a space-time finite element model1

18
 A SPACE-TIME FINITE ELEMENT MODEL FOR DESIGN AND CONTROL OPTIMIZATION OF NONLINEAR DYNAMIC RESPONSE J. E. Barradas Cardoso 1 , P. Pires Moita 2 , and Aníbal J. J. Valido 2  1 Instituto Superior Técnico, Departamento de Engenharia Mecânica Av. Rovisco Pais, 1049-001 Lisboa , Portugal 2 Escola Superior de Tecnologia, Instituto Politécnico de Setúbal Campus do IPS, Estefanilha, 2914-508, Setúbal, Portugal

Upload: paulojorgepiresmoita

Post on 06-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 1/18

 

A SPACE-TIME FINITE

ELEMENT MODELFOR DESIGN AND

CONTROL OPTIMIZATIONOF NONLINEAR DYNAMICRESPONSE 

J. E. Barradas Cardoso 1, P. Pires Moita 2, and Aníbal J. J. Valido2 

1 Instituto Superior Técnico, Departamento de Engenharia MecânicaAv. Rovisco Pais, 1049-001 Lisboa , Portugal

2 Escola Superior de Tecnologia, Instituto Politécnico de SetúbalCampus do IPS, Estefanilha, 2914-508, Setúbal, Portugal

Page 2: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 2/18

Introduction

• Integrated methodology

 – structures and flexible mechanical systems

 – optimal design and optimal control

 – Bound formulation is used to solve both themulticriterium and unicriterium problems

Page 3: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 3/18

Response Analysis

• Space discretization – Virtual work dynamic equilibrium equation

 – After Finite element discretization 

0 0( )t t t t t t t t  W dV d  

u u S f u Q u

t t t t t t  

S S M U 

+ C U + K U = P

Page 4: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 4/18

Response Analysis

• Time discretization

e e e

S D z P

11 12 11 12

21 22 21 22

,

t t t 

S S nxn nxn nxn

e t t t t t t e

S S S nxn S S nxn 1

t t t t t t  

S S nxn S S nxn 2

0 0 0

0 0

0 0

 K C M P

 D D D D D P P

 D D D D P

( , ), ( , )e t t t t t t t    z z z z U, U 

Page 5: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 5/18

After the boundary conditions are applied it becames

Response Analysis

• Solved at-onceTime assembly

S D z P

ˆ ̂ ˆ ˆ

,S c c

 K U P P P D U 

Page 6: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 6/18

 •Performance functional

•Total variation

Design Sensitivity Analysis Problem 

( , , )t t 

G t dt     z b

   

Page 7: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 7/18

Design Sensitivity Analysis Problem

• Adjoint system method – adjoint fields replace the arbitrary variation of state fields by into the

virtual work equation as

 – define an extended 'action' function

 – replace the implicit design variations of the state fields by explicit designvariations and adjoint fields, then determining these adjoint fields by

vanishing the implicit design variation of the 'action' function as 

 – total design variation of    

ˆ ˆ ˆ ˆ( ) 0a a

SW  = K U - P U  

a A W   

0 A 

δΨ δA

Page 8: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 8/18

Design Sensitivity Analysis Problem

The sensitivities are firstly performed at the elementlevel and then the sensitivity equations are

assembled and time boundary equations imposed

Page 9: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 9/18

Optimum Design Problem

• A bound formulation is used to solve themulticriterium and unicriterium problems

The diferent objectives are normalizedaccordingly to

0

min , s.t.

, ( 1,2,..., );

0, ( 1,2,..., ); 0

0k 

 j

k m

 j m

  

 

 

( ) ( ) , 1min max

0i 0i 0i 0i0i i iΨ Ψ Ψ w Ψ Ψ w

Page 10: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 10/18

Examples

• Nonlinear ImpactAbsorberv(t=0)=1;

M=1;n=h2

Decision variables:

K=K0| u  | n 

C=C0| u  . 

| h 

P(t) 

0 0; ;[ / ), 0 12]K C P t t  

Page 11: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 11/18

Case I

Starting design:

Optimal design:

Examples

0 00,5; 0,5;[ / ) 0, 0 12]K C P t t  

maxmin . .

