a stochastic analysis of continuum langevin equation for surface growths

10
stochastic analysis of continuum Langevin equation for surface growths S.Y.Yoon, Yup Kim Kyung Hee University

Upload: shea-buckley

Post on 05-Jan-2016

22 views

Category:

Documents


4 download

DESCRIPTION

A stochastic analysis of continuum Langevin equation for surface growths. S.Y.Yoon, Yup Kim Kyung Hee University. Motivation of this study. To solve the Langevin equation 1. Renormalization Group theory 2. Numerical Integrations.  Numerical Intergration method. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A stochastic analysis of continuum Langevin  equation  for surface growths

A stochastic analysis of continuum Langevin equation for surface growths

S.Y.Yoon, Yup Kim

Kyung Hee University

Page 2: A stochastic analysis of continuum Langevin  equation  for surface growths

Motivation of this study

To solve the Langevin equation1. Renormalization Group theory2. Numerical Integrations

Numerical Intergration method

Direct method to solve the Langevin equation

),(),( 22

2 txFhht

txh

Using Euler method,

)(2)(~

')(~

')()(2

22 iiiii Dhhvhh

Dimensionless quantities is defined as following,

000,, th

hhxxx

r0, t0, and h0 are appropriately chosen units of length, time, and height.

)(2)()(2

')()()(')()( 2

2 iiiiiiii Dxxhxxhxhxxhxxhvhh

)'()'(2)','(),( ttxxDtxtx d

Page 3: A stochastic analysis of continuum Langevin  equation  for surface growths

Langevin equation

In quantum mechanics,

ShrÖdinger equation Transition probability between each states

In surface growth problems,

Evolution rate of an interface

But it has some difficulties to define the prefactor of noise term. (Ex) Quenched KPZ equation

),(),( 22

2 hxFhht

txh

)'()'(2)','(),( hhxxDhxhx d

)]),([,()()()(2

')()()(')()( 3

222 xhxxxhxxhxhxxhxxhvhh iiiiiiii

H. Jeong, B. Kahng, and D. Kim, PRL 77, 5094 (1996)Z. Csahok, K Honda, and T. Vicsek, J. Phys. A 26, L171 (1993)

)]),([,(')( xhxi

?

Evolution Rate

Motivation of this study

Page 4: A stochastic analysis of continuum Langevin  equation  for surface growths

Our Method

Fhhht

hiii

i ),][,][,]([

242

max

2

2

),]([

),]([

i

i

h

hP

Ftxhhht

txh

),(),,,(),( 242

)}({)},({ thtxh i

(i = integer)

1 ii hh

Evolution Rate

Evolution Probability RateEvolutionP

How can we define the time unit?

max

1

i

QM!

Continuum Lagenvin equation

In our method, we can present by selecting i in random. This is the easy way to use the numerical integration concept without complicated prefactor of noise term.

,1

,1

maxi

ii

Our time unit trial

* F is a driven force.

Page 5: A stochastic analysis of continuum Langevin  equation  for surface growths

Simulation Results

Edward-Wilkinson equation

Fht

hi

i ][ 2

2

iii hhh 2112

-12 -10 -8 -6 -4 -2 0 2-4.0

-3.6

-3.2

-2.8

-2.4

-2.0

-1.6

0 2 4 6 8 10 12-1

0

1

2

L=32 L=64 L=128 L=256 L=512

=1.0, F=1.0

ln(W

/L )

ln(t/Lz)

ln W

ln t

3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

=1.0, F=1.0

=0.5

ln W

ln L

L=32, 64, 128, 256, 512

zL

tfLtLW ),( 008.2,247.0,496.0 z

ih][ 22

Fhv

FhvP

i

max

22

22

][

][

Page 6: A stochastic analysis of continuum Langevin  equation  for surface growths

0 1 2 3 4 5 6 7-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

=0.5

=0.25

=0.25

ln W

ln t

F=1.0 F=100.0

Random Deposition EW universality class

Layer-by-layer growth EW universality class

0 1 2 3 4 5 6 7

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

=0.24

=0.25

=0.42

ln W

ln t

2=1.0

2=10.0

L=10000L=10000

Simulation Results

Fht

hi

i

][ 22

Page 7: A stochastic analysis of continuum Langevin  equation  for surface growths

Mullins-Herring equation

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

2.0

2.5

3.0

3.5

4.0 4=1.0, F=1.0

=1.5

ln W

ln L

Fht

hi

i ][ 4

4

ih][ 44

L=32, 64, 128

Simulation Results

0 1 2 3 4 5 6 7-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

4=1.0 , F=1.0

=0.372

ln W

ln t

]6)(4)[( 11224 iiiii hhhhhv

L=10000

Fhv

FhvP

i

max

44

44

][

][

zL

tfLtLW ),( 952.3,372.0,47.1 z

Page 8: A stochastic analysis of continuum Langevin  equation  for surface growths

Linear growth equation (MHEW)

Fhht

hii

i ][][ 4

42

2

Simulation Results

iii hhh 2112 ih][ 22

ih][ 44 ]6)(4)[( 11224 iiiii hhhhhv

Fhvhv

FhvhvP

i

max

44

22

44

22

][

][

21

2

4~

l

22

4~v

tcCrossover time

The competition between two linear terms generates a characteristic length scale

0 1 2 3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

1.5

4=1.0,

2=1.0, F=1.0

=0.2653(2)

=0.374(4)

ln W

ln t

L=1000

Page 9: A stochastic analysis of continuum Langevin  equation  for surface growths

Kardar-Parisi-Zhang equation

Fhht

hii

i ][][

222

3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2=1.0, =1.5, F=1.0

=0.5

ln W

ln L

495.1,333.0,498.0 z

L=32, 64, 128, 256, 512

Simulation Results

Instability comes out as has larger value.(Intrinsic structures)

C. Dasgupta, J. M. Kim, M. Dutta, and S. Das Sarma PRE 55, 2235 (1997)

iii hhh 2112 ih][ 2

2 ih ][2

2

11 )(2

1

ii hh

0 1 2 3 4 5 6 7-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7

-1

0

1

2

2=1.0, F=1.0, =1.5

~ 0.25

~ 0.33

ln W

ln t

=10.0

~0.33

~0.7

ln W

ln t

Fhhv

FhhvP

i

max

222

222

][

][

Page 10: A stochastic analysis of continuum Langevin  equation  for surface growths

Conclusions

We confirmed that the stochastic analysis of Langevin equations for the surface growth is simple and useful method.

We will check for another equations

• Kuramoto-Sivashinsky equation

• Quenched EW & quenched KPZ equation