a primer on climate modelling - home - the rotman ... · navier-‐ stokes equa8ons). ... problem:...

87
Lecture 2 A Primer on Climate Modelling Roman Frigg LSE 1

Upload: others

Post on 26-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Lecture  2      

A  Primer  on  Climate  Modelling  

 Roman  Frigg  

 LSE  

1  

Page 2: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Main  Aim  of  this  Lecture  

Understand  what  kind  of  thing  a  global  climate  model  is,  how  it  is  constructed,  and  what  uncertain8es  a9ach  to  it.      

2  

Page 3: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Main  Aim  of  this  Lecture  

Understand  what  kind  of  thing  a  global  climate  model  is,  how  it  is  constructed,  and  what  uncertain8es  a9ach  to  it.      Uncertainty:      

3  

Page 4: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Plan  

1.  Recapitula8on:  EBMs  in  Lecture  1  2.  Extending  Simple  EBMs  3.  The  Architectonic  of  a  GCM  4.  Uncertainty  5.  Manifesta8ons  of  Uncertainty  6.  Mul8  Model  Ensembles  7.  Living  with  Uncertainty  

4  

Page 5: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

1.  Recapitula?on:    EBMs  in  Lecture  1  

5  

Page 6: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Modelling  assump8ons:  -­‐  The  earth  is  a  homogeneous  sphere  radia8ng  equally  in  all  direc8ons.  

-­‐  Albedo  is  the  same  everywhere  -­‐  The  earth  receives  the  same  amount  of  solar  energy  everywhere.  

-­‐  The  surface  of  the  earth  is  sta8c  (no  flow  of  ma9er  on  the  earth).  

-­‐  The  atmosphere  is  sta8c  (no  flow  of  ma9er  in  the  atmosphere).  

-­‐  No  rota8on    -­‐  ….  

6  

Page 7: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

These  assump8ons  are  unrealis8c!    

7  

Page 8: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Possible  extensions  and  factors  to  account  for:  -­‐  Land  and  water  -­‐  Different  albedo  for  land  and  water  -­‐  Ocean  currents  -­‐  Atmospheric  currents  -­‐  Topography  (below  and  above  water)  -­‐  Solar  variability    -­‐  Ver8cal  height  in  the  atmosphere  -­‐  Vegeta8on  -­‐  …      

8  

Page 9: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Terminology:  

9  

Page 10: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

2.  Extending  Simple  EBMs  

(a)   Introduce  a  La?tudinal  Dimension                    

10  

Page 11: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

2.  Extending  Simple  EBMs  

(a)   Introduce  a  La?tudinal  Dimension              The  equator  receives  more  energy  than  the  poles!        

11  

Page 12: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

à   It’s  warmer  at  the  equator  than  at  the  poles!  à   La8tude  zones:    

 

  12  

Page 13: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

For  simplicity,  take  the  temperate  and  polar  zones  on  each  hemisphere  together  and  call  them    SH-­‐extra-­‐tropics  and  NH-­‐extra-­‐tropics.      

                                                                                                         one  zone        

Ques8on:  again  using  energy  balance  considera8ons,  what  is  the  equilibrium  temperature,  what  is  the  equilibrium  temperature  on  the  three  parts  of  the  globe?    

13  

Page 14: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Calcula8ons  show:      

Tropics:  59°C  SH  and  NH  -­‐extra-­‐tropics:  -­‐73°C    

(calcula8ons  assume  that  the  axis  of  the  earth  is  perpendicular  to  the  [linear]  solar  radia8on.)      

14  

Page 15: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Calcula8ons  show:      

Tropics:  59°C  SH  and  NH  -­‐extra-­‐tropics:  -­‐73°C    

(calcula8ons  assume  that  the  axis  of  the  earth  is  perpendicular  to  the  [linear]  solar  radia8on.)    This  is  too  extreme!    What  are  we  missing?       15  

Page 16: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

à La8tudinal  circula8on!  

     

à Convec8on  cell.    16  

Page 17: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

In  reality  there  are  three  cells:  

17  

Page 18: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

In  reality  there  are  three  cells:                  

18  

Page 19: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

(b)  Introduce  a  Longitudinal  Dimension                  We  now  allow  mo8on  both  in  la8tudinal  and  longitudinal  direc8on.    

19  

Page 20: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  happens?                

20  

Page 21: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  happens?                

21  

Crucial  fact:    The  earth  is  rota8ng!  

Page 22: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  happens?                

22  

Crucial  fact:    The  earth  is  rota8ng!    And:    We  have  a  mo8on  perpendicular  to  the  axis  of  rota8on.    

Page 23: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  happens?                

