a practical guide and new trends to price european options

28
HAL Id: hal-01322698 https://hal.inria.fr/hal-01322698v1 Preprint submitted on 27 May 2016 (v1), last revised 18 Nov 2016 (v2) HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- enti๏ฌc research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. Lโ€™archive ouverte pluridisciplinaire HAL, est destinรฉe au dรฉpรดt et ร  la di๏ฌ€usion de documents scienti๏ฌques de niveau recherche, publiรฉs ou non, รฉmanant des รฉtablissements dโ€™enseignement et de recherche franรงais ou รฉtrangers, des laboratoires publics ou privรฉs. A practical guide and new trends to price European options under Exponential Lรฉvy models Khaled Salhi To cite this version: Khaled Salhi. A practical guide and new trends to price European options under Exponential Lรฉvy models. 2016. hal-01322698v1

Upload: others

Post on 05-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A practical guide and new trends to price European options

HAL Id: hal-01322698https://hal.inria.fr/hal-01322698v1

Preprint submitted on 27 May 2016 (v1), last revised 18 Nov 2016 (v2)

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

Lโ€™archive ouverte pluridisciplinaire HAL, estdestinรฉe au dรฉpรดt et ร  la diffusion de documentsscientifiques de niveau recherche, publiรฉs ou non,รฉmanant des รฉtablissements dโ€™enseignement et derecherche franรงais ou รฉtrangers, des laboratoirespublics ou privรฉs.

A practical guide and new trends to price Europeanoptions under Exponential Lรฉvy models

Khaled Salhi

To cite this version:Khaled Salhi. A practical guide and new trends to price European options under Exponential Lรฉvymodels. 2016. hal-01322698v1

Page 2: A practical guide and new trends to price European options

A practical guide and new trends to price Europeanoptions under Exponential Lรฉvy models

Khaled Salhi a,b,c,โ€ 

May 27, 2016

Abstract

In this paper we develop a thorough survey of the European option pricing underexponential Lรฉvy models. We sweep all steps from equivalent martingale measuresconstruction to numerical valuation of the option price under these measures. Weapply the Esscher transform technique to provide two examples of equivalent martin-gale measures: the Esscher martingale measure and the minimal entropy martingalemeasure. We numerically compute the option price using the fast Fourier transform.The results are detailed with an example of each exponential Lรฉvy class. The maincontribution of this paper is to build a comprehensive study from the theoreticalpoint of view to practical numerical illustration and to give a complete characteri-zation of the studied equivalent martingale measures by discussing their similarityand their applicability in practice.

Keywords: Lรฉvy process, incomplete market, Esscher martingale measure, minimal en-tropy martingale measure, fast Fourier transform, Merton model, variance gamma model.

1 IntroductionStochastic processes are intensively used for modeling financial markets. The Black &Scholes model is one of the most known models. It describes the stock price as a geometricBrownian motion. In this context, the option pricing problem is solved using the riskneutral approach [7]. The key tool is the uniqueness of the equivalent martingale measure(EMM) and the derivative price is therefore the unique arbitrage-free contingent claimvalue.

It has become clear, however, that this option pricing model is inconsistent withoptions data. In the real world, we observe that asset price processes have jumps orspikes and risk managers have to take them into consideration. Moreover, the empiricaldistributions of asset returns exhibit fat tails and skewness behaviors that deviate froma Universitรฉ de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lรจs-Nancy, F-54506,

France.b CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lรจs-Nancy, F-54506, France.c Inria, Villers-lรจs-Nancy, F-54600, France.โ€  Email: [email protected]

1

Page 3: A practical guide and new trends to price European options

normality [4]. Hence, models that accurately fit return distributions are essential toestimate profit ans loss (P&L) distributions. Similarly, in the risk-neutral world, weobserve that implied volatilities are constant neither across strikes nor across maturitiesas stipulated by the Black & Scholes model [35, 36]. Therefore, traders need modelsthat can capture the behavior of the implied volatility smiles more accurately, in order tohandle the risk of trades. Lรฉvy processes provide the appropriate tools to adequately andconsistently describe all these observations, both in the real world and in the risk-neutralworld [3, 14, 15, 31].

By allowing the stock price process to jump, problems become more complicated. Assoon as the security can have more than a single jump size, the market will be incomplete.Thus, under the assumption of no arbitrage, there are infinitely many equivalent martin-gale measures. This induces an interval of arbitrage-free prices. In order to construct anoption pricing model, we have to select a suitable martingale measure. Once an equivalentmartingale measure Pหš is selected, the price ๐œ‹p๐ปq of an option ๐ป is given by

๐œ‹p๐ปq โ€œ Eหšr๐‘’ยด๐‘Ÿ๐‘‡๐ปs, (1)

where ๐‘Ÿ is the risk-free interest rate and ๐‘‡ is a maturity. This is the idea of the equivalentmartingale measure method.

This survey is a practical guide to option pricing when the log of the stock priceis modeled with a Lรฉvy process. This work aims at explaining in a single documentall stages of the option valuation process, as a global understanding of this process isnecessary and useful for a practical purposes. Considering a price process model underthe historical probability measure, we explicit this model under an equivalent martingalemeasure. Then, we numerically compute the option price using the fast Fourier transformtechnique (FFT) developed in [10].

Outline. This paper is organized as follows. In Section 2, we give an overview ofthe exponential Lรฉvy model and the option pricing in this context. For backgroundinformation on exponential Lรฉvy models, the reader may refer to textbooks [1, 12]. InSection 3, we explain how to define an equivalent martingale measure Pหš using the Esschertransform technique. We detail two examples: the Esscher martingale measure and theminimal entropy martingale measure. For these measures, the logarithm stock priceprocess is still a Lรฉvy process under Pหš and its characteristic triplet is known. Thesimilarity between the Esscher martingale measure and the minimal entropy martingalemeasure is studied. Otherwise, we show that while the former is still a good tool forpricing applications, the latter cannot be applied in a practical context. In Section 4,we give the Madan-Carr method and develop an expression of the option price, based onthe characteristic function of the log price process. The application of the FFT here ispossible and will be the subject of Section 5. Finally, in Section 6, we detail our approachon three examples of exponential Lรฉvy models: the standard Black & Scholes model, theMerton model and the variance gamma model.

2 Exponential Lรฉvy modelIn this section, we introduce the exponential Lรฉvy model and give some of its properties.

Definition 2.1. Let pฮฉ,โ„ฑ , pโ„ฑ๐‘กq๐‘กPr0,๐‘‡ s,Pq be a filtered probability space satisfying the usualconditions. The exponential Lรฉvy model is defined by an asset price process p๐‘†๐‘กq๐‘กPr0,๐‘‡ s ofthe form:

๐‘†๐‘ก โ€œ ๐‘†0 ๐‘’๐‘‹๐‘ก , (2)

2

Page 4: A practical guide and new trends to price European options

where ๐‘†0 ฤ… 0 is a constant and p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a one-dimensional Lรฉvy process [1, 6, 38]with a characteristic triplet p๐‘, ๐œŽ2, ๐œˆq. The discounted price is given by ๐‘†๐‘ก โ€œ ๐‘’ยด๐‘Ÿ๐‘ก๐‘†๐‘ก where ๐‘Ÿis the risk-free interest rate.

Notation. In the sequel, the notations used in Definition 2.1 will always be valid.

The measure ๐œˆ on R, called the Lรฉvy measure, determines the intensity of jumps ofdifferent sizes: ๐œˆpr๐‘Ž1, ๐‘Ž2sq is the expected number of jumps on the time interval r0, 1s,whose sizes fall in r๐‘Ž1, ๐‘Ž2s. The Lรฉvy measure satisfies the integrability condition

ลผ

R1^ |๐‘ฅ|2๐œˆpd๐‘ฅq ฤƒ 8.

Note that ๐œˆpr๐‘Ž1, ๐‘Ž2sq is still finite for any compact set r๐‘Ž1, ๐‘Ž2s such that 0 R r๐‘Ž1, ๐‘Ž2s. Ifnot, the process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s would have an infinite number of jumps of finite size on everytime interval r0, ๐‘กs, which contradicts the cร dlร g property of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s. Thus ๐œˆ definesa Radon measure on Rzt0u. However, ๐œˆ is not necessarily a finite measure. The aboverestriction still allows it to blow up at zero and p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s may have an infinite number ofsmall jumps on r0, ๐‘กs. In this case, the sum of the jumps becomes an infinite series andits convergence imposes some additional conditions on the measure ๐œˆ.

The law of ๐‘‹๐‘ก at any time ๐‘ก is determined by the triplet p๐‘, ๐œŽ2, ๐œˆq. In particular, theLรฉvy-Khintchine representation gives the characteristic function of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under P

ฮฆ๐‘กp๐‘ขq :โ€œ Er๐‘’๐‘–๐‘ข๐‘‹๐‘กs โ€œ ๐‘’๐‘กฮจp๐‘ขq, ๐‘ข P R (3)

where ฮจ, called the characteristic exponent, is given by

ฮจp๐‘ขq โ€œ ๐‘–๐‘๐‘ขยด1

2๐œŽ2๐‘ข2

`

ลผ

R

`

๐‘’๐‘–๐‘ข๐‘ฅ ยด 1ยด ๐‘–๐‘ข๐‘ฅ1|๐‘ฅ|ฤ1ห˜

๐œˆpd๐‘ฅq. (4)

Furthermore, if the Lรฉvy measure also satisfies the conditionลŸ

|๐‘ฅ|ฤ1|๐‘ฅ|๐œˆpd๐‘ฅq ฤƒ 8, the

jump part process, defined by๐‘‹๐ฝ

๐‘ก โ€œรฟ

๐‘ Pp0,๐‘กsฮ”๐‘‹๐‘ โ€ฐ0

โˆ†๐‘‹๐‘ ,

becomes a finite variation process. In this case, the process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s can be expressedas the sum of a linear drift, a Brownian motion and a jump part process:

๐‘‹๐‘ก โ€œ ๐›พ๐‘ก` ๐œŽ๐ต๐‘ก `๐‘‹๐ฝ๐‘ก ,

where ๐›พ โ€œ ๐‘ยดลŸ

|๐‘ฅ|ฤ1๐‘ฅ๐œˆpd๐‘ฅq. The characteristic exponent can be expressed by

ฮจp๐‘ขq โ€œ ๐‘–๐›พ๐‘ขยด1

2๐œŽ2๐‘ข2

`

ลผ

R

`

๐‘’๐‘–๐‘ข๐‘ฅ ยด 1ห˜

๐œˆpd๐‘ฅq.

Note that the Lรฉvy triplet of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is not given by p๐›พ, ๐œŽ2, ๐œˆq, but by p๐‘, ๐œŽ2, ๐œˆq. Infact, ๐‘ is not an intrinsic quantity and depends on the truncation function used in theLรฉvy-Khintchine representation while ๐›พ has an intrinsic interpretation as the expectationslope of the continuous part process of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s. The expectation Er๐‘‹๐‘กs is given by thesum of the linear drift and the expectation of jump part equal to p๐›พ `

ลŸ

R ๐‘ฅ๐œˆpd๐‘ฅqq๐‘ก.

