a practical introduction to digital power supply design · a practical introduction to digital...

45
TEXAS INSTRUMENTS EPC Sept06 A Practical Introduction to Digital Power Supply Design Hui Tan (谭徽) TI, Shanghai [email protected]

Upload: duongphuc

Post on 17-Apr-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

A Practical Introduction toDigital Power Supply Design

Hui Tan (谭徽)TI, Shanghai

[email protected]

Page 2: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

C2000: Digital Controller for DPS (20 minutes)• PWM considerations (frequency and resolution)• ADC consideration (sampling rate and resolution)• CPU utilization• Interrupt overhead• MIPS flexibility• Power stage control (multiple topology support)

Software development approach (20 minutes)• Code efficiency and execution time• Modularity• Re-use•“ Analog friendly” approach

Development environment and software (10 minutes) • Incremental build and software visibility• Code Composer Studio -IDE• Real-time debug capabilities

Agenda

Page 3: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

TMS320C2000™Digital Signal Controllers

Page 4: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Perf

orm

ance

Integration

FutureDevelopmentSamplingProduction

DeviceF2812

C/R2812F2811

C/R2811F2810

C2810

HigherPerformance

C281xTM

• 150 MIPS• 128-256 KB• 12.5 MSPS ADC

C280xTM

• 100 MIPS• 32-256 KB• 150ps PWM• 7 pin-compatible

devices

F2801 F2808

F2809

DPS

C240xTM

• 40 MIPS• 16-64 KB• 10-bit ADC

10 DevicesLF/C240xA

F = FlashC = Custom ROMR = RAM only

C2000TM Roadmap

LowerCost

C2801 C2802

F2802 F2806

F2801-60 F2802-60

3Q06 Production

F28015 F28016

Page 5: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Typical Control System on a Chip

CPU (DSP/uC/RISC)

+Memory

(FLASH/ROM,RAM)

ADC

Quad Decoder

Capture

i.e. V

i.e. Encoder

i.e. Hall Sensor

CommsCAN

UARTSPIIICIIS

FlexRayUSB

EMAC

RXTX

Control Loop(i.e. PID/IIR)

PWM(‘DAC’ function)

i.e. BuckConverter

Page 6: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

High Resolution PWM (HRPWM)

PWM Period

Device Clock(i.e. 100MHz)

Regular PWM Step(i.e. 10ns)

HRPWM Micro Step(~150ps)

HRPWM Technology Breaks A Clock Cycle

Into Smaller Steps Called Micro Steps

(Step Size ~= 150ps)

ms ms ms ms ms ms

Calibration Logic

Background Calibration Logic

Tracks The Number Of Micro Steps

Per Clock To AccountFor Variations CausedBy Temp/Volt/Process

Page 7: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

HRPWM: Enabler For Digital Power Supplies

HRPWM Enabled – Stable OutputRegular (10nS) PWM – Not Stable ‘Hunting’

Buck DC/DC Converter

HRPWMonly found on

F280x Devices!!

Page 8: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Execution time analysis (1 of 2)

MIPS = 100 MIPS = 150PWM CPU CPU # loops PWM CPU CPU # loops(KHz) (cycles) overhead (KHz) (cycles) overhead125 800 5.1% 29.2 125 1200 3.4% 44.6250 400 10.3% 13.8 250 600 6.8% 21.5500 200 20.5% 6.1 500 300 13.7% 10.0750 133 30.8% 3.6 750 200 20.5% 6.1

1000 100 41.0% 2.3 1000 150 27.3% 4.2

MSPS = 3 MSPS = 6.25 MSPS = 12PWM # Channels PWM # Channels PWM # Channels(KHz) (KHz) (KHz)125 24 125 50 125 96250 12 250 25 250 48500 6 500 13 500 24750 4 750 8 750 161000 3 1000 6 1000 12

CPU utilization -# Loops vs PWM freq.

