a short introduction to chemical biology and medicinal...

12
A Short Introduction to Chemical Biology and Medicinal Chemistry Part II Ben Davis [[email protected]] – 3 Lectures - Enzymes and Their Uses Prior Knowledge Required 1. 1 st year Biological Chemistry course: enzyme catalysis principles; Michaelis-Menten kinetics basics of protein structure; rough idea of transcription/translation/DNAmRNAprotein; one letter and three letter codes for amino acids 2. 1 st year Stereochemistry: resolution techniques 3. 2 nd year Organic Reaction Mechanisms II: enzyme mechanism aspects Books: “Enzyme Structure and Mechanism” Fersht; “An Introduction to Biotransformations in Organic Chemistry” Hanson; “Biotransformations in Organic Chemistry” Faber; “Biochemistry and Molecular Biology” Elliott & Elliott OCP 98 Foundations of Chemical Biology OCP 99 Carbohydrate Chemistry Topics to be Covered Enzymes in Synthesis - prejudices; advantages & disadvantages; Enzyme Classifications and Reactions; Serine Hydrolases are Really Acyl Transferases; Common Mechanisms and Diverse Mechanisms e.g. Serine Proteases, Metalloproteases & Carboxyproteases; Ribosomal peptide synthesis; Acyl transferases in synthesis; regioselective transformations; stereoselective transformations; resolution techniques; desymmetrization; Peptide ligation; protein ligation (enzymatic & native chemical); inteins. Carbohydrate Processing Enzymes: Glycosidases and Glycosyltransferases Protein Engineering; techniques and results; mutagenesis & chemical modification; introduction of non-coded amino acids into proteins; examining the effects; Creating new catalysts: de novo enzymes, polyamino acid catalysts, engineered enzymes, catalytic antibodies; novel subtilisins. Sample Exam Questions

Upload: others

Post on 19-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

A Short Introduction to Chemical Biology and Medicinal ChemistryPart II Ben Davis [[email protected]] – 3 Lectures - Enzymes and Their Uses

Prior Knowledge Required

1. 1st year Biological Chemistry course: enzyme catalysis principles; Michaelis-Menten kinetics basicsof protein structure; rough idea of transcription/translation/DNA→mRNA→protein; one letter andthree letter codes for amino acids

2. 1st year Stereochemistry: resolution techniques3. 2nd year Organic Reaction Mechanisms II: enzyme mechanism aspects

Books:

“Enzyme Structure and Mechanism” Fersht;“An Introduction to Biotransformations in Organic Chemistry” Hanson;“Biotransformations in Organic Chemistry” Faber;“Biochemistry and Molecular Biology” Elliott & Elliott OCP 98 Foundations of Chemical Biology OCP 99 Carbohydrate Chemistry

Topics to be Covered

� Enzymes in Synthesis - prejudices; advantages & disadvantages; Enzyme Classifications andReactions;

� Serine Hydrolases are Really Acyl Transferases; Common Mechanisms and Diverse Mechanisms e.g.Serine Proteases, Metalloproteases & Carboxyproteases; Ribosomal peptide synthesis;

� Acyl transferases in synthesis; regioselective transformations; stereoselective transformations;resolution techniques; desymmetrization;

� Peptide ligation; protein ligation (enzymatic & native chemical); inteins.� Carbohydrate Processing Enzymes: Glycosidases and Glycosyltransferases� Protein Engineering; techniques and results; mutagenesis & chemical modification; introduction of

non-coded amino acids into proteins; examining the effects; Creating new catalysts: de novo enzymes,polyamino acid catalysts, engineered enzymes, catalytic antibodies; novel subtilisins.