3

Page 5: A practical guide and new trends to price European options

Now, by using Itรดโ€™s formula, we can observe that p๐‘†๐‘กq๐‘กPr0,๐‘‡ s is the solution to thefollowing SDE

๐‘†๐‘ก โ€œ ๐‘†0 `

ลผ

p0,๐‘กs

๐‘†๐‘ ยด๐‘‘๐‘ , (5)

where๐‘ก :โ€œ ๐‘‹๐‘ก `

1

2x๐‘‹๐‘

y๐‘ก `รฟ

๐‘ Pp0,๐‘กs

t๐‘’ฮ”๐‘‹๐‘  ยด 1ยดโˆ†๐‘‹๐‘ u (6)

and p๐‘‹๐‘๐‘ก q๐‘กPr0,๐‘‡ s is the continuous part of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s. Hence, p๐‘†๐‘กq๐‘กPr0,๐‘‡ s can be rewritten as:

๐‘†๐‘ก โ€œ ๐‘†0 โ„ฐpq๐‘ก, (7)

where pโ„ฐpq๐‘กq๐‘กPr0,๐‘‡ s stands for the Dolรฉans-Dade exponential of p๐‘กq๐‘กPr0,๐‘‡ s, [27]. Further-more, p๐‘กq๐‘กPr0,๐‘‡ s is still a Lรฉvy process under P. By expressing its Lรฉvy-Itรด decomposition,we obtain that the characteristic triplet of p๐‘กq๐‘กPr0,๐‘‡ s is given by p, ๐œŽ2, ๐œˆq (see [12, 19] fordetails) where

โ€œ ๐‘`1

2๐œŽ2`

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆpd๐‘ฅq ยด

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆpd๐‘ฅq (8)

and๐œˆpd๐‘ฅq โ€œ ๐œˆ ห ๐ฝยด1pd๐‘ฅq where ๐ฝp๐‘ฅq :โ€œ ๐‘’๐‘ฅ ยด 1 for ๐‘ฅ P R. (9)

Remark 2.1. (i) It holds that

suppt๐œˆu ฤ‚ pยด1,8q.

(ii) If ๐œˆ has a density ๐œˆp๐‘ฅq, then ๐œˆ has a density ๐œˆp๐‘ฅq given by

๐œˆp๐‘ฅq โ€œ1

1` ๐‘ฅ๐œˆplogp1` ๐‘ฅqq.

(iii) From the economical point of view, p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s represents the logarithmic return pro-cess of p๐‘†๐‘กq๐‘กPr0,๐‘‡ s, while p๐‘กq๐‘กPr0,๐‘‡ s represents the simple return process of p๐‘†๐‘กq๐‘กPr0,๐‘‡ s.

We consider a call with maturity ๐‘‡ and strike ๐พ. The payoff of this option is given bythe random variable ๐ป โ€œ p๐‘†๐‘‡ ยด๐พq`. Let ๐’ซ denote the set of all equivalent martingalemeasures (also called risk-neutral measures)

๐’ซ โ€œ!

Pหš โ€ž P, p๐‘†๐‘กq๐‘กPr0,๐‘‡ s is a martingale under Pหš)

.

In a complete market, there is only one equivalent martingale measure Pหš. Then, therisk-neutral price of the option at ๐‘ก โ€œ 0 is given by

๐ถp๐พq โ€œ ๐‘’ยด๐‘Ÿ๐‘‡Eหšrp๐‘†๐‘‡ ยด๐พq`s, (10)

where Eหš is the expectation under Pหš.With exponential Lรฉvy models, we are mostly in the incomplete market case. There-

fore, several equivalent martingale measures can be used to price the option. The rangeof option prices is given by

โ€ž

infPหšP๐’ซ

๐‘’ยด๐‘Ÿ๐‘‡Eหšrp๐‘†๐‘‡ ยด๐พq`s, supPหšP๐’ซ

๐‘’ยด๐‘Ÿ๐‘‡Eหšrp๐‘†๐‘‡ ยด๐พq`s

.

4

Page 6: A practical guide and new trends to price European options

So, one can always choose a measure Pหš P ๐’ซ according to some criteria and price theoption using the formula (10).

Another difficulty with exponential Lรฉvy models is that closed-form expressions existfor their characteristic function while their density function is usually unknown. It is thusdifficult to find a closed-form formula of ๐ถp๐พq, and even not possible for some pricingmeasures and Lรฉvy processes. Nevertheless, the analytic expression of the characteristicfunction ฮฆหš๐‘ก under the pricing measure Pหš is known, one can use the fast Fourier transform(FFT) method developed by Carr & Madan [10] to numerically compute the option price.

Assume now that the characteristic function ฮฆ๐‘ก of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under P is analyticallyknown. The pricing procedure has two steps:

โˆ™ Choose an equivalent martingale measure Pหš P ๐’ซ under which we have an analyticexpression of the characteristic function, called ฮฆหš๐‘ก .

โˆ™ Apply the FFT in ฮฆหš๐‘‡ to compute the option price.

3 Equivalent martingale measureThe equivalent martingale measure method is one of the most powerful methods of optionpricing. The no-arbitrage assumption can be expressed by the existence of at least oneequivalent martingale measure. If the market is arbitrage-free and incomplete, thereare several equivalent martingale measures and we have to select, with respect to somecriteria, the most suitable one in order to price options.

Several candidates for an equivalent martingale measure are proposed in the literature.To construct them, two different approaches are employed:

โˆ™ Esscher transform method: The Esscher transform method is widely used in risktheory. It consists in applying an Esscher transform with respect to some riskprocess. This risk process can be the logarithmic return p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s in the case ofthe Esscher martingale measure [8, 21], the simple return p๐‘กq๐‘กPr0,๐‘‡ s in the case ofthe Minimal entropy martingale measure [18, 19, 33] or the continuous martingalepart p๐‘‹๐‘

๐‘ก q๐‘กPr0,๐‘‡ s of the Lรฉvy process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s in the case of the mean correctingmartingale measure [42].

โˆ™ Minimal distance method: This method is more related to the maximization ofexpected utility and hedging problem. This includes the utility-based martingalemeasure [26], the minimal martingale measure [17] and the variance optimal mar-tingale measure [39].

3.1 Esscher martingale measure

The Esscher martingale measure is constructed by applying an Esscher transform withrespect to the process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s. One of the greatest advantages is that p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is stilla Lรฉvy process under this equivalent measure. Let us give the definition of the Esschertransform and the condition under which we obtain an equivalent martingale measure.

Definition 3.1. Let p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s be a Lรฉvy process on pฮฉ,โ„ฑ , pโ„ฑ๐‘กq๐‘กPr0,๐‘‡ s,Pq. We call Esschertransform with respect to p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s any change of P to an equivalent measure Pหš by adensity process ๐‘๐‘ก โ€œ

dPหš

dP

ห‡

ห‡

โ„ฑ๐‘กof the form:

๐‘๐‘ก โ€œ๐‘’๐œƒ๐‘‹๐‘ก

E r๐‘’๐œƒ๐‘‹๐‘กs, (11)

where ๐œƒ P R.

5

Page 7: A practical guide and new trends to price European options

The Esscher density process ๐‘๐‘ก โ€œdPหš

dP

ห‡

ห‡

โ„ฑ๐‘ก, which formally looks like the density of a

one-dimensional Esscher transform, leads to one-dimensional Esscher transforms of themarginal distributions, with the same parameter ๐œƒ:

Pหšp๐‘‹๐‘ก P ๐ตq โ€œ

ลผ

1๐ตp๐‘‹๐‘กq๐‘’๐œƒ๐‘‹๐‘ก

Er๐‘’๐œƒ๐‘‹๐‘กsdP โ€œ

ลผ

1๐ตp๐‘ฅq๐‘’๐œƒ๐‘ฅ

Er๐‘’๐œƒ๐‘‹๐‘กsdP๐‘‹๐‘กpd๐‘ฅq,

for any set ๐ต P โ„ฌpRq.One advantage of using p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s as a risk process is that the density process only

depends on the current stock price. In what follows, we give the condition for the existenceof the density process ๐‘๐‘ก โ€œ

dPหš

dP

ห‡

ห‡

โ„ฑ๐‘กand the characteristic triplet of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under Pหš in

such case.

Proposition 3.1. Let p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s be a Lรฉvy process on R with characteristic triplet p๐‘, ๐œŽ2, ๐œˆqand let ๐œƒ P R. The exponential moment Er๐‘’๐œƒ๐‘‹๐‘กs is finite for some ๐‘ก or, equivalently, forall ๐‘ก ฤ… 0 if and only if

ลŸ

|๐‘ฅ|ฤ›1๐‘’๐œƒ๐‘ฅ๐œˆpd๐‘ฅq ฤƒ 8. In this case,

Er๐‘’๐œƒ๐‘‹๐‘กs โ€œ ๐‘’๐‘กฮจpยด๐‘–๐œƒq,

where ฮจ is the characteristic exponent of the Lรฉvy process defined by (4).

For a proof, see [38, Theorem 25.17].

Proposition 3.2. Let p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s be a Lรฉvy process on R with characteristic triplet p๐‘, ๐œŽ2, ๐œˆqunder P. For all ๐œƒ P R such that E

โ€œ

๐‘’๐œƒ๐‘‹1โ€ฐ

ฤƒ 8,

(i) The process p๐‘๐‘กq๐‘กPr0,๐‘‡ s given by (11) defines a density process.

(ii) The process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process with triplet p๐‘หš, ๐œŽ2, ๐œˆหšq under Pหš where

๐œˆหšpd๐‘ฅq โ€œ ๐‘’๐œƒ๐‘ฅ๐œˆpd๐‘ฅq, for ๐‘ฅ P R,

and๐‘หš โ€œ ๐‘` ๐œŽ2๐œƒ `

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆหšpd๐‘ฅq ยด

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆpd๐‘ฅq.

Proof. (i) Recall that Er๐‘’๐œƒ๐‘‹๐‘กs โ€œ ๐‘’๐‘กฮจpยด๐‘–๐œƒq โ€œ`

Er๐‘’๐œƒ๐‘‹1sห˜๐‘ก. Then, ๐‘๐‘ก is integrable for all ๐‘ก.

Using the independence and stationary properties of the Lรฉvy process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s, we havefor ๐‘  ฤƒ ๐‘ก,

Er๐‘๐‘ก|โ„ฑ๐‘ s โ€œ1

E r๐‘’๐œƒ๐‘‹๐‘กsEr๐‘’๐œƒp๐‘‹๐‘กยด๐‘‹๐‘ `๐‘‹๐‘ q|โ„ฑ๐‘ s โ€œ

1

E r๐‘’๐œƒ๐‘‹๐‘กsEr๐‘’๐œƒp๐‘‹๐‘กยด๐‘‹๐‘ q|โ„ฑ๐‘ s Er๐‘’๐œƒ๐‘‹๐‘  |โ„ฑ๐‘ s

โ€œ1

E r๐‘’๐œƒ๐‘‹๐‘กsEr๐‘’๐œƒp๐‘‹๐‘กยด๐‘‹๐‘ qs ๐‘’๐œƒ๐‘‹๐‘  โ€œ

๐‘’๐œƒ๐‘‹๐‘ 

E r๐‘’๐œƒ๐‘‹๐‘ sโ€œ ๐‘๐‘ .

Thus, p๐‘๐‘กq๐‘กPr0,๐‘‡ s is a P-martingale.(ii) We prove that p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process under the probability measure Pหš by

computing its characteristic function under Pหš :

ฮฆหšp๐‘ขq โ€œ Eหšr๐‘’๐‘–๐‘ข๐‘‹๐‘กs โ€œ

ลผ

๐‘’๐‘–๐‘ข๐‘‹๐‘กdPหš โ€œลผ

๐‘’๐‘–๐‘ข๐‘‹๐‘ก๐‘’๐œƒ๐‘‹๐‘ก

Er๐‘’๐œƒ๐‘‹๐‘กsdP

โ€œEr๐‘’p๐œƒ`๐‘–๐‘ขq๐‘‹๐‘กs

Er๐‘’๐œƒ๐‘‹๐‘กsโ€œ exp p๐‘ก pฮจpยด๐‘–p๐œƒ ` ๐‘–๐‘ขqq ยดฮจpยด๐‘–๐œƒqqq .