ADC utilization -# Channels ( “Loops”) vs PWM freq.

Page 9: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Execution time analysis (2 of 2)

CPU loading -PWM freq. vs CPU%

loops = 1 loops = 2 loops = 3 loops = 4PWM CPU BG BG CPU BG BG CPU BG BG CPU BG BG(KHz) load (MIPS) (KHz) load (MIPS) (KHz) load (MIPS) (KHz) load (MIPS) (KHz)125 5.6% 142 94 7.8% 138 92 9.9% 135 90 12.1% 132 88250 11.2% 133 89 15.5% 127 85 19.8% 120 80 24.2% 114 76500 22.3% 117 78 31.0% 104 69 39.7% 91 60 48.3% 78 52750 33.5% 100 67 46.5% 80 54 59.5% 61 41 72.5% 41 28

1000 44.7% 83 55 62.0% 57 38 79.3% 31 21 96.7% 5 3

CPU = 100 MIPS, BG code = 1500 instructionsloops = 1 loops = 2 loops = 3 loops = 4

PWM CPU BG BG CPU BG BG CPU BG BG CPU BG BG(KHz) load (MIPS) (KHz) load (MIPS) (KHz) load (MIPS) (KHz) load (MIPS) (KHz)125 8.4% 92 61 11.6% 88 59 14.9% 85 57 18.1% 82 55250 16.8% 83 56 23.3% 77 51 29.8% 70 47 36.3% 64 43500 33.5% 67 44 46.5% 54 36 59.5% 41 27 72.5% 28 18750 50.3% 50 33 69.8% 30 20 89.3% 11 7 108.8% -9 -6

1000 67.0% 33 22 93.0% 7 5 119.0% -19 -13 145.0% -45 -30

CPU = 150 MIPS, BG code = 1500 instructions

Page 10: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Power Topology support

Multiple channel DC-DC buck converter/s

EPWM1A

Vin1 Vout1

EPWM2A

EPWM3A

EPWM4A

Vin2

Vin3

Vin4

Vout2

Vout3

Vout4

Buck #1

Buck #2

Buck #3

Buck #4

Target§ DC-DC power supplies§ Distributed power systems§ UPS

How Many Channels?

Frequency pairs8Indep. frequency5

9501

Page 11: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Power Topology support

Multi-phase Interleaved DC-DC converter

Target§ DC/DC systems§ High efficiency§ High power

How Many Phases ?

External. D’Band5Internal. D’Band3

9501

Page 12: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Power Topology support

Phase Shifted Full-bridge DC-DC converterwith Zero Voltage Switching

Target§ AC/DC Rectifiers§ DC/DC systems§ High efficiency§ High power

19501

How Many Converters ?

Page 13: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Fault Management support

Page 14: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

A Practical Introduction toDigital Power Supply

Design

Part-II

Page 15: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Modularity, re-useefficiency……

Software

Page 16: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Defining “GOOD” Software

q Modularity – blocks with well defined inputs / outputs

(“cause and effect”)

q Multiple instantiation of same module or function

q De-lineation (separation) between code and device peripherals

or target h/w i.e. use of peripheral (h/w) drivers

q Re-useable / Re-targetable (maximize return on investment)

q Efficient & high performance – code execution in min. time

q Easy to use / read / interpret / debug / modify ….. i.e. friendly!

Page 17: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Exploring Ideas / Methods1. System Framework

§ Good choice for addressing many power systems (even complex ones)§ Simple to use and understand§ Efficient (incurs only 1 ISR context save/restore)§ Deterministic (all events synchronous and submultiples of ISR freq.)§ High degree of visibility during debug and development

Back-ground loop (BG)• C / C++, large code, complex, feature rich, key customer differentiator• System intelligence / personality, heavy in “if then else”

Interrupt Service Routine (ISR) – Main control loop•“ lean and mean” in-line assembly (ASM) results in a very small footprint.• Typically “Math function” type code (very few “if then else” branches or loops)• Once developed, changes very little. Low maintenance burden.