� Sample Exam Questions

Enzyme classificationEnzyme commission 1955 (IUPAC)EC 1.2.3.4~20,000? existOnline directory http://www.expasy.ch/enzyme/

NumberClass Reaction Type

Classified Available

Usage

1. Oxidoreductases Redox: C-H, C-C, C=C oxygenation;(de)hydrogenases

~1000 ~100 25%

2. Transferases Transfer acyl, sugar, phosphoryl, methyl ~1000 ~100 10%3. Hydrolases Hydolyse/form esters, amides, lactones, lactams,

epoxides, nitriles, anhydrides, glycosides~1000 ~300 55%

4. Lyases Addition/elimination to C=X (X = C, N, O) ~300 ~50 5%5. Isomerases Racemization, epimerization ~150 ~10 3%6. Ligases Formation/cleavage of C-X (O, S, N, C) ~100 ~10 2%

Serine Hydrolases

O

O H N N H O

ASPHIS

SER

NH

R'O

O

O N N O

ASPHIS

SER

O

H

NH

O

O H N N

ASP

HIS

HO

H

O

O N N HO

ASP

HIS

SER

O

OH

RR'

R

ES TI-1

H

H

N

N

Oxy-anion hole

OSER

O

R

H

H

N

N

Oxy-anion hole

O

O H N N

ASPHIS

HNH

R'

OSER

O

R

H

H

N

N

Oxy-anion hole

EA EA

O

O N N O

ASP

HIS

SER

O

H

OH

R

TI-2

H

H

N

N

Oxy-anion hole

EPR

H

HH

EC 1.2.3.4

class

subclass(substrate or bond cleaved)

co-substrate

individual enzyme number

Metallo/Aspartylproteases

O

O

ASP

NH

R'O

R

HO

H

Zn++

O

O

ASP

NH

R'

O

R

HO

Zn++

H

O

O

ASP

O

R

HO

Zn++

NH2R'

EPTIES

O

O

ASP

NH

R'

O

R

HO

H

O

O

ASP

NH

R'O

R

HO

H

O

O

ASP

O

R

HO

NH2R'

EPTIES

O

O

ASP

H

O

O

ASP

H

O

O

ASP

H

NNH

N

NH

N

HN

The Ribosome

O

O

pep

tRNAA

NH

HN

N

N N

H2N

OO

OH

O

tRNAA

NH

NN

N N

H2N

OO

OH

O

H

O

O

pep

NN

N N

H2N

OO

OH

O

tRNAP tRNAP

tRNAA

NH

OH

O

peptRNAP

NN

N N

N

OO

OH

ON

NH

N

NO

O

OHO

O

H

H

NH

H

PO O

tRNAA

NH

H

O

O

OAc OAc

N3

α-CT PPL

H2O H2OO

O

OH OAc

N3

O

O

OAc OH

N3

OO O

OH

OMe

OH

HOOHOH

HOHO tBuOH O

O O

O

OMe

OH

HOOHOH

HOHO

O

O CCl3

O

PPL

N

OHHO OH

HO N

OH

HO OH

OO

O

CCl3

α-CT

pyridine

O

N

O

HO OH

OO

O

O

PPL, THF

O

N

O

HO OH

HO

O

α-CT

H2O

N

OH

HO OH

OOPLE

H2O

O

OH

HO

HO

OH

OOO

H

R

O

OH

HO

OH

OH

OR'

OO

O

OH

HO

HO

OH

OO

OO

H

OR'

OO

H

OO

O

OH

HO

HO

OH

OO

OO

H OR'

O

OH

HO

HO

OH

OOO

H

R

O

OH

HO

OH

OH

OR'

OO

H

OR'

O

OH

HO

HO

OH

HO

OO

R

HO

O

OR'

OO

H

OO

GLYCOSIDASES

O

OR+ H2O

O

OHROH+

Naturally, they catalyze the hydrolysis of the glycosidic bond, i.e., the split glycosides

To make glycosidic bonds i.e., to make there are TWO tactics:O

OR

1. Reverse the Equilibrium

O

OR+ H2O

O

OHROH+

remove this to drive equilibrium overto the left

lots of this to drive towards other side

2. Transglycosylation - i.e., We swop one group at the anomeric centre R' for another group R

O

OR'

O O

O

OH

O

OR

glycosyl cation enzyme-bound intermediate

H2O

ROHThis OR just acts as a leaving group as for all glycosidation reactionse.g, para-nitrophenol are good ones here

this OR' group is the one we want e.g., another monosaccharide

Prevent formation of this by trying to exclude H2O

N.B. This is also the mechanism for the equilibrium shown above at the top and in 1.