6

Page 8: A practical guide and new trends to price European options

Define ฮจหšp๐‘ขq โ€ ฮจpยด๐‘–p๐œƒ ` ๐‘–๐‘ขqq ยดฮจpยด๐‘–๐œƒq for ๐‘ข P R. Then,

ฮจหšp๐‘ขq โ€œ

ห†

๐‘p๐œƒ ` ๐‘–๐‘ขq `๐œŽ2

2p๐œƒ ` ๐‘–๐‘ขq2 `

ลผ

R

`

๐‘’p๐œƒ`๐‘–๐‘ขq๐‘ฅ ยด 1ยด p๐œƒ ` ๐‘–๐‘ขq๐‘ฅ1|๐‘ฅ|ฤ1ห˜

๐œˆpd๐‘ฅq

ห™

ยด

ห†

๐‘๐œƒ `๐œŽ2

2๐œƒ2 `

ลผ

R

`

๐‘’๐œƒ๐‘ฅ ยด 1ยด ๐œƒ๐‘ฅ1|๐‘ฅ|ฤ1ห˜

๐œˆpd๐‘ฅq

ห™

โ€œ ๐‘–p๐‘` ๐œŽ2๐œƒq๐‘ขยด๐œŽ2

2๐‘ข2`

ลผ

R

`

๐‘’๐œƒ๐‘ฅp๐‘’๐‘–๐‘ข๐‘ฅ ยด 1q ยด ๐‘–๐‘ข๐‘ฅ1|๐‘ฅ|ฤ1ห˜

๐œˆpd๐‘ฅq

โ€œ ๐‘–

ห†

๐‘` ๐œŽ2๐œƒ `

ลผ

|๐‘ฅ|ฤ1

p๐‘’๐œƒ๐‘ฅ ยด 1q๐‘ฅ๐œˆpd๐‘ฅq

ห™

๐‘ขยด๐œŽ2

2๐‘ข2`

ลผ

R

`

๐‘’๐œƒ๐‘ฅp๐‘’๐‘–๐‘ข๐‘ฅ ยด 1ยด ๐‘–๐‘ข๐‘ฅ1|๐‘ฅ|ฤ1qห˜

๐œˆpd๐‘ฅq.

By defining๐œˆหšp๐‘ฅq โ€œ ๐‘’๐œƒ๐‘ฅ๐œˆp๐‘ฅq, for ๐‘ฅ P R

and๐‘หš โ€œ ๐‘` ๐œŽ2๐œƒ `

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆหšpd๐‘ฅq ยด

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆpd๐‘ฅq,

we obtain a Lรฉvy-Khintchine representation for ฮฆหš. Thus, p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy processunder Pหš with triplet p๐‘หš, ๐œŽ2, ๐œˆหšq.

To interpret the expression of ๐‘หš, let us remember that the jump measure ๐œˆ can havea singularity at zero. Thus, there can be infinitely many small jumps and the character-istic function of their sum

ลŸ

|๐‘ฅ|ฤ1p๐‘’๐‘–๐‘ข๐‘ฅ ยด 1q๐œˆpd๐‘ฅq does not necessarily converge. To obtain

convergence, this jump integral was centered and replaced by its compensated version inthe Lรฉvy-Khintchine representation. We integrate this compensator

ลŸ

|๐‘ฅ|ฤ1๐‘ฅ๐œˆpd๐‘ฅq in the

drift. When we change the measure P to Pหš, we must naturally truncate the compensatorof ๐œˆ from the drift and add the one of ๐œˆหš. We thus obtain ๐‘หš.

Theorem 3.1. Let p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s be a Lรฉvy process with triplet p๐‘, ๐œŽ2, ๐œˆq under P. Supposethat ๐‘‹1 is non-degenerate and has a moment generating function ๐‘ข รžร‘ Erexpp๐‘ข๐‘‹1qs onsome open interval p๐‘Ž1, ๐‘Ž2q with ๐‘Ž2 ยด ๐‘Ž1 ฤ… 1. Assume that there exists a real number๐œƒ P p๐‘Ž1, ๐‘Ž2 ยด 1q such that

๐‘` ๐œŽ2๐œƒ `๐œŽ2

2`

ลผ

R

`

๐‘’๐œƒ๐‘ฅp๐‘’๐‘ฅ ยด 1q ยด ๐‘ฅ1|๐‘ฅ|ฤ1ห˜

๐œˆpd๐‘ฅq โ€œ ๐‘Ÿ, (12)

or equivalentlyEr๐‘’p๐œƒ`1q๐‘‹๐‘กs โ€œ ๐‘’๐‘Ÿ๐‘กEr๐‘’๐œƒ๐‘‹๐‘กs, (13)

where ๐‘Ÿ is the risk-free interest rate. Then the real ๐œƒ is unique and the equivalent mea-sure Pหš given by the Esscher transform with respect to p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s

dPหš

dP

ห‡

ห‡

ห‡

ห‡

โ„ฑ๐‘ก

โ€œ๐‘’๐œƒ๐‘‹๐‘ก

E r๐‘’๐œƒ๐‘‹๐‘กs

is an equivalent martingale measure.

Proof. Proposition 3.2 guarantees that p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process under all measures Pหšgiven by an Esscher transform. By the independence and stationarity of increments of

7

Page 9: A practical guide and new trends to price European options

p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s, the martingale property of p๐‘†๐‘กq๐‘กPr0,๐‘‡ s under Pหš is implied by Eหšr๐‘†๐‘กs โ€œ ๐‘†0 for๐‘ก ฤ… 0. From the definition of the Esscher measure transform,

Eหšr๐‘†๐‘กs โ€œ Eหšr๐‘†0 ๐‘’๐‘‹๐‘กยด๐‘Ÿ๐‘กs โ€œ Eโ€ž

๐‘†0 ๐‘’๐‘‹๐‘กยด๐‘Ÿ๐‘ก๐‘’๐œƒ๐‘‹๐‘ก

Er๐‘’๐œƒ๐‘‹๐‘กs

โ€œ ๐‘†0 ๐‘’ยด๐‘Ÿ๐‘กEr๐‘’p๐œƒ`1q๐‘‹๐‘กs

Er๐‘’๐œƒ๐‘‹๐‘กs. (14)

Thus, Eหšr๐‘†๐‘กs โ€œ ๐‘†0 if and only if there exists a real ๐œƒ such that (13) holds. This real ๐œƒmust be in p๐‘Ž1, ๐‘Ž2ยด1q to ensure the existence of the moment generating function in ๐œƒ and๐œƒ ` 1.

Using Proposition 3.1, we rewrite (13) in terms of the characteristic exponent under P

ฮจpยด๐‘–p๐œƒ ` 1qq ยดฮจpยด๐‘–๐œƒq โ€œ ๐‘Ÿ.

We then develop the expression of ฮจ given by (4) and we obtain the condition (12). Thediscounted price p๐‘†๐‘กq๐‘กPr0,๐‘‡ s is a martingale under the equivalent measure given by theEsscher transform with ๐œƒ (if it exists) solution to this equation (12).

3.2 Minimal Entropy martingale measure (MEMM)

The MEMM has been investigated in various settings by several authors [16, 17, 18,33, 39]. In particular, the MEMM for Exponential Lรฉvy process has been discussed in[11, 19, 23, 34]. It turns out that this measure can be obtained by applying an Esschertransform with respect to the simple return process p๐‘กq๐‘กPr0,๐‘‡ s. Furthermore, p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s

is still a Lรฉvy process under this measure. In this section, we recall the definition of therelative entropy and give the condition on the Esscher parameter for the existence of theMEMM, as well as the characteristic triplet of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under this measure.

Definition 3.2. Let ๐’ข be a sub-๐œŽ-field of โ„ฑ and Q a probability measure on ๐’ข. Therelative entropy on ๐’ข of Q with respect to P is defined by

H๐’ขpQ|Pq :โ€œ

$

โ€™

&

โ€™

%

ลผ

log

ห†

dQdP

ห‡

ห‡

ห‡

ห‡

๐’ข

ห™

๐‘‘Q, if Q ! P on ๐’ข,

`8, otherwise,(15)

where dQdP

ห‡

ห‡

๐’ข stands for the Radon-Nikodym derivative of Q|๐’ข with respect to P|๐’ข.

Theorem 3.2. Let p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s be a Lรฉvy process with triplet p๐‘, ๐œŽ2, ๐œˆq under P. Supposethat there exists a real number ๐›ฝ P R such that

ลผ

๐‘ฅฤ…1

๐‘’๐‘ฅ๐‘’๐›ฝp๐‘’๐‘ฅยด1q๐œˆpd๐‘ฅq ฤƒ 8 (16)

and๐‘` ๐œŽ2๐›ฝ `

๐œŽ2

2`

ลผ

R

`

p๐‘’๐‘ฅ ยด 1q๐‘’๐›ฝp๐‘’๐‘ฅยด1q

ยด ๐‘ฅ1|๐‘ฅ|ฤ1ห˜

๐œˆpd๐‘ฅq โ€œ ๐‘Ÿ, (17)

where ๐‘Ÿ is the risk-free interest rate. Then,

1. The real ๐›ฝ is unique and the equivalent measure Qหš given by the Esscher transformwith respect to p๐‘กq๐‘กPr0,๐‘‡ s,

dQหš

dP

ห‡

ห‡

ห‡

ห‡

โ„ฑ๐‘ก

โ€œ๐‘’๐›ฝ๐‘ก

Eโ€

๐‘’๐›ฝ๐‘ก

ฤฑ

is an equivalent martingale measure, where p๐‘กq๐‘กPr0,๐‘‡ s is given by (6).

8

Page 10: A practical guide and new trends to price European options

2. The stochastic process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is still a Lรฉvy process under Qหš with the followingcharacteristic triplet

ห†

๐‘` ๐›ฝ๐œŽ2`

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆหšpd๐‘ฅq ยด

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆpd๐‘ฅq, ๐œŽ2, ๐œˆQหš

ห™

,

where๐œˆQหš

pd๐‘ฅq โ€œ ๐‘’๐›ฝp๐‘’๐‘ฅยด1q๐œˆpd๐‘ฅq.

3. The probability measure Qหš attains the minimal entropy in ๐’ซ

Hโ„ฑ๐‘‡pQหš|Pq โ€œ min

QP๐’ซHโ„ฑ๐‘‡

pQ|Pq.

For a proof, see [19].Thus, the minimal entropy martingale measure can be simply expressed as an Esscher

transform with respect to the simple return process p๐‘กq๐‘กPr0,๐‘‡ s. Note that although wehave the characteristic triplet of the process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under Qหš, the analytic expressionof the characteristic function under this equivalent martingale measure is often difficultto express and the pricing with the characteristic function is not possible in this case.

4 Pricing with characteristic functionWe consider here the problem of European call valuation of maturity ๐‘‡ . Various tech-niques have been applied to answer this question. For example, one can resort to MonteCarlo techniques to simulate sample paths for the asset. Averaging a sufficiently largenumber of realized payoffs then yields the required price, see for example [5, 22]. One canalso attempt to derive a partial differential equation for pricing which can be solved usingnumerical methods [41]. Yet another method is based on the Fourier analysis, which isthe subject of the current section.