1 of 4

Page 18: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Exploring Ideas / Methods

2. In-line assembly ISRHow complex ?

How much code development ?How much maintenance burden ?How wasteful on memory ?

Number of Instruction (or cycles) words

3. ASM Macros – great for modularity !Modern compilers support:ØMacro parameter passingØMacro variable & lable substitution

Benefits:Ø No call/return overhead (save 8 cycles/call)Ø Can easily build self contained modules (modular!)Ø Supports multiple instantiationØ Supports “Re-entrancy”Ø Re-useable

PWM(KHz) 100 150200 500 750250 400 600300 333 500350 286 429400 250 375500 200 300

MIPS

PWM(KHz) 100 150200 2.0% 1.3%250 2.5% 1.7%300 3.0% 2.0%350 3.5% 2.3%400 4.0% 2.7%500 5.0% 3.3%

MIPS

% impact per 10 instructions

2 of 4

Fear facto

r !

Page 19: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

3 of 4

Module example 2• Single In / Single out• Configurable• m, b, Constant ?

or Variable ?• No History• Multiple Instantiation?

f(x) = mx+ b

Out = m.In+ b

Module example 3• Single In / Single out• Non-Configurable• History• Multiple Instantiation?

In OutBoxCarAvg

X(n)X(n-1)X(n-2)X(n-3)

f(x) = ( xn + xn-1+ xn-2 + xn-3 ) / 4

Exploring Ideas / Methods4. Modularity

Page 20: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

5. Module “connectivity”

Exploring Ideas / Methods 4 of 4

// pointer & Net declarationsInt *In1A, *In1B, *Out1, *In2A,...Int Net1, Net2, Net3, Net4,...

// “connect” the modulesIn1A=&Net1; In1B=&Net2; Out1=&Net5;In2A=&Net3; Out2=&Net6;In3A=&Net4; Out3=&Net7;In4A=&Net5; In4B=&Net6; In4C=&Net7; Out4=&Net8;In5A=&Net7; Out5=&Net9;

; Execute the code

f1f2f3f4f5

Initialization time (“C”) Run time (ASM macros)

Page 21: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Module TypesPeripheral Independent Peripheral Dependent &

Application Configurable

“Peripheral Drivers”

Page 22: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Why use Peripheral Drivers ?Depends on:• PWM frequency• System clock frequency

Depends on:• # ADC bits (10 / 12 ?)• Unipolar, Bipolar ?• Offset ?

CPU dependency only:• Math / algorithms• Per-Unit math (0-100%)• Independent of Hardware

Page 23: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Digital PWM -101

countsKHzMHz

ffT

PWM

SYSCLKPWM 1000

100100

===(Note: Units = # sysclksor “counts”)

Compare = Duty x Periode.g. 30% x 1000 = 300 counts

à Q15 x Q0 = Q15 (32 bit format: SSII IIII IIIIIIIII.FFF FFFF FFFFFFFF )à Q0 (16 bit format: SIII IIII IIIIIIII )

Page 24: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Digital Power Modules – some examplesDescr. # Cycles Descr. # Cycles

Controller,2 pole / 2 zero

Biquaddigitalfilter

Inversesquarefunction

PFCCurrentCommandfunction

Slew rateLimiterfunction

PFC over-voltagemonitor

PFC 2-phaseInterleavedPWMs/w driver

Zero VoltageSwitched Full BridgePWMs/w driver

Analog / Digital conv.Sequencers/w driver

Multi-phase3InterleavedPWMs/w driver

36

46

78

30

17

25

14

26

57

15

Symbol Symbol

Page 25: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

28xx AC/DC Rectifier – Reference design

• 1000W / 48 V• F2810 DSP based• 2 Phase PFC-IL• Phase shifted ZVS-FB• 200 KHz PWM (DC/DC)• 100 KHz PWM (PFC)