23  

Crucial  fact:    The  earth  is  rota8ng!    And:    We  have  a  mo8on  perpendicular  to  the  axis  of  rota8on.    

Page 24: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  happens?                

24  

Crucial  fact:    The  earth  is  rota8ng!    And:    We  have  a  mo8on  perpendicular  to  the  axis  of  rota8on.      

Page 25: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  happens?                

25  

Crucial  fact:    The  earth  is  rota8ng!    And:    We  have  a  mo8on  perpendicular  to  the  axis  of  rota8on.      

Page 26: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  happens?                

26  

Crucial  fact:    The  earth  is  rota8ng!    And:    We  have  a  mo8on  perpendicular  to  the  axis  of  rota8on.    àà  Coriolis  Force      

Page 27: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Coriolis  Force:                

27  

Page 28: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Coriolis  Force:                If  you  walk  from  the  centre  to  the  periphery,  you  are  diverted.      

àà  LeH  Hand  rule!    28  

Page 29: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

29  

Page 30: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

30  

Page 31: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

31  

Page 32: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

32  

Page 33: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

à  These  rela8vely  simple  considera8ons  give  the  right  overall  pa9ern  of  global  winds!  

à  Simple  example  of  a  Radia8ve  Convec8ve  Model  (RCMs)  

     

33  

Page 34: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

à  These  rela8vely  simple  considera8ons  give  the  right  overall  pa9ern  of  global  winds!  

à  Simple  example  of  a  Radia8ve  Convec8ve  Model  (RCMs)  

Ways  to  refine  our  simple  model:  -­‐  Differences  in  surface  albedo  -­‐  Cloud  albedo  -­‐  Hea8ng  rates  of  different  atmospheric  layers    -­‐  Topography  of  the  earth!  -­‐  …     34  

Page 35: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Missing  altogether:    Ocean  circula8on!    This  a  crucial  factor  because  the  heat  capacity  of  water  is  much  higher  than  the  heat  capacity  of  air.    Water  and  air  de  facto  transport  about  the  same  amount  of  heat;  water  just  does  it  much  slower.    

35  

Page 36: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Integra8ng  as  many  extra  factors  as  possible  leads  to  the  construc8on  of  ever  more  complicated  climate  models.    Historically  this  first  happened  in  separate  models,  that  then  came  together  …      à  GCMs    

36  

Page 37: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

37  

Page 38: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

3.  The  Architectonic  of  a  GCM  

Dynamical  core  of  a  model:  describes  all  the  flows  in  the  model.    In  theory  these  flows  are  completely  described  by  the  equa8ons  of  fluid  dynamics  (the  Navier-­‐Stokes  Equa8ons).    In  prac/ce  we  usually  can  hardly  write  down  these  equa8ons,  and  if  we  can  we  cannot  solve  them  …      

38  

Page 39: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Reason:  climate  system  is  just  too  complex!    

39  

Page 40: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

40  

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

Page 41: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Simplifica8on:  grid    

41  41

Page 42: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Simplifica8on:  grid    

42  42

(Caveat:  spectral  models)  

Page 43: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Example:  HadCM3  “Hadley  Centre  Coupled  Model  Version  3”    

•  First  unified  model  not  to  require  flux  adjustments  (ar8ficial  adjustments  applied  to  climate  model  simula8ons  to  prevent  them  driping  into  unrealis8c  climate  states).  

•  HadCM3  was  one  of  the  major  models  used  in  the  IPCC  Third  and  Fourth  Assessments.  Its  good  simula8on  of  current  climate  without  using  flux  adjustments  was  a  major  advance  at  the  8me  it  was  developed  and  it  s8ll  ranks  highly  compared  to  other  models  in  this  respect.  

     

43  

Page 44: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

4  sub  models:  atmospheric,  oceanic,  sea  ice,  Land  /  ice  sheets  Resolu8on:    •  Atmospheric  component:  19  levels  with  a  horizontal  resolu8on  of  2.5  degrees  of  la8tude  by  3.75  degrees  of  longitude,  which  produces  a  global  grid  of  96  x  73  grid  cells.  This  is  equivalent  to  a  surface  resolu8on  of  about  417  km  x  278  km  at  the  Equator,  reducing  to  295  km  x  278  km  at  45  degrees  of  la8tude.  

•  The  oceanic  component  has  20  levels  with  a  horizontal  resolu8on  of  1.25  x  1.25  degrees.    

     

44  

Page 45: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Why  do  we  build  GCMs?    -­‐  System  not  accessible  to  experimenta8on!  -­‐  Calculate  global  mean  temperature  increase  -­‐  Calculate  climate  sensi8vity  -­‐  Understanding  various  parts  of  the  climate  system  and  their  interplay.  