Two methods based on the Fourier analysis exist in the literature. Both of them relyon the availability of the characteristic function of the stock price logarithm. Indeed, fora wide class of stock models characteristic functions have been obtained in a closed-formformula even if the risk-neutral densities (or probability mass function) themselves are notexplicitly available. Examples of Lรฉvy process characteristic functions have been derivedin [24, 30, 43].

The first of these Fourier methods is actually the application of the Gil-Palaez inversionformula in finance. This idea originates from [24]. However, singularities in the integrandprevent it to be an accurate method. The second, called the Carr-Madan method, wasfirst proposed by [10]. It ensures that the Fourier transform of the call price exists thanksto the inclusion of a damping factor. Moreover, the Fourier inversion can be accomplishedby the fast Fourier transform (FFT) in this case. The tremendous speed of the FFT allowsoption pricing for a huge number of strikes to be evaluated very rapidly. In this section,we illustrate the Carr-Madan method.

Let ๐‘†๐‘‡ โ€œ ๐‘†0 expp๐‘‹๐‘‡ q be the terminal price of the underlying asset of a European callwith strike ๐พ, where p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process with triplet p๐‘, ๐œŽ2, ๐œˆq. Denote by Pหš theselected equivalent martingale measure and by ๐‘“หš๐‘‡ (its analytic expression is unknown)the risk-neutral density of ๐‘‹๐‘‡ . The characteristic function of ๐‘‹๐‘‡ under Pหš can be writtenas

ฮฆหš๐‘‡ p๐‘ขq โ€œ

ลผ

R๐‘’๐‘–๐‘ข๐‘ฅ๐‘“หš๐‘‡ p๐‘ฅqd๐‘ฅ. (18)

9

Page 11: A practical guide and new trends to price European options

Let ๐‘˜ โ€œ logp๐พ๐‘†0q be the logarithm of the normalized strike. The risk-neutral valuationunder Pหš yields

๐ถp๐พq โ€œ ๐‘’ยด๐‘Ÿ๐‘‡Eหšrp๐‘†๐‘‡ ยด๐พq`s

โ€œ ๐‘†0๐‘’ยด๐‘Ÿ๐‘‡Eหšrp๐‘’๐‘‹๐‘‡ ยด ๐‘’๐‘˜q`s

โ€œ ๐‘†0๐‘’ยด๐‘Ÿ๐‘‡

ลผ 8

๐‘˜

p๐‘’๐‘ฅ ยด ๐‘’๐‘˜q๐‘“หš๐‘‡ p๐‘ฅqd๐‘ฅ.

Define the function ๐‘0 by ๐‘0p๐‘˜q โ€œ ๐ถp๐‘†0๐‘’๐‘˜q. The Fourier inversion technique consists

in the following assertion: ๐ถp๐พq โ€œ ๐‘0p๐‘˜q and ๐‘0 โ€œ FTยด1 หFTp๐‘0q where FT is the Fouriertransform operator. Since

lim๐‘˜ร‘ยด8

๐‘0p๐‘˜q โ€œ lim๐พร‘0

๐ถp๐พq โ€œ ๐‘†0,

we see that ๐‘0 is not in ๐ฟ1, the space of integrable functions, as the limit of ๐‘0p๐‘˜q as ๐‘˜ goesto minus infinity is different from zero. For that, we cannot directly apply the Fourierinversion technique as the Fourier transform of ๐‘0p๐‘˜q does not converge. To get aroundthis problem of integrability, we consider the modified call price

๐‘๐›ผp๐‘˜q โ€œ ๐‘’๐›ผ๐‘˜๐‘0p๐‘˜q

where ๐›ผ ฤ… 0.In the next two propositions, we develop a closed-form formula for the Fourier trans-

form of ๐‘๐›ผp๐‘˜q and obtain the option price ๐ถp๐พq by applying the inverse Fourier transformto the developed formula.

Proposition 4.1. Let ๐›ผ ฤ… 0 such that Eหšr๐‘’p๐›ผ`1q๐‘‹๐‘‡ s ฤƒ 8. The Fourier transform of ๐‘๐›ผp๐‘˜qis well defined and given by:

๐‘๐›ผp๐‘ฃq โ€œ๐‘†0๐‘’

ยด๐‘Ÿ๐‘‡ฮฆหš๐‘‡ p๐‘ฃ ยด p๐›ผ ` 1q๐‘–q

๐›ผ2 ` ๐›ผ ยด ๐‘ฃ2 ` ๐‘–p2๐›ผ ` 1q๐‘ฃ, @๐‘ฃ P R, (19)

where ฮฆหš๐‘‡ is the characteristic function of ๐‘‹๐‘‡ under Pหš.

Proof. Assume for the moment that ๐‘๐›ผp๐‘ฃq is well defined. We have

๐‘๐›ผp๐‘ฃq โ€œ

ลผ 8

ยด8

๐‘’๐‘–๐‘ฃ๐‘˜๐‘๐›ผp๐‘˜qd๐‘˜

โ€œ

ลผ 8

ยด8

๐‘’๐‘–๐‘ฃ๐‘˜๐‘’๐›ผ๐‘˜๐ถp๐‘†0๐‘’๐‘˜qd๐‘˜

โ€œ

ลผ 8

ยด8

๐‘’๐‘–๐‘ฃ๐‘˜๐‘’๐›ผ๐‘˜ห†

๐‘†0๐‘’ยด๐‘Ÿ๐‘‡

ลผ 8

๐‘˜

p๐‘’๐‘ฅ ยด ๐‘’๐‘˜q๐‘“หš๐‘‡ p๐‘ฅqd๐‘ฅ

ห™

d๐‘˜

โ€œ ๐‘†0๐‘’ยด๐‘Ÿ๐‘‡

ลผ 8

ยด8

๐‘“หš๐‘‡ p๐‘ฅq

ห†ลผ ๐‘ฅ

ยด8

๐‘’p๐›ผ`๐‘–๐‘ฃq๐‘˜p๐‘’๐‘ฅ ยด ๐‘’๐‘˜qd๐‘˜

ห™

d๐‘ฅ

โ€œ ๐‘†0๐‘’ยด๐‘Ÿ๐‘‡

ลผ 8

ยด8

๐‘“หš๐‘‡ p๐‘ฅq

ห†

๐‘’๐‘ฅลผ ๐‘ฅ

ยด8

๐‘’p๐›ผ`๐‘–๐‘ฃq๐‘˜d๐‘˜ ยด

ลผ ๐‘ฅ

ยด8

๐‘’p๐›ผ`1`๐‘–๐‘ฃq๐‘˜d๐‘˜

ห™

d๐‘ฅ

โ€œ ๐‘†0๐‘’ยด๐‘Ÿ๐‘‡

ลผ 8

ยด8

๐‘“หš๐‘‡ p๐‘ฅq

ห†

๐‘’p๐›ผ`1`๐‘–๐‘ฃq๐‘ฅ

๐›ผ ` ๐‘–๐‘ฃยด

๐‘’p๐›ผ`1`๐‘–๐‘ฃq๐‘ฅ

๐›ผ ` 1` ๐‘–๐‘ฃ

ห™

d๐‘ฅ.

10

Page 12: A practical guide and new trends to price European options

By substituting (18) here in, we obtain the expression (19).We now prove the existence of ๐‘๐›ผp๐‘ฃq. First note that Eหšr๐‘’p๐›ผ`1q๐‘‹๐‘‡ s ฤƒ 8 implies

๐‘๐›ผp0q ฤƒ 8, (20)

since

๐‘๐›ผp0q โ€œ๐‘†0๐‘’

ยด๐‘Ÿ๐‘‡ฮฆหš๐‘‡ pยดp๐›ผ ` 1q๐‘–q

๐›ผ2 ` ๐›ผโ€œ

๐‘†0๐‘’ยด๐‘Ÿ๐‘‡Eหšr๐‘’p๐›ผ`1q๐‘‹๐‘‡ s

๐›ผ2 ` ๐›ผ.

On the other hand, as ๐‘๐›ผp๐‘˜q is positive, we have

|๐‘๐›ผp๐‘ฃq| โ€œ

ห‡

ห‡

ห‡

ห‡

ลผ 8

ยด8

๐‘’๐‘–๐‘ฃ๐‘˜๐‘๐›ผp๐‘˜qd๐‘˜

ห‡

ห‡

ห‡

ห‡

ฤ

ลผ 8

ยด8

๐‘๐›ผp๐‘˜qd๐‘˜ โ€œ ๐‘๐›ผp0q.

Combining this with (20) completes the proof.

Proposition 4.2. Let p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s be a Lรฉvy process with characteristic function ฮฆหš underan equivalent martingale measure Pหš. The option price is given by

๐ถp๐พq โ€œ๐‘’ยด๐›ผ logp๐พ๐‘†0q

๐œ‹Re

"ลผ 8

0

๐‘’ยด๐‘–๐‘ฃ logp๐พ๐‘†0q๐‘๐›ผp๐‘ฃqd๐‘ฃ

*

, (21)

where ๐‘๐›ผ is given by (19).

Proof. The inverse Fourier transform gives us

๐‘๐›ผp๐‘˜q โ€œ1

2๐œ‹

ลผ

R๐‘’ยด๐‘–๐‘ฃ๐‘˜๐‘๐›ผp๐‘ฃqd๐‘ฃ. (22)

Then,

๐ถp๐พq โ€œ๐‘’ยด๐›ผ logp๐พ๐‘†0q

2๐œ‹

ลผ

R๐‘’ยด๐‘–๐‘ฃ logp๐พ๐‘†0q๐‘๐›ผp๐‘ฃqd๐‘ฃ โ€œ

๐‘’ยด๐›ผ logp๐พ๐‘†0q

๐œ‹Re

"ลผ 8

0

๐‘’ยด๐‘–๐‘ฃ logp๐พ๐‘†0q๐‘๐›ผp๐‘ฃqd๐‘ฃ

*

,

(23)where the last equality follows from the observation that

ลผ

R๐‘’ยด๐‘–๐‘ฃ logp๐พ๐‘†0q๐‘๐›ผp๐‘ฃqd๐‘ฃ โ€œ

ลผ 8

0

๐‘’ยด๐‘–๐‘ฃ logp๐พ๐‘†0q๐‘๐›ผp๐‘ฃqd๐‘ฃ `

ลผ 0

ยด8

๐‘’ยด๐‘–๐‘ฃ logp๐พ๐‘†0q๐‘๐›ผp๐‘ฃqd๐‘ฃ,

and where the second term on the right-hand side can be written asลผ 0

ยด8

๐‘’ยด๐‘–๐‘ฃ logp๐พ๐‘†0q๐‘๐›ผp๐‘ฃqd๐‘ฃ โ€œ

ลผ 8

0

๐‘’๐‘–๐‘ข logp๐พ๐‘†0q๐‘๐›ผpยด๐‘ขqd๐‘ข โ€œ

ลผ 8

0

๐‘’ยด๐‘–๐‘ข logp๐พ๐‘†0q๐‘๐›ผp๐‘ขqd๐‘ข

โ€œ

ลผ 8

0

๐‘’ยด๐‘–๐‘ข logp๐พ๐‘†0q๐‘๐›ผp๐‘ขqd๐‘ข.

This concludes the proof.

We only have considered the pricing of vanilla calls. Obviously, one can obtain prices ofvanilla puts by using the put-call parity. The price ๐‘ƒ๐‘‡ p๐พq of a vanilla put can alternativelybe obtained with the Carr-Madan inversion by choosing a negative value for ๐›ผ, see [29].