AA

Page 26: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

PFC (2PHIL) Software control flow

Page 27: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

DC-DC (ZVSFB) Software control flow

Page 28: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

CPU Bandwidth utilizationFW_Isr

ADCSEQ2_DRVCNTL_2P2Z(1)CNTL_2P2Z(2)ZVSFB_DRV

ADCSEQ1_DRVFILT_2P2Z

AC_LINE_RECT

Context Save

Every ISR call

Int AckContext restore

Return

200 KHz

50 KHz 50 KHz 50 KHz 50 KHz

Time Slice mgr

PFC_OVPPFC_ICMD

CNTL_2P2Z(4)PFC2PHIL_DRV

TS1BOXCAR_AVG(1)BOXCAR_AVG(2)

PFC_ISHAREExecPS(1:50)

CNTL_2P2Z(3)

TS2

PFC_OVPPFC_ICMD

CNTL_2P2Z(4)PFC2PHIL_DRV

TS3

FILT_BIQUADINV_SQR

TS4

MIPS = 100 # inst / uS = 100 PWM(KHz) = 200# TS = 4 # inst / time slice = 500 PWM(bits) = 9.0

S. rate = 200 Sampling period = 5.0

ISR Rate Function / Activity # Cyc Tot. Cyc. StatsAll 200KHzContext Save / Restore 32 292 %Util

200KHzISR Call / Return / Ack 24 58%200KHzTime slice Mgmt 12200KHz ADCSEQ2_DRV 14200KHz CNTL_2P2Z 1 (V loop) 36200KHz CNTL_2P2Z 2 ( I loop) 36200KHz I_FOLD_BACK 25200KHz ZVSFB_DRV 14200KHz ADCSEQ1_DRV 57200KHz FILT_2P2Z 35200KHz AC_LINE_RECT 7

TS1 100KHz PFC_OVP 25 117 %Util100KHz PFC_ICMD 30 82%100KHz CNTL_2P2Z 4 (I loop) 36 #Cyc. Rem.100KHz PFC2PHIL_DRV 26 91

TS2 50KHz BOXCAR_AVG 1 42 145 %Util50KHz BOXCAR_AVG 2 42 87%100 Hz PFC_ISHARE 15 #Cyc. Rem.50KHz Execution Pre-scaler(1:50) 10 631KHz CNTL_2P2Z 3 (V loop) 36

TS3 100KHz PFC_OVP 25 117 %Util100KHz PFC_ICMD 30 82%100KHz CNTL_2P2Z 4 (I loop) 36 #Cyc. Rem.100KHz PFC2PHIL_DRV 26 91

TS4 50KHz FILT_BIQUAD 46 124 %Util50KHz INV_SQR 78 83%

#Cyc. Rem.84

BG Function / Activity # inst. Tot.Cyc. StatsComms + Supervisory 400 434 + Soft-Start + Other ?SLEW_LIMIT 1 17SLEW_LIMIT 2 17

87%12.629.0 34.4

% ISR utilization = Spare ISR MIPS =

BG loop rate (KHz) / (uS) =

Page 29: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Exploring execution limits / scenariosPFC-2phase IL / DCDC-ZVSFB

PFC-1phase / DCDC-ZVSFB (i.e. with PFC current share removed)

MIPS = 100

S. Rate CPU util. CPU spare BG Rate(KHz) (%) (MIPS) (KHz)175 69% 31.2 71.9200 79% 21.4 49.3225 88% 11.6 26.7250 98% 1.8 4.0300 118% -17.9 -41.2350 138% -37.6 -86.5

MIPS = 150

S. Rate CPU util.CPU spare BG Rate(KHz) (%) (MIPS) (KHz)175 46% 81.2 187.2200 52% 71.4 164.5225 59% 61.6 141.9250 66% 51.8 119.2300 79% 32.1 74.0350 92% 12.5 28.7