-­‐  Make  predic8ons  about  local  impacts  of  climate  change  à  Next  lecture.    

-­‐  …  -­‐  …  

   

45  

Page 46: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

4.  Uncertainty  

There  are  number  of  factors  that  play  a  role  in  the  model  but  which  have  uncertain8es  a9ached  to  them.      

What  are  these  and  how  can  we  understand  them?    

What  are  the  impacts  of  these  on  model  outputs?    

 

46  

Page 47: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

47  

Page 48: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Brainstorming  about  uncertainty  Processes  smaller  than  the  grid  size  is  “invisible”  to  the  model:  -­‐  Clouds  -­‐  Storms  -­‐  Ocean  convec8on  -­‐  Ocean  eddies  -­‐  Wind  speed  -­‐  Most  biological  processes  -­‐  …    

48  

Page 49: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Reac8on:  “Parametrisa8ons”,  which  describe  processes  not  explicitly  resolved  in  the  model  because  they  are  below  the  model’s  grid  size.  The  aim  is  to  include  the  net  effect  of  sub-­‐grid  processes  in  the  model.    

Problem:  key  parametrisa8ons  (e.g.  for  clouds)  have  no  firm  theore8cal  basis  and  are  at  least  to  some  degree  arbitrary.  This  is  worry  since  these  parametrisa8ons  are  crucial  for  model’s  behavour.  Some  go  as  far  as  saying  that  the  are  ad  hoc.       49  

Page 50: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

And:  -­‐  Mountain  ranges  like  the  Andes  are  systema8cally  too  short  

-­‐  The  English  Chanel  doesn’t  exist  -­‐  Smaller  volcanic  islands  chains  with  visible  impacts  on  atmospheric  circula8on  do  not  exist  

-­‐  …  

50  

Page 51: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Furthermore:  -­‐  Not  all  processes  can  be  taken  into  account    -­‐  Those  that  are  taken  into  account  are  open  described  in  an  idealised  way.  

-­‐  Strength  of  feedback  loops  open  unknown.    -­‐  Value  of  certain  parameters  are  unknown  (is  there  even  anything  like  a  true  value?)  

-­‐  Computer  models  are  by  necessity  discrete,  but  the  world  isn’t.  

-­‐  Different  machines    

     

51  

Page 52: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Reitera8ng  the  ques8on:  How  can  we  systema8se  these  uncertain8es  and  assess  their  effects  on  the  modelling  enterprise?      

à  What  would  be  a  suitable  typology  of  uncertainty?  

à  Neither  the  2007  nor  the  2014  IPCC  reports  have  provided  such  a  typology    

This  is  an  open  ques?on  …    …  but  a  first  stab:  Petersen  (2012)  

52  

Page 53: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

53  Source:  Petersen  2012,  p.  51    

Page 54: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

54  Source:  Petersen  2012,  p.  51    

Page 55: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Explaining  Petersen’s  matrix:  ver?cal    àà  Loca?on  of  uncertainty    

1.  Conceptual  model:      -­‐  Do  we  get  the  physics  right?    -­‐  Do  we  take  all  relevant  processes  into          account    -­‐  Do  we  understand  interac8ons  correctly?    -­‐  Feedback  loops?    -­‐  …    

 55  

Page 56: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

2.  Mathema8cal  model:      -­‐  Model  structure:  Do  we  have  the  right            equa8ons?    -­‐  Model  parameters:  We  don’t  know  what            the  correct  value  of  certain  model            parameters  is      (worse:  is  there  a  true/correct  value  at  all?)  

   

56  

Page 57: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

3.  Input  uncertainty    -­‐  Data:  ini8al  condi8ons    -­‐  Scenarios:  what  will  future  emissions  be?    -­‐  …      

57  

Page 58: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

4.  Technical  Implementa8on    -­‐  Hardware:  Does  the  computer  func8on  as        it  should    -­‐  Sopware:  Do  the  programs  do  what  they          are  expected  to?  Is  the  discre8sa8on          scheme  working?      -­‐  …    

58  

Page 59: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

5.  Output  data  and  their  interpreta8on    

-­‐  How  do  we  interpret  data  -­‐  For  instance,  do  histograms  give  us  probabili8es?    

-­‐  …      à  More  about  this  in  the  next  lecture          

59  

Page 60: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

60  Source:  Petersen  2012,  p.  51    

Page 61: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Explaining  Petersen’s  matrix:  horizontal  1.  Nature  of  Uncertainty    -­‐  Epistemic:  is  the  uncertainty  due  to  our                lack  of  knowledge?    -­‐  On8c:  is  there  an  intrinsic  indeterminacy?          (Are  things  genuinely  probabilis8c?  à          ‘aleatoric  uncertainty’)    

 

à  Different  consequences  for  reducing  uncertainty.      