11

Page 13: A practical guide and new trends to price European options

5 Discretization and FFTComputing the price of a call option ๐ถp๐พq โ€œ ๐‘’ยด๐‘Ÿ๐‘‡Eหšrp๐‘†๐‘‡ ยด ๐พq`s under the pricingrule Pหš requires the inversion of the Fourier transform in (22). In general, this will notbe analytically tractable. A numerical approach is necessary. In doing so we give aformulation to which we can apply the fast Fourier transform (FFT) [13, 40]. Here wedefine the discrete Fourier transform (DFT) as

๐น๐‘ข โ€œ

๐‘รฟ

๐‘›โ€œ1

๐‘“๐‘›๐œ”p๐‘›ยด1qp๐‘ขยด1q๐‘ , ๐‘ข โ€œ 1, . . . , ๐‘ (24)

where ๐œ”๐‘ โ€œ ๐‘’ยด2๐œ‹๐‘–๐‘ . The software R provides an efficient FFT-algorithm for this formula-

tion.We are interested in computing the integral

ลผ 8

0

๐‘’ยด๐‘–๐‘ฃ๐‘˜๐‘๐›ผp๐‘ฃqd๐‘ฃ,

where ๐‘๐›ผp๐‘ฃq is given by (19).For ๐‘”๐‘˜p๐‘ฃq โ€ ๐‘’ยด๐‘–๐‘ฃ๐‘˜๐‘๐›ผp๐‘ฃq, the trapezoidal rule yields

ลผ ๐ด

0

๐‘”๐‘˜p๐‘ฃqd๐‘ฃ ยซโˆ†๐‘ฃ

2

ยซ

๐‘”๐‘˜p๐‘ฃ1q ` 2๐‘ยด1รฟ

๐‘›โ€œ2

๐‘”๐‘˜p๐‘ฃ๐‘›q ` ๐‘”๐‘˜p๐‘ฃ๐‘q

ff

(25)

โ€œ โˆ†๐‘ฃ

ยซ

๐‘รฟ

๐‘›โ€œ1

๐‘”๐‘˜p๐‘ฃ๐‘›q ยด1

2r๐‘”๐‘˜p๐‘ฃ1q ` ๐‘”๐‘˜p๐‘ฃ๐‘qs

ff

, (26)

where ๐ด โ€œ p๐‘ ยด1qโˆ†๐‘ฃ. As we truncated the interval of integration, a truncation error willresult and we refer to [10] for discussions on this topic. Let

๐‘ฃ๐‘› โ€œ p๐‘›ยด 1qโˆ†๐‘ฃ (27)

where ๐‘› โ€œ 1, . . . , ๐‘. Furthermore, let

๐‘˜๐‘ข โ€œ ๐‘˜1 ` p๐‘ขยด 1qโˆ†๐‘˜, (28)

where ๐‘ข โ€œ 1, . . . , ๐‘, be the grid in the ๐‘˜-domain. The constant ๐‘˜1 P R can be tuned suchthat the grid is laid around aimed strikes. If we are interested in options with particularstrikes around a value ๐พ, we take ๐‘˜1 โ€œ logp๐พ๐‘†0q ยด

๐‘2

โˆ†๐‘ฃ. Substituting (27) and (28) in(26) yields

ลผ ๐ด

0

๐‘”๐‘˜๐‘ขp๐‘ฃqd๐‘ฃ ยซ โˆ†๐‘ฃ

ยซ

๐‘รฟ

๐‘›โ€œ1

๐‘’ยด๐‘–rp๐‘›ยด1qฮ”๐‘ฃsr๐‘˜1`p๐‘ขยด1qฮ”๐‘˜s๐‘๐›ผp๐‘ฃ๐‘›q ยด1

2r๐‘”๐‘˜๐‘ขp๐‘ฃ1q ` ๐‘”๐‘˜๐‘ขp๐‘ฃ๐‘qs

ff

โ€œ โˆ†๐‘ฃ

ยซ

๐‘รฟ

๐‘›โ€œ1

๐‘’ยด๐‘–ฮ”๐‘ฃฮ”๐‘˜p๐‘›ยด1qp๐‘ขยด1q๐‘”๐‘˜1p๐‘ฃ๐‘›q ยด1

2r๐‘”๐‘˜๐‘ขp๐‘ฃ1q ` ๐‘”๐‘˜๐‘ขp๐‘ฃ๐‘qs

ff

.

By setting

โˆ†๐‘ฃ โˆ†๐‘˜ โ€œ2๐œ‹

๐‘,

12

Page 14: A practical guide and new trends to price European options

we haveลผ ๐ด

0

๐‘”๐‘˜๐‘ขp๐‘ฃqd๐‘ฃ ยซ โˆ†๐‘ฃ

ยซ

๐‘รฟ

๐‘›โ€œ1

๐œ”p๐‘›ยด1qp๐‘ขยด1q๐‘ ๐‘”๐‘˜1p๐‘ฃ๐‘›q ยด

1

2r๐‘”๐‘˜๐‘ขp๐‘ฃ1q ` ๐‘”๐‘˜๐‘ขp๐‘ฃ๐‘qs

ff

. (29)

The above sum in (29) takes the form of (24) with ๐‘“๐‘› โ€œ ๐‘”๐‘˜1p๐‘ฃ๐‘›q. Hence FFT can beapplied to evaluate this sum. The final result for the Carr-Madan inversion is thus:

๐ถp๐‘†0๐‘’๐‘˜๐‘ขq ยซ

๐‘’ยด๐›ผ๐‘˜๐‘ข

๐œ‹Re

#

โˆ†๐‘ฃ

ยซ

๐‘รฟ

๐‘›โ€œ1

๐œ”p๐‘›ยด1qp๐‘ขยด1q๐‘ ๐‘”๐‘˜1p๐‘ฃ๐‘›qs ยด

1

2r๐‘”๐‘˜๐‘ขp๐‘ฃ1q ` ๐‘”๐‘˜๐‘ขp๐‘ฃ๐‘qs

ff+

.

Instead of the trapezoidal rule, we can apply the more accurate Simpsonโ€™s rule. Alongthe same lines as above, one can easily show that in this case we have

๐ถp๐‘†0๐‘’๐‘˜๐‘ขq ยซ

๐‘’ยด๐›ผ๐‘˜๐‘ข

๐œ‹Re

#

โˆ†๐‘ฃ

3

ยซ

๐‘รฟ

๐‘›โ€œ1

๐œ”p๐‘›ยด1qp๐‘ขยด1q๐‘ ๐‘”๐‘˜1p๐‘ฃ๐‘›qp3` pยด1q๐‘› ยด ๐›ฟ๐‘›ยด1q

ยด r๐‘”๐‘˜๐‘ขp๐‘ฃ๐‘ยด1q ` 4๐‘”๐‘˜๐‘ขp๐‘ฃ๐‘qs

ff+

, (30)

where ๐›ฟ๐‘—ยด1 denotes the Kronecker delta function that equals 1 whenever ๐‘— โ€œ 1.To apply the FFT algorithm, ๐‘ must be a power of 2. For that, we fix ๐‘ โ€œ 4096 and

โˆ†๐‘ฃ โ€œ 0.25. This gives โˆ†๐‘˜ โ€œ 6.13 ยจ10ยด3. We are interested in strikes around at the money๐พ โ€œ ๐‘†0. We fix then ๐‘˜1 โ€œ ยด

๐‘2

โˆ†๐‘˜.

6 ApplicationsFinancial models with jumps fall into two categories. In the first category, called jump-diffusion models, the evolution of prices is given by a diffusion process, punctuated byjumps at random intervals. Here the jumps represent rare events as crashes and largedrawdowns. Such an evolution can be represented by modeling the log-price as a Lรฉvyprocess with a nonzero Gaussian component and a jump part, which is a compoundPoisson process with a finite number of jumps in every time interval. Examples of suchmodels are the Merton jumps diffusion model with Gaussian jumps [32] and the Koumodel with double exponential jumps [28]. In these models, the dynamical structure ofthe process is easy to understand and describe, since the distribution of jump sizes isknown. The second category consists of models with an infinite number of jumps in everytime interval, which called infinite activity models. In these models, one does not needto introduce a Brownian component since the dynamics of jumps is already rich enoughto generate a nontrivial small time behavior [9] and it has been argued [9, 20] that suchmodels give a more realistic description of the price process at various time scales. Inaddition, many models from this class can be constructed via Brownian subordinationwhich gives them additional analytic tractability compared to jump-diffusion models.Two important examples of this category are the variance gamma model [10, 30] andthe normal inverse Gaussian model [2, 3, 37]. However, since the real price process isobserved on a discrete grid, it is difficult, and even impossible, to empirically observeto which category the price process belongs. The choice becomes rather a question ofmodeling convenience than an empirical one. In this section, we start by recalling thestandard Black & Scholes model. Then, we apply the pricing method in a jump-diffusionexample, the Merton model. We end by the variance gamma model: an infinite activityexample. Unless otherwise stated, we use the parameters summarized in Table 1 fornumerical applications.

13

Page 15: A practical guide and new trends to price European options

Market B&S Merton VG FFT

๐‘†0 โ€œ 100 ๐œ‡ โ€œ 0.145 ๐›พ โ€œ 0.1 ๐›พ โ€œ 0.1 ๐‘ โ€œ 4096

๐‘Ÿ โ€œ 0.02 ๐œŽ โ€œ 0.3 ๐œŽ โ€œ 0.3 ๐‘š โ€œ ยด0.01 โˆ†๐‘ฃ โ€œ 0.25

๐‘‡ โ€œ 0.5 ๐œ† โ€œ 1 ๐›ฟ โ€œ 1 โˆ†๐‘˜ โ€œ 2๐œ‹๐‘ฮ”๐‘ฃ

๐‘š โ€œ ยด0.1 ๐œ… โ€œ 0.2 ๐‘˜1 โ€œ ยด๐‘2

โˆ†๐‘˜

๐›ฟ โ€œ 0.2

Table 1: Summary of numerical values of different parameters used in Section 6.

6.1 Black & Scholes model

The Black & Scholes model, proposed by [7], is one of the most popular models in finance.The price process p๐‘†๐‘กq๐‘กPr0,๐‘‡ s is solution to the SDE

๐‘‘๐‘†๐‘ก โ€œ ๐œ‡๐‘†๐‘ก๐‘‘๐‘ก` ๐œŽ๐‘†๐‘ก๐‘‘๐ต๐‘ก; ๐‘†0 ฤ… 0, (31)

where ๐œ‡ P R, ๐œŽ ฤ… 0 and p๐ต๐‘กq๐‘กPr0,๐‘‡ s is a standard Brownian motion. By applying Itรดโ€™sformula, we re-write p๐‘†๐‘กq๐‘กPr0,๐‘‡ s as an exponential Lรฉvy process (2) where

๐‘‹๐‘ก โ€œ

ห†

๐œ‡ยด๐œŽ2

2

ห™

๐‘ก` ๐œŽ๐ต๐‘ก, (32)

for ๐‘ก P r0, ๐‘‡ s. The process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process with tripletยด

๐œ‡ยด ๐œŽ2

2, ๐œŽ2, 0

ยฏ

. In fact,

for each ๐‘ก P r0, ๐‘‡ s, as ๐‘‹๐‘ก follows a Gaussian distribution ๐’ฉ pp๐œ‡ยด ๐œŽ2

2q๐‘ก, ๐œŽ2๐‘กq, its characteristic

function is given by

ฮฆ๐‘กp๐‘ขq โ€œ Er๐‘’๐‘–๐‘ข๐‘‹๐‘กs โ€œ exp

ห†

๐‘ก

ห†

๐‘–

ห†

๐œ‡ยด๐œŽ2

2

ห™

๐‘ขยด๐œŽ2

2๐‘ข2

ห™ห™

.