1

a s t 

u

0 00,00667; 6,96K C 

-0,2

0, 0

0, 2

0, 4

0, 6

0, 8

1, 0

0 2 4 6 8 10 1 2t[s ]

   P

    [   N

   ]

 

Page 12: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 12/18

Examples

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0 2 4 6 8 10 1

t[s ]    a     [    m     /    s     2     ]

starting

Ko, CoKo, Co+control

 

Acceleration response

Page 13: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 13/18

Case II

•Starting design:

•Normalized weighted bound formulation

•Optimal design

Examples

0 00,597; 0,597;[ / ) 0, 0 12]K C P t t  

2 2 20min{ , (100 100 ) } . .

1

C E u u P dt s t  

u

wE /wCo  K O optimu

C O optimu

0.5/0.5 0.458 0.015

0.6/0.4 0.453 0.022

0.7/0.3 0.450 0.032

0.8/0.2 0.446 0.050

0.9/0.1 0.442 0.091-0,60

-0,40

-0,20

0,00

0,20

0,40

0 2 4 6 8 10 12

t[s ]

   P

   [   N

P0,5/0,5

P0,6/0,4P0,7/0,3

P0,8/0,2P0,9/0,1

 

Page 14: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 14/18

Examples

0.00

0.02

0.04

0.06

0.08

0.10

53 55 57 59 61 E

Co

Criterium Space

Page 15: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 15/18

Examples

• Vehicle Suspension – Sinusoidal obstacle of height

0,1016m and wavelenghtof 24,384m

 – minimize the maximumacceleration magnitudesuch that the relativevertical displacementbetween masses is not

larger than 0.05 m 

c3

c5

1

m4 m3

m1

k1 c1

k2c2k3

k4c4k5

2 6 

4

9

11

3 7 

5

8

10

Beam element 1 Beam element 2

  800kg400kg

Page 16: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 16/18

Examples

Starting designA = 0.1 m2, k1 = 1.75E4, k2 = k3 = 5.26E4 N/m,

c1 = 1.75E3, c2 = c3 = 4.38E3 Ns/m 

Optimal design

A = 0.35579 m2, K1=6.94E4 N/m, K2=6.31E4 N/m, K3=5.02E4

N/m, C1=1.E6 Ns/m, C2=1.34E4 Ns/m, C3=1.E2 Ns/m

-1.4E-03

-1.2E-03

-1.0E-03

-8.0E-04

-6.0E-04

-4.0E-04

-2.0E-04

0.0E+00

2.0E-04

0.0 0.2 0.4 0.6 0.8 1.0

t[s]

          P          [          N          ]

( ) 0.,0 1P t t s

Page 17: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 17/18

Examples

• Driver seat max. acceleration [m/s2] 

-6.0E-05 

-5.0E-05 -4.0E-05 

-3.0E-05 

-2.0E-05 

-1.0E-05 

0.0E+00 

1.0E-05 

2.0E-05 

0.0  0.2  0.4  0.6  0.8  1.0 

t[s] 

a[m/s ] 

Initial Design Optimal design wrt area Optimal design wrt area, K’s and C’s Optimal design wrt area, K’s and C’s + control 

Page 18: A Space-time Finite Element Model1

8/3/2019 A Space-time Finite Element Model1

http://slidepdf.com/reader/full/a-space-time-finite-element-model1 18/18

CONCLUDING REMARKS 

• Current formulation unifies in one single formulation the problems ofoptimum design and optimal control, treating the design variables ascontrol variables that do not change with time.

• Using at-once integration of the equations of motion and itssensitivities, the adjoint method of design sensitivity analysis can beused with all of its advantages and without its main disadvantage indynamics: the necessity of backwards integration of the adjointsystem. So, the needing of backwards integration with its majordrawback - the memorization of the response history - is notassociated with path-dependent problems, as it is frequentlyassumed, but it is associated with the fact of using step-by-step

integration.

• Temporal boundary conditions can be applied at any point in time,not necessarily at the start of the integration, as it is usual for thestep-by-step integration method.