61  

Page 62: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

2.  Range  of  uncertainty  -­‐  Sta8s8cal  uncertainty:  expressible  in  terms  of  probabili8es.    

-­‐  Scenario  uncertainty  (‘what  if’  uncertain8es):  not  expressible  as  probabili8es.  

-­‐  …  (?)  

62  

Page 63: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

3.  Recognised  ignorance  ‘Recognised  ignorance  about  a  phenomenon  we  are  interested  in  concerns  those  uncertain8es  that  we  realise  –  in  one  way  or  another  –  are  present  but  for  which  we  cannot  establish  any  useful  es8mate.’    (Petersen  2012,  560)    

Example:  adequacy  of  sopware  implementa8on:  bugs  can  slip  in  but  un8l  they    crop  up  one  does  not  know  where.    

63  

Page 64: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

4.  Methodological  unreliability  -­‐  Theore8cal  basis:  does  an  assump8on  have  a  firm  theore8cal  basis?  

-­‐  Empirical  basis:  does  an  assump8on  have  a  firm  empirical  basis?  

-­‐  Comparison  with  other  simula8ons:  does  a  result  agree  with  other  similar  results?  

-­‐  Peer  consensus:  do  peers  consider  a  result    reliable?    

64  

Page 65: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

5.  Value  diversity  -­‐  General  epistemic  -­‐  Discipline-­‐bound  epistemic  -­‐  Sociopoli8cal  -­‐  Prac8cal    

65  

Page 66: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  uncertain?es  are  there  in  CMs?    

66  

Page 67: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

What  uncertain?es  are  there  in  CMs?    

67  Source:  Petersen  2012,  p.  134    

Page 68: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Where:  1  =  internal  climate  variablility  2  =  natural  forcing  3  =  anthropogenic  forcing  4  =  response  pa9ern  to  natural  and  

anthropogenic  forcing  5  =  free  atmosphere  trends  

68  

Page 69: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Rumsfeld/Cheney:  Known  unknowns  vs  Unknown  unknowns    

Uncertainty  pertains  to  know  unknows  …    

69  

Page 70: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Rumsfeld/Cheney:  Known  unknowns  vs  Unknown  unknowns    

Uncertainty  pertains  to  know  unknows  …    …  but  there  are  the  unknown  unknowns!    

70  

Page 71: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

1M$  ques8on:  What  is  the  effect  of  these  uncertain8es?    à  How  worrisome  are  they?  à  What  is  their  effect  on  our  ability  to  predict  

the  future?    à  What  are  the  trade-­‐offs  between  

uncertainty  in  the  modelling  and  the  precision  of  the  predic8ons?  

…  some  reflec8ons  on  these  issues  in  the  next  lecture.    

   

71  

Page 72: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Open  heard  argument:  we  are  so  good  about  the  past  …          

72  

Page 73: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Open  heard  argument:  we  are  so  good  about  the  past  …    …  but  can  we  really  infer  from  the  past  to  the  future?        

73  

à Hume’s  problem!  

And  more:  there  are  good  reasons  to  assume  that  in  this  par8cular  case  “more  of  the  same”  is  not  a  good  inference.  

Page 74: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

 The  uncertain8es  do  ma9er  in  prac8ce  …    …  they  cannot  be  dismissed  as  academic  hair-­‐spliwng!    

Examples:    -­‐  Global  mean  temperature  -­‐  Rela8ve  changes  in  mean  precipita8on  

74  

5.  Manifesta?ons  of  Uncertainty  

Page 75: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Surface  Warming  over  the  last  century    

75  

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5 Global Mean Anual Temperature, 20th century

years

tem

pera

ture

[ 0 C

]

Thanks  to  Ana  Lopez  (CATS,  LSE)  for  producing  the  graph  

Page 76: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

The  figure  shows  model  global  mean  temperatures  over  the  last  century  of  the  24  CMIP3  models  (Coupled  Model  Intercomparison  Project  3rd  phase.)  All  models  show  warming  between  1900  and  2000,  but  their  average  temperatures  vary  tremendously  …      

 

76  

Page 77: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

The  figure  shows  model  global  mean  temperatures  over  the  last  century  of  the  24  CMIP3  models  (Coupled  Model  Intercomparison  Project  3rd  phase.)  All  models  show  warming  between  1900  and  2000,  but  their  average  temperatures  vary  tremendously  …      

…  and  so  do  the  average  temperatures  for  the  21st  century!      