In this model, the price process does not have jumps. So, we are here in the completemarket case where there is only one equivalent martingale measure.

Esscher martingale measure. The exponential moment Er๐‘’๐œƒ๐‘‹1s is finite for all ๐œƒ P R.To prove the existence of the Esscher martingale measure Pหš, we look for a real ๐œƒ P Rsolution to

ห†

๐œ‡ยด๐œŽ2

2

ห™

` ๐œŽ2๐œƒ `๐œŽ2

2โ€œ ๐‘Ÿ. (33)

The solution is given by ๐œƒ โ€œ p๐‘Ÿ ยด ๐œ‡q๐œŽ2 and the measure Pหš defined by the Esschertransform with respect to p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s and with the parameter ๐œƒ is the unique equivalentmartingale measure. The process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is again a Lรฉvy process under Pหš with tripletp๐‘Ÿ ยด ๐œŽ2

2, ๐œŽ, 0q.

This means that p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s can be written as

๐‘‹๐‘ก โ€œ

ห†

๐‘Ÿ ยด๐œŽ2

2

ห™

๐‘ก` ๐œŽ๐‘Š๐‘ก,

where p๐‘Š๐‘กq๐‘กPr0,๐‘‡ s given by ๐‘Š๐‘ก โ€œ ๐ต๐‘ก`๐œ‡ยด๐‘Ÿ๐œŽ

๐‘ก is a standard Brownian motion under Pหš. Thediscounted price

๐‘†๐‘ก โ€œ ๐‘†0 ๐‘’๐œŽ๐‘Š๐‘กยด๐œŽ2

2๐‘ก

14

Page 16: A practical guide and new trends to price European options

solves the equation๐‘‘๐‘†๐‘ก โ€œ ๐‘†๐‘ก๐‘‘๐‘Š๐‘ก; ๐‘†0 ฤ… 0.

We found the same context of Black & Scholes modeling and the Girsanov theorem formeasure changes.

Pricing with FFT. For a Black & Scholes model with parameters corresponding tothe values in Table 1, the Esscher parameter that gives the Esscher martingale measureis ๐œƒ โ€œ p๐‘Ÿ ยด ๐œ‡q๐œŽ2 โ€œ ยด1.39. The numerical computation of the call price is presented inFigure 2 with respect to the strike ๐พ. We see that the option price approaches ๐‘†0 as๐พ ร‘ 0 and goes to 0 as ๐พ ร‘ `8.

Otherwise, we have compared the closed-form price of Black & Scholes with the optionprice given by the Carr-Madan method. The absolute error of the numerical method isof order 6 ยจ 10ยด7 whatever the strike is.

6.2 Merton model

This model is proposed by [32]. The price is described by an exponential Lรฉvy process (2)where

๐‘‹๐‘ก โ€œ ๐›พ๐‘ก` ๐œŽ๐ต๐‘ก `

๐‘๐‘กรฟ

๐‘–โ€œ1

๐‘Œ๐‘–, (34)

with ๐›พ P R, p๐ต๐‘กq๐‘กPr0,๐‘‡ s is a standard Brownian motion, p๐‘๐‘กq๐‘กPr0,๐‘‡ s is a Poisson process withintensity ๐œ† and p๐‘Œ๐‘–q๐‘–ฤ›1 are i.i.d. Gaussian random variables with parameters ๐‘š and ๐›ฟ2.For each 0 ฤ ๐‘ก ฤ ๐‘‡ , the characteristic function of ๐‘‹ is given by

ฮฆ๐‘กp๐‘ขq โ€œ Er๐‘’๐‘–๐‘ข๐‘‹๐‘กs โ€œ ๐‘’๐‘กฮจp๐‘ขq,

andฮจp๐‘ขq โ€œ ๐‘–๐›พ๐‘ขยด

๐œŽ2

2๐‘ข2` ๐œ†

ห†

exp

ห†

๐‘–๐‘š๐‘ขยด๐›ฟ2

2๐‘ข2

ห™

ยด 1

ห™

.

Define๐œˆp๐‘ฅq โ€œ ๐œ†ห†

1?

2๐œ‹๐›ฟexp

ห†

ยดp๐‘ฅยด๐‘šq2

2๐›ฟ2

ห™

, ๐‘ฅ P R

and๐‘ โ€œ ๐›พ `

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ ๐œˆpd๐‘ฅq.

Then, ฮจ can be written on the form

ฮจp๐‘ขq โ€œ ๐‘–๐›พ๐‘ขยด๐œŽ2

2๐‘ข2`

ลผ

R

`

๐‘’๐‘–๐‘ข๐‘ฅ ยด 1ห˜

๐œˆpd๐‘ฅq

โ€œ ๐‘–๐‘๐‘ขยด๐œŽ2

2๐‘ข2`

ลผ

R

`

๐‘’๐‘–๐‘ข๐‘ฅ ยด 1ยด ๐‘–๐‘ข๐‘ฅ1|๐‘ฅ|ฤ1ห˜

๐œˆpd๐‘ฅq.

We conclude that, under P, p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process with triplet p๐‘, ๐œŽ2, ๐œˆq. Withthis model, the market is incomplete. The compound Poisson process makes the riskuncontrolled and there exists an infinity of equivalent martingale measures.

15

Page 17: A practical guide and new trends to price European options

Esscher martingale measure. The exponential moment Er๐‘’๐œƒ๐‘‹1s is finite for all ๐œƒ P R.To prove the existence of the Esscher martingale measure Pหš, we look for a real ๐œƒ P Rsolution to

๐›พ ` ๐œŽ2๐œƒ `๐œŽ2

2`

ลผ

R๐‘’๐œƒ๐‘ฅ p๐‘’๐‘ฅ ยด 1q ๐œˆpd๐‘ฅq โ€œ ๐‘Ÿ,

or farther๐›พ ` ๐œŽ2๐œƒ `

๐œŽ2

2` ๐œ†

ยด

๐‘’๐‘šp๐œƒ`1q`๐›ฟ2

2p๐œƒ`1q2

ยด ๐‘’๐‘š๐œƒ` ๐›ฟ2

2๐œƒ2ยฏ

โ€œ ๐‘Ÿ.

For numerical application with the parameters given in Table 1, we obtain ๐œƒ ยซ ยด0.352.The characteristic function of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under Pหš is given by

ฮฆหš๐‘ก p๐‘ขq โ€œ ๐‘’๐‘กฮจหšp๐‘ขq,

whereฮจหšp๐‘ขq โ€œ ๐‘–p๐›พ ` ๐œŽ2๐œƒq๐‘ข`

๐œŽ2

2๐‘ข2` ๐œ†

ยด

๐‘’๐‘šp๐œƒ`๐‘–๐‘ขq`๐›ฟ2

2p๐œƒ`๐‘–๐‘ขq2

ยด ๐‘’๐‘š๐œƒ` ๐›ฟ2

2๐œƒ2ยฏ

.

We conclude that, with the Esscher martingale measure, we are able to provide analyticexpression of the characteristic function under an equivalent martingale measure. Thisanalytic form will be numerically inverted with the fast Fourier transform later to providethe option price.

Using Proposition 2.1, the process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process under Pหš with tripletp๐‘หš, ๐œŽ2, ๐œˆหšq defined by

๐‘หš โ€œ ๐›พ ` ๐œŽ2๐œƒ `

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆหšpd๐‘ฅq

and๐œˆหšp๐‘ฅq โ€œ ๐‘’๐œƒ๐‘ฅ๐œˆp๐‘ฅq โ€œ ๐œ†หš ห†

1?

2๐œ‹๐›ฟexp p๐‘ฅยด p๐‘š` ๐›ฟ2๐œƒqq2p2๐›ฟ2q,

where ๐œ†หš โ€œ ๐œ† expp๐‘š๐œƒ ` ๐›ฟ2๐œƒ2

2q. Hence, the Esscher martingale model p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is once

again a jump diffusion with compound Poisson jumps:

๐‘‹๐‘ก โ€œ p๐›พ ` ๐œŽ2๐œƒq๐‘ก` ๐œŽ๐‘Š๐‘ก `

๐‘หš๐‘ก

รฟ

๐‘–โ€œ1

๐‘Œ หš๐‘– ,

where p๐‘Š๐‘กq๐‘กPr0,๐‘‡ s is a Pหš-standard Brownian motion, p๐‘หš๐‘ก q๐‘กPr0,๐‘‡ s is a Pหš-Poisson process

with intensity ๐œ†หš and p๐‘Œ หš๐‘– q๐‘–ฤ›1 are i.i.d. Gaussian random variables with parameters ๐‘š`๐›ฟ2๐œƒand ๐›ฟ2.

Minimal entropy martingale measure. The existence of the minimal entropy mar-tingale measure Qหš is equivalent to the existence of a real ๐›ฝ solution to

๐›พ ` ๐œŽ2๐›ฝ `๐œŽ2

2`

ลผ

R

`

p๐‘’๐‘ฅ ยด 1q๐‘’๐›ฝp๐‘’๐‘ฅยด1q

ห˜

๐œˆpd๐‘ฅq โ€œ ๐‘Ÿ,

in the Merton model framework. With the same parameters of Table 1, we get numerically๐›ฝ ยซ ยด0.365.

Using Theorem 3.2, p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process under Qหš with triplet p๐‘Qหš

, ๐œŽ2, ๐œˆQหš

q

defined by

๐‘Qหš

โ€œ ๐›พ ` ๐›ฝ๐œŽ2`

ลผ

|๐‘ฅ|ฤ1

๐‘ฅ๐œˆQหš

pd๐‘ฅq

16

Page 18: A practical guide and new trends to price European options

and๐œˆQหš

p๐‘ฅq โ€œ ๐‘’๐›ฝp๐‘’๐‘ฅยด1q๐œˆp๐‘ฅq โ€œ ๐œ†Qหš

๐œŒQหš

p๐‘ฅq

where ๐œ†Qหš

โ€œลŸ

๐œˆQหš

pd๐‘ฅq is the intensity of the Qหš-Poisson process and ๐œŒQหš

p๐‘ฅq โ€œ ๐œˆQหšp๐‘ฅq

ลŸ

๐œˆQหšpd๐‘ฅq

is the jump size density under Qหš.The role of the damping factor ๐‘’๐œƒ๐‘ฅ in the case of the Esscher martingale measure Pหš

and the dumping factor ๐‘’๐›ฝp๐‘’๐‘ฅยด1q in the case of the minimal entropy martingale measure

Qหš is to mitigate the general trend of the log price. In the Merton model, the generaltrend is given by Er๐‘‹๐‘กs โ€œ p๐›พ ` ๐œ†๐‘šq๐‘ก. A positive expectation slope of the log price leadsto a negative parameters ๐œƒ and ๐›ฝ which permit to give more weight to negative jumpsand less weight to positive jumps in the Lรฉvy densities ๐œˆหš and ๐œˆQหš , to rebalance themarket in the risk-neutral world and to have the martingale property. Conversely, if thelog price expectation is negative, the dumping factors will strongly reduce the left tail ofthe risk-neutral Lรฉvy densities.