MIPS = 100

S. Rate CPU util. CPU spare BG Rate(KHz) (%) (MIPS) (KHz)175 76% 23.5 54.2200 87% 12.6 29.0225 98% 1.7 3.9250 109% -9.3 -21.3275 120% -20.2 -46.5300 131% -31.1 -71.7

MIPS = 150

S. Rate CPU util.CPU spare BG Rate(KHz) (%) (MIPS) (KHz)175 51% 73.5 169.4200 58% 62.6 144.2225 66% 51.7 119.1250 73% 40.8 93.9275 80% 29.8 68.7300 87% 18.9 43.5

Page 30: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Analog “look and feel” 1 of 2

PFC stage shownAt bootup.

• Full control during start-up / boot-up, very deterministic• Module “connections” are dynamically configurable• Multiple start-up or re-start scenarios possible (safe, diagnostic, fast, power limited,…)• Also invaluable during development and debug

Page 31: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Analog “look and feel” 2 of 2

Incremental System Start-up (2)• Closed loop Voltage control mode• Check Boost voltage feedback• Check open loop PFC current.

Page 32: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Incremental build,Visibility, IDE, Real-time Debug ……

Code development

Page 33: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

System Commissioning – Incremental BuildIB1: Validate Interrupt gen., PWM drivers, and pseudo DAC utility

ZVSFB_phase

Watch Window

ZVSFB_llegdb

ZVSFB_rlegdb

PFC2PHIL_duty

xxxx

Watch Window

xxxx

xxxx

EV

HW

phase

llegdb

rlegdb

PWM1

PWM2

PWM7

PWM8

ZVSFB

DRV

ZVSFB_phase

ZVSFB_llegdb

ZVSFB_rlegdb

EV

HW

Duty

T2PWM

T4PWM

PFC2PHILDRV

Adj

PFC2PHIL_duty

SinGenT1

FreqGain OutOffset

RampGen

FreqGain OutOffset

PWMDACDRV

EV

HW

PWM10

PWM12

In1

In2

1 of 3

Page 34: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

IB2: Open loop test with feedback meas. via ADC driver

System Commissioning – Incremental Build 2 of 3

Page 35: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

IB3: Closed loop operation with watch window and DAC visibility

System Commissioning – Incremental Build 3 of 3

Page 36: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Code Composer Studio -IDE

Page 37: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Real-Time debug 1 of 2

Page 38: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Real-Time debug 2 of 2

q RTDebugis a Non-intrusive debug scheme supportedvia on-chip H/W (utilizes spare / dead cycles in CPU buses)

q Allows user full interaction while application runs un-disturbed (at speed)

q Can interrogate / modify any memory, register, variable, ..etcq Supports Single step / Break point in back-ground code

while ISR (time critical loops + PWM) continues to run at speed.q Clock / cycle profiling allows time critical code analysis.

Page 39: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

……. The End

Page 40: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Spare

Page 41: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

Q-Math 101Fixed point format – S I . F (Sign / Integer . Fraction)

-8 < N < +7.99999 …SIII. FFFF FFFFFFFFQ12

-32,768 < N < +32,767SIII IIII IIIIIIIIQ0

-4 < N < +3.99999 …SII.F FFFF FFFFFFFFQ13

-2 < N < +1.99999 …SI.FF FFFF FFFFFFFFQ14

-1 < N < +0.99999 …S.FFF FFFF FFFFFFFFQ15

Qnx Qm= Qn+m, e.g. Q15 x Q14 = Q29SSI.F FFFF FFFFFFFFFFFFFFFFFFFFFFFF(32 bit format)SI.FF FFFF FFFFFFFF(adjusted for Q14, 16 bit format)

e.g. Q15 x Q15 = Q30SS.FF FFFF FFFFFFFFFFFFFFFFFFFFFFFF(32 bit format)S.FFF FFFF FFFFFFFF(adjusted for Q15, 16 bit format)