Predic8ons  don’t  do  be9er  than  retrodica8ons!       77  

Page 78: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

     

78  

“Rela8ve  changes  in  precipita8on  (in  percent)  for  the  period  2090–2099,  rela8ve  to  1980–1999.  […]  White  areas  are  where  less  than  66%  of  the  models  agree  in  the  sign  of  the  change  […].”  (AR4,  p.  16,  emphasis  added)  

Page 79: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

6.  Mul?  Model  Ensembles  

Ensemble  modeling  approach:  predic8ons  of  future  climate  condi8ons  are  produced  with  an  ensemble  of  different  climate  models.    

Increasingly,  methods  are  used  which  assign  probabili8es  to  future  changes  on  the  basis  of  the  set  of  projec8ons  in  an  ensemble.    

79  

Page 80: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Global  surface  warming  (IPCC  AR4)  

80  

Page 81: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

23  GCM  have  been  run  to  calculate  the  surface  warming  under  different  emission  scenarios.      

The  IPCC  report  explains:  “The  grey  bars  at  right  indicate  the  best  es8mate  (solid  line  within  each  bar)  and  the  likely  range  assessed  for  the  six  SRES  marker  scenarios.  The  assessment  of  the  best  es8mate  and  likely  ranges  in  the  grey  bars  includes  the  AOGCMs  in  the  lep  part  of  the  figure,  as  well  as  results  from  a  hierarchy  of  independent  models  and  observa8onal  constraints.”  (p.  14)  

81  

Page 82: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Intui8on:  agreement  among  ensemble  members  warrants  increased  confidence  in  the  projected  changes  …      

…  and  were  we  they  don’t  agree  we  can  use  them  to  quan8fy  uncertainty.    Ques?on:    what  is  the  significance  of  agreement  and  how  (if  at  all)  can  we  use  ensembles  to  quan8fy  uncertainty?    

82  

Page 83: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

The  story  of  someone  purchasing  several  copies  of  the  same  newspaper  to  check  the  details  of  one  copy  against  another!    

(Philosophical  Inves8ga8ons,  sec.  256)    

83  

Page 84: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

•  Claim:  the  spread  of  an  ensemble  defines  a  range  of  changes  that  cannot  yet  be  ruled  out.  This  is  known  as  ‘nondiscountable  envelope’.  

•  Is  there  a  reason  to  believe  that  future  observed  condi8ons  will  fall  within  the  spread  of  the  ensemble?  If  so,  why?  

•  Does  the  envelope  provide  a  lower  bound  on  uncertainty?  

•  Do  ensemble  results  translate  into    probabilis8c  es8mates  of  uncertainty,  or  probability  intervals?    

84  

Page 85: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

7.  Living  with  Uncertainty  

•  Is  reducing  uncertainty  the  only  goal?  The  scien8st  may  well  not  be  to  reduce  uncertainty  but  classify  it  and  communicate  it  clearly.    

•  Uncertainty  provides  no  ra8onal  argument  for  inac8on  

•  The  challenge  may  well  be  the  management  of  uncertainty  rather  than  its  reduc8on.  

85  

Page 86: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Further  Reading  McGuffie,  K.  and  A.  Henderson-­‐Sellers  (2005).  A  Climate  Modelling  Primer.  New  Jersey  Wiley.    

Petersen,  A.  (2012):  Simula8ng  Nature.  A  Philosophical  Study  of  Computer-­‐Simula8on  Uncertain8es  and  Their  Role  in  Climate  Science  and  Policy  Advice.  CRC  Press.      

Bradley,  S.  (2011).  "Scien8fic  Uncertainty:  A  User’s  Guide."  Grantham  Ins8tute  on  Climate  Change  Discussion  Paper  56(available  at  h9p://www2.lse.ac.uk/GranthamIns8tute/publica8ons/WorkingPapers/Abstracts/50-­‐59/scien8fic-­‐uncertainty-­‐users-­‐guide.aspx).  

86  

Page 87: A Primer on Climate Modelling - Home - The Rotman ... · Navier-‐ Stokes Equa8ons). ... Problem: key parametrisa8ons (e.g. for clouds) have ... century 75 1900 1910 1920 1930 1940

Parker,  W.  (2011).  "When  Climate  Models  Agree:  The  Significance  of  Robust  Model  Predic8ons."  Philosophy  of  Science  78(4):  579-­‐600    

Smith,  L.  A.  and  N.  Stern  (2011).  "Uncertainty  in  Science  and  its  Role  in  Climate  Policy."  Philosophical  Transac8ons  of  the  Royal  Society  A  369:  1-­‐24      

87