The initial Lรฉvy density ๐œˆ and the two risk-neutral Lรฉvy densities ๐œˆหš and ๐œˆQหš , as wellas the corresponding jump densities, are depicted in Figure 1 for different values of thelog price expectation. We vary the jump size expectation ๐‘š โ€œ tยด0.1,ยด0.3, 0.3u to havedifferent signs of Er๐‘‹๐‘กs and therefore different signs of ๐œƒ and ๐›ฝ. The remaining parametersof the model are the ones given in Table 1. Depending on the Esscher parameter sign, wehave a dumping of the right tail or the left tail of the risk-neutral Lรฉvy density. Despitethis dumping effect in the Lรฉvy densities, we observe in the right hand figures that thejump size densities are not affected by this change of measures and the main effect is thenan increase or decrease in the jump intensities ๐œ†หš and ๐œ†Qหš .

On the other hand, when we compare ๐œˆหš to ๐œˆQหš , we find that both functions arealmost equal with variations that do not exceed 1.6 ห† 10ยด2. We can explain this by thefact that ๐‘‹ and represent respectively the compound and the simple returns of thestock price. So, we consider models with small jump ๐‘ฅ for which ๐‘’๐‘ฅ ยด 1 ยซ ๐‘ฅ. Thus, theEsscher martingale measure and the minimal entropy martingale measure are almost thesame.

While we have the triplet of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under the minimal entropy martingale mea-sure, we still do not have an analytic expression of the characteristic function under thismeasure. For that, using the FFT to compute option prices under the minimal entropymartingale measure will be not possible.

Pricing with FFT under the Esscher martingale measure. In Figure 2, we com-pare the option price under a Black & Scholes model and a Merton model having thesame expectation of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s. We choose models parameters such that ๐œ‡ยด ๐œŽ2

2โ€œ ๐›พ`๐œ†๐‘š.

The numerical computation of the call price is presented in Figure 2 with respect to thestrike ๐พ. As the Merton model allows bigger negative jumps, the probability to finishin-the-money is smaller. Otherwise, the option price can always be written

๐ถp๐พq โ€œ ๐‘†0ฮ 1 ยด๐พ๐‘’ยด๐‘Ÿ๐‘‡Pp๐‘†๐‘‡ ฤ… ๐พq,

where ฮ 1 is the delta of the option. The call price is thus greater around the money inthe Merton model.

Option price sensivity to jumps. To discuss the effects of jumps on the option price,we compare the results of the Merton model with respect to the jump intensity. Recallthat the B&S and Merton models are exponential Lรฉvy models with triplets p๐œ‡ยด ๐œŽ2

2, ๐œŽ2, 0q

17

Page 19: A practical guide and new trends to price European options

and p๐›พ `ลŸ

|๐‘ฅ|ฤ1๐‘ฅ๐œˆpd๐‘ฅq, ๐œŽ2, ๐œˆq respectively, where

๐œˆp๐‘ฅq โ€œ ๐œ†ห†1

?2๐œ‹๐›ฟ

exp`

p๐‘ฅยด๐‘šq2p2๐›ฟ2qห˜

.

Then, a B&S model is a Merton model with particular parameters ๐›พ โ€œ ๐œ‡ ยด ๐œŽ2

2et

๐œ† โ€œ 0. This model does not contain jumps as the jump intensity ๐œ† โ€œ 0. To see the effectof jumps on the option prices, we fix parameters such that ๐›พ โ€œ ๐œ‡ ยด ๐œŽ2

2and compare the

B&S model to Merton models with different jump intensities. We take the parameters ofTable 1 except for ๐œ† that varies in t2, 4, 6u. Note that this choice of parameters respectsthe condition ๐›พ โ€œ ๐œ‡ ยด ๐œŽ2

2. The different option prices are presented in Figure 3. For

all models, the option price approaches ๐‘†0 as ๐พ ร‘ 0 and goes to 0 as ๐พ ร‘ `8. Thejump intensity modifies the option price only for strikes around at-the-money. Otherwise,as the intensity increases, we have more jumps in the period r0, ๐‘‡ s and the varianceVarp๐‘‹๐‘กq โ€œ p๐œŽ

2 ` ๐œ†p๐‘š2 ` ๐›ฟ2qq ๐‘ก increases. Consequently, the option price increases becauseof greater risk that jumps brings to the seller. The same observation is found when thejump size volatility increases. We present it in Figure 5. The price with respect tothe jump size mean is given by Figure 4. With a negative average of jumps size in theasset price, we have interesting out-the-money options, while in-the-money options is lessinteresting. A positive average of jumps size leads to reverse statement

6.3 Variance gamma model

The variance gamma process is proposed by [31] to describe stock price dynamics isteadof the Brownian motion in the original Black & Scholes model. Two new parameters: ๐‘šskewness and ๐œ… kurtosis are introduced in order to describe asymmetry and fat tails ofreal life distributions. A variance gamma process is obtained by evaluating a Brownianmotion with a drift at a random time given by a gamma process.

Definition 6.1. The variance gamma (VG) process p๐‘Œ๐‘กq๐‘กPr0,๐‘‡ s with parameters p๐‘š, ๐›ฟ, ๐œ…qis defined as

๐‘Œ๐‘ก โ€œ ๐‘š๐›พ๐‘ก ` ๐›ฟ๐ต๐›พ๐‘ก ,

where p๐ต๐‘กq๐‘กPr0,๐‘‡ s is a standard Brownian motion and p๐›พ๐‘กq๐‘กPr0,๐‘‡ s is a gamma process withunit mean rate and variance rate ๐œ….

Proposition 6.1. The VG process p๐‘Œ๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process with characteristic func-tion ฮฆ๐‘ก and characteristic triplet p

ลŸ

|๐‘ฅ|ฤ1๐‘ฅ๐œˆpd๐‘ฅq, 0, ๐œˆq where

Er๐‘’๐‘–๐‘ข๐‘Œ๐‘กs โ€œ

ห†

1

1ยด ๐‘–๐‘š๐œ…๐‘ข` p๐›ฟ2๐œ…2q๐‘ข2

ห™๐‘ก๐œ…

and

๐œˆp๐‘ฅq โ€œ1

๐œ…|๐‘ฅ|exp

ยจ

ห

๐‘š

๐›ฟ2๐‘ฅยด

b

๐‘š2

๐›ฟ2` 2

๐œ…

๐›ฟ|๐‘ฅ|

ห›

โ€š.

From the expression of ๐œˆ, there exists infinitely small jumps. Such a process is calledan infinite activity process. It does not admit a distribution of jump size since jumpshappen infinitely.

18

Page 20: A practical guide and new trends to price European options

To describe the stock price, we just add a drift component to the VG process. ABrownian component is not necessary and the process moves essentially by jumps. Theprice process is defined by an exponential Lรฉvy model (2) where

๐‘‹๐‘ก โ€œ ๐›พ๐‘ก` ๐‘Œ๐‘ก.

The process p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is a Lรฉvy process with characteristic tripletยด

๐›พ `ลŸ

|๐‘ฅ|ฤ1๐‘ฅ๐œˆpd๐‘ฅq, 0, ๐œˆ

ยฏ

and characteristic ffunction given by

ฮฆ๐‘กp๐‘ขq โ€œ Er๐‘’๐‘–๐‘ข๐‘‹๐‘กs โ€œ๐‘’๐‘–๐›พ๐‘ข๐‘ก

p1ยด ๐‘–๐‘š๐œ…๐‘ข` p๐›ฟ2๐œ…2q๐‘ข2q๐‘ก๐œ…

.

Esscher martingale measure. By solving the inequality 1 ยด ๐‘–๐‘š๐œ…๐‘ข ` p๐›ฟ2๐œ…2q๐‘ข2 ฤ… 0with respect to ๐‘ข, we show that ๐‘‹๐‘ก for some ๐‘ก or, equivalently, for all ๐‘ก, possesses a momentgenerating function ๐‘ข รžร‘ Erexpp๐‘ข๐‘‹๐‘กqs on

ยด

ยด๐‘š๐›ฟ2 ยดa

๐‘š2๐›ฟ2 ` 2๐œ… ๐›ฟ,ยด๐‘š๐›ฟ2 `a

๐‘š2๐›ฟ2 ` 2๐œ… ๐›ฟยฏ

.

To apply Theorem 3.1, we assume that 2a

๐‘š2๐›ฟ2 ` 2๐œ… ๐›ฟ ฤ… 1. Under this assumption,we look for ๐œƒ P

ยด

ยด๐‘š๐›ฟ2 ยดa

๐‘š2๐›ฟ2 ` 2๐œ… ๐›ฟ,ยด๐‘š๐›ฟ2 `a

๐‘š2๐›ฟ2 ` 2๐œ… ๐›ฟ ยด 1ยฏ

solution to

Eโ€œ

๐‘’p๐œƒ`1q๐‘‹๐‘กโ€ฐ

โ€œ ๐‘’๐‘Ÿ๐‘กEโ€œ

๐‘’๐œƒ๐‘‹๐‘กโ€ฐ

.

For the parameters given in Table 1, the moment generating function of ๐‘‹๐‘ก is welldefined on pยด3.15, 3.17q. Numerically, we obtain ๐œƒ โ€œ ยด0.57.

The characteristic function of p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s under Pหš is given by

ฮฆหš๐‘ก p๐‘ขq โ€œEr๐‘’p๐œƒ`๐‘–๐‘ขq๐‘‹๐‘กs

Er๐‘’๐œƒ๐‘‹๐‘กsโ€œ

๐‘’๐‘–๐›พ๐‘ข๐‘ก`

1ยด ๐‘–๐‘šหš๐œ…๐‘ข` p๐›ฟหš2๐œ…2q๐‘ข2ห˜๐‘ก๐œ…

,

where ๐‘šหš โ€œ p๐‘š` ๐›ฟ2๐œƒq๐ด, ๐›ฟหš โ€œ ๐›ฟ?๐ด and ๐ด โ€œ 1ยด๐‘š๐œ…๐œƒยด ๐›ฟ2๐œ…

2๐œƒ2. Hence, p๐‘‹๐‘กq๐‘กPr0,๐‘‡ s is once

again a variance gamma process under Pหš with characteristic tripletยด

๐›พ `ลŸ

|๐‘ฅ|ฤ1๐‘ฅ๐œˆหšpd๐‘ฅq, 0, ๐œˆหš

ยฏ

where

๐œˆหšp๐‘ฅq โ€œ ๐‘’๐œƒ๐‘ฅ๐œˆp๐‘ฅq โ€œ1

๐œ…|๐‘ฅ|exp

ยจ

ห

๐‘šหš

๐›ฟหš2๐‘ฅยด

b

๐‘šหš2

๐›ฟหš2 `2๐œ…

๐›ฟหš|๐‘ฅ|

ห›

โ€š.

The initial Lรฉvy density and the risk-neutral Lรฉvy density are given in Figure 6. Withour choice of parameters, the general trend Er๐‘‹๐‘กs โ€œ p๐›พ `๐‘šq๐‘ก is positive, which leads toa negative ๐œƒ. The large positive jumps will be nearly irrelevant for pricing options, whilelarge negative jumps will still contribute.

