: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Wildfire occurrence and damage models

1 Fire risk model: provides annual wildfire risk probability foreven aged eucalypt stands in Portugal

PfAge =1

1 + e−(−2.4368+0.0815×Biom−0.0671×Age−0.0671×AspSW+0.000613×N+0.0373×Dg)

2 Damage model: gives the proportion of dead trees in thestand, if mortality occurs

pam =1

1 + e−(0.8537+0.00244×Alt+0.0197×Slope−0.0851×AB+0.2246×Sd)

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 49: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Wildfire and damage scenarios probabilities

annual probabilities were assumed to be independent;

scenarios consider the probability of one wildfire occurrenceduring a cycle;

scenarios’ probabilities:

pj = Pij × (1− Pmort) , if j ∈ J1 − {0}pj = Pij × Pmort , if j ∈ J2

pj = 1−∑

j∈J1−{0}∪J2

pj , if j = 0

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 50: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Wildfire and damage scenarios probabilities

annual probabilities were assumed to be independent;

scenarios consider the probability of one wildfire occurrenceduring a cycle;

scenarios’ probabilities:

pj = Pij × (1− Pmort) , if j ∈ J1 − {0}pj = Pij × Pmort , if j ∈ J2

pj = 1−∑

j∈J1−{0}∪J2

pj , if j = 0

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 51: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

SDP model

Wildfire and damage scenarios probabilities

annual probabilities were assumed to be independent;

scenarios consider the probability of one wildfire occurrenceduring a cycle;

scenarios’ probabilities:

pj = Pij × (1− Pmort) , if j ∈ J1 − {0}pj = Pij × Pmort , if j ∈ J2

pj = 1−∑

j∈J1−{0}∪J2

pj , if j = 0

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 52: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Results

Deterministic case

DP algorithm was programmed with C++;

test problem was solved with a desktop computer(CPU Duo P8400 with 3GB of RAM);

Deterministic case

1st cycle 2nd cycle 3rd cycle 4th cycleNPL 

1 cycle 2 cycle 3 cycle 4 cycleSEV (€/ha)In Mn Vn In Mn Vn In Mn Vn In Mn Vn

1111 15 1 ‐ 16 1 2 16 1 2 16 1 2 4390.12

1250 15 1 ‐ 16 1 2 16 1 2 16 1 2 4584.98

1667 14 1 ‐ 14 1 2 16 1 2 14 1 2 5153.99

NPL = Number of planted trees

SEV = Soil expectation value

Table 4 ‐ Results for deterministic case

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 53: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Results

Deterministic case

DP algorithm was programmed with C++;

test problem was solved with a desktop computer(CPU Duo P8400 with 3GB of RAM);

Deterministic case

1st cycle 2nd cycle 3rd cycle 4th cycleNPL 

1 cycle 2 cycle 3 cycle 4 cycleSEV (€/ha)In Mn Vn In Mn Vn In Mn Vn In Mn Vn

1111 15 1 ‐ 16 1 2 16 1 2 16 1 2 4390.12

1250 15 1 ‐ 16 1 2 16 1 2 16 1 2 4584.98

1667 14 1 ‐ 14 1 2 16 1 2 14 1 2 5153.99

NPL = Number of planted trees

SEV = Soil expectation value

Table 4 ‐ Results for deterministic case

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 54: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Results

Stochastic case

Stochastic case

NPL 1st cycle 2nd cycle 3rd cycle 4th cycle SEV 

(€/ha)In Mn Vn In Mn Vn In Mn Vn In Mn Vn

1111 16 1 16 1 2 16 1 2 16 1 2 2387 131111 16 1 ‐ 16 1 2 16 1 2 16 1 2 2387.13

1250 16 1 ‐ 16 1 2 16 1 2 16 1 2 2498.68

1667 16 1 ‐ 16 1 2 16 1 2 16 1 2 2813.84

Table 5 ‐ Results for stochastic dynamic programming model

Stage States

1st  cycle 10.7

2nd cycle 10.46

3rd cycle 10.86

4th cycle 11.12

Table 6 ‐ Expected rotation length for SDP model with NPL=1111model, with NPL=1111

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 55: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Sensitivity Analysis

Variations in discount rate

Stochastic case

Rate(%) 

1st cycle 2nd cycle 3rd cycle 4th cycleSEV (€/ha)In Mn Vn In Mn Vn In Mn Vn In Mn Vn

2 16 1 ‐ 16 1 2 16 1 2 16 1 2 7307.97

4 16 1 ‐ 16 1 2 16 1 2 16 1 2 2387.13

6 15 1 ‐ 16 1 2 16 1 2 16 1 2 793.76

8 13 1 ‐ 14 1 2 14 1 2 16 1 2 73.08

Table 7 ‐ Sensitivity analysis for variations in discount rate, with NPL=1111

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 56: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Sensitivity Analysis

Variations in prices

Stochastic caseStochastic case

P1€/m³

P2€/m³

1st cycle 2nd cycle 3rd cycle 4th cycleSEV

(€/ha)I M V I M V I M V I M VIn Mn Vn In Mn Vn In Mn Vn In Mn Vn

28.8 21.6 16 1 - 16 1 2 16 1 2 16 1 2 1345.76

36 27 16 1 - 16 1 2 16 1 2 16 1 2 2387.13

43.2 32.4 16 1 - 16 1 2 16 1 2 16 1 2 3428.49

P1 = timber stumpage price

P2 = salvage price

Table 8 ‐ Sensitivity analysis for variations in prices (changes of 20%), with NPL=1111

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 57: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Outline

1 Introduction

2 ModelStochastic Dynamic ProgrammingResultsSensitivity Analysis

3 Conclusions and Further work

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 58: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Conclusions

In contrast to conventional deterministic DPapproaches, the solution by our formulationdoes not produce a predefined optimalprescription or an ”optimal path”;

It produces optimal stand managementpolicies, e.g. sprout selection, clearcut andfuel treatment options according to thestand state at any time;

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 59: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Conclusions

In contrast to conventional deterministic DPapproaches, the solution by our formulationdoes not produce a predefined optimalprescription or an ”optimal path”;

It produces optimal stand managementpolicies, e.g. sprout selection, clearcut andfuel treatment options according to thestand state at any time;

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 60: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Conclusions and further work

As a sequence of interrelated decisions ispresented, dynamic programming providesan efficient procedure to solve the problem;

The convergence of the stochastic model isquite good. Generally, not many iterationsare needed to get convergence;

Next step - examine the risk of fire and fueltreatment at landscape level.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 61: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Conclusions and further work

As a sequence of interrelated decisions ispresented, dynamic programming providesan efficient procedure to solve the problem;

The convergence of the stochastic model isquite good. Generally, not many iterationsare needed to get convergence;

Next step - examine the risk of fire and fueltreatment at landscape level.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus

Page 62: A Stochastic Approach to Optimize Eucalypt Stand ...isa.ulisboa.pt/cef/public/projfogos/publicacoes/ALIOS...S20 S21 S32 S48 E4 4 st harvest S40 S41 S64 11 S11 . . .. .... . . 16 15

Introduction Model Conclusions and Further work

Conclusions and further work

As a sequence of interrelated decisions ispresented, dynamic programming providesan efficient procedure to solve the problem;

The convergence of the stochastic model isquite good. Generally, not many iterationsare needed to get convergence;

Next step - examine the risk of fire and fueltreatment at landscape level.

Liliana Ferreira IPL - ESTG

Eucalyptus Globulus