Page 42: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

S/W driver module – ZVSFB 1 of 2

Page 43: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

S/W driver module – ZVSFB 2 of 2

ZVSFB_DRV

Phase calculation tableZVSFB_phase

Angle (deg) per unit % Q15 (Dec) Q15 (Hex)

180 1.00 100% 32767 7FFF160 0.89 89% 29126 71C6140 0.78 78% 25485 638D120 0.67 67% 21845 5554100 0.56 56% 18204 471B90 0.50 50% 16384 3FFF70 0.39 39% 12743 31C650 0.28 28% 9102 238D30 0.17 17% 5461 155510 0.06 6% 1820 071C0 0.00 0% 0 0000

-10 -0.06 -6% 63716 F8E3-30 -0.17 -17% 60075 EAAA-50 -0.28 -28% 56434 DC71-70 -0.39 -39% 52793 CE38-90 -0.50 -50% 49152 C000

-100 -0.56 -56% 47332 B8E3-120 -0.67 -67% 43691 AAAA-140 -0.78 -78% 40050 9C71-160 -0.89 -89% 36409 8E38-180 -1.00 -100% 32768 8000

Dead band calculation table (nS)

HSPCLK = 150 1.00E+06MHz (Note: this is the EV clock)

DBT[3:0] DBT[3:0] 00 04 08 0C 10 14(dec) (hex) 1 2 4 8 16 32

0 0 0 0 0 0 0 01 1 7 13 27 53 107 2132 2 13 27 53 107 213 4273 3 20 40 80 160 320 6404 4 27 53 107 213 427 8535 5 33 67 133 267 533 10676 6 40 80 160 320 640 12807 7 47 93 187 373 747 14938 8 53 107 213 427 853 17079 9 60 120 240 480 960 1920

10 A 67 133 267 533 1067 213311 B 73 147 293 587 1173 234712 C 80 160 320 640 1280 256013 D 87 173 347 693 1387 277314 E 93 187 373 747 1493 298715 F 100 200 400 800 1600 3200

ZVSFB_dbpscale (hex)ZVSFB_xlegdb

Page 44: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

S/W driver module – PFC2PHIL 1 of 2

EV

HW

Duty

T2PWM

T4PWM

PFC2PHILDRV

Adj

Net1

Net2

Page 45: A Practical Introduction to Digital Power Supply Design · A Practical Introduction to Digital Power Supply Design ... with Zero Voltage Switching ... 28xx AC/DC Rectifier –Reference

TEXAS INSTRUMENTSEPC – Sept’06

S/W driver module – PFC2PHIL 2 of 2

PFC2PHIL_DRVHSPCLK = 100 1.00E+06 MHz (Note: this is the EV clock)PFC frequency = 100 1.00E+03KHz

Duty cycle calculation tablePFC2PHIL_duty Period count (dec) Period count (hex)

per unit Duty(%) Q15 (Dec)Q15 (Hex) 999 03E7Compare Count (dec)Compare Count (hex)

1.00 100% 32767 7FFF 999 03E70.90 90% 29490 7332 899 03830.80 80% 26214 6665 799 031F0.70 70% 22937 5998 699 02BB0.60 60% 19660 4CCC 599 02570.50 50% 16384 3FFF 499 01F30.40 40% 13107 3332 399 018F0.30 30% 9830 2666 299 012B0.20 20% 6553 1999 199 00C70.10 10% 3277 0CCC 99 00630.00 0% 0 0000 0 0000-0.10 0% 62259 F333-0.20 0% 58982 E666-0.30 0% 55706 D999-0.40 0% 52429 CCCC-0.50 0% 49152 C000-0.60 0% 45875 B333-0.70 0% 42598 A666-0.70 0% 42598 A666-0.90 0% 36045 8CCC-1.00 0% 32768 8000

Not Defined