EXAMPLES OF GLYCOSIDASE REACTIONS

O

OHHO

HOHO

β-galactosidase O

OHHO

HOHO OHH2O

O

OH

OHO

HOOR

β

galactose

O

OH

HOHO

HOOR

doesn't touch this one because α-glucose

O

OHHO

HOHO

O

OH

OHO

HOOR

NHBoc

COOHHO

β-galactosidaseO

OHHO

HOHO

O NHBoc

COOH

Transglycosylation

Hydrolysis

O

OHHO

HOHO NHBoc

COOHHO

β-galactosidase

L-serine derivative

O

OHHO

HOHO

O NHBoc

COOH

Equilibrium Reversal

OH

Because normally it only cleaves β - when we reverse things it only makes β

O

OP

- O O

O-

O

OP

- O O

O

GLY

CO

SY

LTR

AN

SF

ER

AS

ES

1 or

2O

B

OH

HO

Su

gar

Nu

cleo

tid

e

O

OH

HO H

OH

O

Gly

cosy

l Acc

epto

r

Gly

cosy

ltra

nsf

eras

e

OO

OH

O HO

HO

Gly

cosi

de

- OP

- O O

O 1 or

2O

B

OH

HO

Nu

cleo

tid

e

B =

the

appr

opria

te

pyrim

idin

e or

pur

ine

base

(t

his

depe

nds

on th

e G

ly-T

Lelo

ir T

ype

Non

-Lel

oir

Typ

eG

lyco

syl d

onor

is

a S

ugar

Pho

spha

te in

stea

d an

d so

the

leav

ing

grou

p is

just

pho

spha

te io

n

glyc

osyl

don

or

Su

gar

Ph

osp

hat

e

- OP

- O O

O-

Ph

osp

hat

e

Gly

cosy

l Acc

epto

rG

lyco

sid

e

Gly

cosy

ltra

nsf

eras

e

O

OP O

OO

NP O

OO

OH

OH

HO

HO

NH

O

O

OO

OH

OH OH

HO

H

B

OO

OH

OH O

H

HO

O

OH

HO

OH

OH

OP O

OO

NP O

OO

NH

O

O

+

α

β

man

nose

β(1

,4)

gala

ctos

yltr

ansf

eras

e

Res

idue

in a

ctiv

e si

te th

at

acts

as

a ge

nera

l bas

e

Mn2+

A M

n2+ io

n in

the

activ

e si

te a

ids

the

loss

of t

he

leav

ing

grou

p

O

HO

OH

O

HO

OH

O

OP

- O O

O-

O

OP

- O O

O

GLY

CO

SY

LTR

AN

SF

ER

AS

ES

1 or

2O

B

OH

HO

Su

gar

Nu

cleo

tid

e

O

OH

HO H

OH

O

Gly

cosy

l Acc

epto

r

Gly

cosy

ltra

nsf

eras

e

OO

OH

O HO

HO

Gly

cosi

de

- OP

- O O

O 1 or

2O

B

OH

HO

Nu

cleo

tid

e

B =

the

appr

opria

te

pyrim

idin

e or

pur

ine

base

(t

his

depe

nds

on th

e G

ly-T

Lelo

ir T

ype

Non

-Lel

oir

Typ

eG

lyco

syl d

onor

is

a S

ugar

Pho

spha

te in

stea

d an

d so

the

leav

ing

grou

p is

just

pho

spha

te io

n

glyc

osyl

don

or

Su

gar

Ph

osp

hat

e

- OP

- O O

O-

Ph

osp

hat

e

Gly

cosy

l Acc

epto

rG

lyco

sid

e

Gly

cosy

ltra

nsf

eras

e

O

OP O

OO

NP O

OO

OH

OH

HO

HO

NH

O

O

OO

OH

OH OH

HO

H

B

OO

OH

OH O

H

HO

O

OH

HO

OH

OH

OP O

OO

NP O

OO

NH

O

O

+

α

β

man

nose

β(1

,4)

gala

ctos

yltr

ansf

eras

e

Res

idue

in a

ctiv

e si

te th

at

acts

as

a ge

nera

l bas

e

Mn2+

A M

n2+ io

n in

the

activ

e si

te a

ids

the

loss

of t

he

leav

ing

grou

p

O

HO

OH

O

HO

OH