Pricing with FFT under the Esscher martingale measure. The explicit form ofthe characteristic function under the Esscher martingale measure Pหš is applied to pricecall options. Figures 7 and 8 represent the sensivity of the call price to a variation ofthe parameters ๐›ฟ and ๐œ… respectively. We take the parameters of Table 1 except for ๐›ฟthat varies in t0.6, 0.8, 1u in Figure 7 and ๐œ… that varies in t0.02, 0.2u in Figure 8. Theparameters ๐›ฟ and ๐œ… provide control over volatility and kurtosis respectively. Increasing ๐›ฟleads to greater volatility which in turn increases the option price. In the other hand,when ๐œ… inscreases, the distribution tails of the asset price become fatter and the price ofthe out-the-money call increases, while the price of the at-the-money option decreases.

19

Page 21: A practical guide and new trends to price European options

7 ConclusionIn this survey, we studied step by step how to price European option under an Exponen-tial Lรฉvy model. We used the Esscher transform technique to construct two equivalentmartingale measures: the Esscher martingale measure and the minimal entropy martin-gale measure. From the observation that the compound return and the simple return of astock price process are very close, we showed that these two measures are almost similar.However, the minimal entropy martingale measure is not adequate to the Carr-Madanpricing method as the characteristic function under this latter does not have an analyticexpression, even in simple models. Under the Esscher martingale measure, we numericallycomputed the price of European option using the Carr-Madan method based on the fastFourier transform. Numerical error of the Carr-Madan method is shown with comparisonto the closed-form formula in the Black & Scholes context. Moreover, the sensivity ofoption price to jumps is presented in the Merton model and the variance gamma modelwith respect to jump parameters.

References[1] David Applebaum. Lรฉvy processes and stochastic calculus. Cambridge University

Press, 2009.

[2] Ole E Barndorff-Nielsen. Normal inverse Gaussian distributions and stochasticvolatility modelling. Scandinavian Journal of Statistics, 24(1):1โ€“13, 1997.

[3] Ole E Barndorff-Nielsen. Processes of normal inverse Gaussian type. Finance andStochastics, 2(1):41โ€“68, 1997.

[4] David S Bates. Post-crash moneyness biases in S&P 500 futures options. Rod-ney, L. White Center working paper, Wharton School, University of Pennsylvania,Philadelpia, PA, 1995.

[5] Fred Espen Benth, Martin Groth, and Paul C Kettler. A quasi-Monte Carlo algorithmfor the normal inverse Gaussian distribution and valuation of financial derivatives.International Journal of Theoretical and Applied Finance, 9(06):843โ€“867, 2006.

[6] Jean Bertoin. Lรฉvy processes, volume 121. Cambridge University Press, 1998.

[7] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.Journal of Political Economy, 81(3):637โ€“654, 1973.

[8] Hans Bรผhlmann, Freddy Delbaen, Paul Embrechts, and Albert N Shiryaev. No-arbitrage, change of measure and conditional Esscher transforms. CWI quarterly,9(4):291โ€“317, 1996.

[9] Peter Carr, Hรฉlyette Geman, Dilip Madan, and Marc Yor. The fine structure of assetreturns: An empirical investigation. The Journal of Business, 75(2):305โ€“333, 2002.

[10] Peter Carr and Dilip Madan. Option valuation using the fast Fourier transform.Journal of Computational Finance, 2(4):61โ€“73, 1999.

[11] Terence Chan. Pricing contingent claims on stocks driven by Lรฉvy processes. Annalsof Applied Probability, 9(2):504โ€“528, 1999.

20

Page 22: A practical guide and new trends to price European options

[12] Rama Cont and Peter Tankov. Financial modelling with jump processes. Chapman &Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (Fla.),London, New York, 2004.

[13] James W Cooley and John W Tukey. An algorithm for the machine calculation ofcomplex Fourier series. Mathematics of Computation, 19(90):297โ€“301, 1965.

[14] Ernst Eberlein and Ulrich Keller. Hyperbolic distributions in finance. Bernoulli,1(3):281โ€“299, 1995.

[15] Ernst Eberlein, Ulrich Keller, and Karsten Prause. New insights into smile, mispric-ing, and Value-at-Risk: The hyperbolic model. The Journal of Business, 71(3):371โ€“405, 1998.

[16] Robert J Elliott, Leunglung Chan, and Tak Kuen Siu. Option pricing and Esschertransform under regime switching. Annals of Finance, 1(4):423โ€“432, 2005.

[17] Hans Follmer and Martin Schweizer. Hedging of contingent claims. Applied StochasticAnalysis, 5:389, 1991.

[18] Marco Frittelli. The minimal entropy martingale measure and the valuation problemin incomplete markets. Mathematical Finance, 10(1):39โ€“52, 2000.

[19] Tsukasa Fujiwara and Yoshio Miyahara. The minimal entropy martingale measuresfor geometric Lรฉvy processes. Finance and Stochastics, 7(4):509โ€“531, 2003.

[20] Hรฉlyette Geman. Pure jump Lรฉvy processes for asset price modelling. Journal ofBanking & Finance, 26(7):1297โ€“1316, 2002.

[21] Hans-Ulrich Gerber and Elias S W Shiu. Option pricing by Esscher transforms.Transactions of the Society of Actuaries, XLVI:99โ€“191, 1994.

[22] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. SpringerScience & Business Media, 2003.

[23] Thomas Goll and Ludger Rรผschendorf. Minimax and minimal distance martingalemeasures and their relationship to portfolio optimization. Finance and Stochastics,5(4):557โ€“581, 2001.

[24] Steven L Heston. A closed-form solution for options with stochastic volatility withapplications to bond and currency options. Review of Financial Studies, 6(2):327โ€“343, 1993.

[25] Friedrich Hubalek and Carlo Sgarra. Esscher transforms and the minimal entropymartingale measure for exponential Lรฉvy models. Quantitative Finance, 6(2):125โ€“145, 2006.

[26] Julien Hugonnier, Dmitry Kramkov, and Walter Schachermayer. On utility-basedpricing of contingent claims in incomplete markets. Mathematical Finance, 15(2):203โ€“212, 2005.

[27] Jean Jacod and Albert Shiryaev. Limit theorems for stochastic processes, volume288. Springer Science & Business Media, 2013.

21

Page 23: A practical guide and new trends to price European options

[28] Steven G Kou. A jump-diffusion model for option pricing. Management Science,48(8):1086โ€“1101, 2002.

[29] Roger W Lee et al. Option pricing by transform methods: extensions, unificationand error control. Journal of Computational Finance, 7(3):51โ€“86, 2004.

[30] Dilip Madan, Peter Carr, and Eric Chang. The variance gamma process and optionpricing. European Finance Review, 2(1):79โ€“105, 1998.

[31] Dilip Madan and Eugene Seneta. The variance gamma (V.G.) model for share marketreturns. The Journal of Business, 63(4):511โ€“524, 1990.

[32] Robert C Merton. Option pricing when underlying stock returns are discontinuous.Journal of Financial Economics, 3(1-2):125โ€“144, 1976.

[33] Yoshio Miyahara. Canonical martingale measures of incomplete assets markets. Prob-ability Theory and Mathematical Statistics (Tokyo, 1995), pages 343โ€“352, 1996.

[34] Yoshio Miyahara. [Geometric Lรฉvy Process & MEMM] pricing model and relatedestimation problems. Asia-Pacific Financial Markets, 8(1):45โ€“60, 2001.

[35] Mark Rubinstein. Nonparametric tests of alternative option pricing models using allreported trades and quotes on the 30 most active CBOE option classes from august23, 1976 through august 31, 1978. The Journal of Finance, 40(2):455โ€“480, 1985.

[36] Mark Rubinstein. Implied binomial trees. The Journal of Finance, 49(3):771โ€“818,1994.

[37] Tina Hviid Rydberg. The normal inverse Gaussian Lรฉvy process: simulation and ap-proximation. Communications in Statistics. Stochastic Models, 13(4):887โ€“910, 1997.

[38] Ken-iti Sato. Lรฉvy processes and infinitely divisible distributions. Cambridge Univer-sity Press, 1999.

[39] Martin Schweizer. On the minimal martingale measure and the Fรถllmer-Schweizerdecomposition. Stochastic Analysis and Applications, 13(5):573โ€“599, 1995.

[40] James S Walker. Fast Fourier transforms, volume 24. CRC press, 1996.

[41] P Wilmott. Derivatives, the theory and practice of financial engineering. JohnWiley&Sons, Chichester, 1998.

[42] Luogen Yao, Gang Yang, and Xiangqun Yang. A note on the mean correcting martin-gale measure for geometric Lรฉvy processes. Applied Mathematics Letters, 24(5):593โ€“597, 2011.

[43] Jianwei Zhu. Modular Pricing of Options (MPO). In Modular Pricing of Options:An Application of Fourier Analysis, pages 25โ€“97. Springer, 2000.

22

Page 24: A practical guide and new trends to price European options

ฮฝ(x)ฮฝโˆ—(x)ฮฝQ

โˆ—(x)

ฮธ โ‰ˆ โˆ’0.35

ฮฒ โ‰ˆ โˆ’0.37

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

00.

51

1.5

2

(a) ๐‘š โ€œ ยด0.1

Jump density of ฮฝ(x)Jump density of ฮฝโˆ—(x)Jump density of ฮฝQ

โˆ—(x)

ฮปโˆ— โ‰ˆ 1.04

ฮปQโˆ— โ‰ˆ 1.03

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

00.

51

1.5

2

(b) ๐‘š โ€œ ยด0.1

ฮฝ(x)ฮฝโˆ—(x)ฮฝQ

โˆ—(x)

ฮธ โ‰ˆ 0.67

ฮฒ โ‰ˆ 0.73

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

00.

51

1.5

2

(c) ๐‘š โ€œ ยด0.3

Jump density of ฮฝ(x)Jump density of ฮฝโˆ—(x)Jump density of ฮฝQ

โˆ—(x)

ฮปโˆ— โ‰ˆ 0.83

ฮปQโˆ— โ‰ˆ 0.84

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

00.

51

1.5

2

(d) ๐‘š โ€œ ยด0.3

ฮฝ(x)ฮฝโˆ—(x)ฮฝQ

โˆ—(x)

ฮธ โ‰ˆ โˆ’2.73

ฮฒ โ‰ˆ โˆ’2.53

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

00.

51

1.5

2

(e) ๐‘š โ€œ 0.3

Jump density of ฮฝ(x)Jump density of ฮฝโˆ—(x)Jump density of ฮฝQ

โˆ—(x)

ฮปโˆ— โ‰ˆ 0.51

ฮปQโˆ— โ‰ˆ 0.48

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

00.

51

1.5

2

(f) ๐‘š โ€œ 0.3

Figure 1: Lรฉvy densities and jump size densities under the historical measure, the Esschermartingale measure and the minimal entropy martingale measure in the Merton model.23

Page 25: A practical guide and new trends to price European options

0 50 100 150 200 250 300

020

4060

8010

0

Strike K

Opt

ion

pric

eC(K

)

B&S : ยต = 0.145, ฯƒ = 0.3Merton : ฮณ = 0.2, ฯƒ = 0.3, ฮป = 1,m = โˆ’0.1, ฮด = 0.2

Figure 2: Option price with respect to the strike ๐พ. A comparison between a B&S modeland a Merton model with the same expectation ๐œ‡ยด ๐œŽ22 โ€œ ๐›พ ` ๐œ†๐‘š.

0 50 100 150 200 250 300

020

4060

8010

0

Strike K

Opt

ion

pric

eC(K

)

ฮป = 0ฮป = 2ฮป = 4ฮป = 6

Figure 3: Call price sensivity to the jump intensity in Merton model.

24

Page 26: A practical guide and new trends to price European options

80 100 120 140 160

05

1015

2025

Strike K

Opt

ion

pric

eC(K

)

m = โˆ’0.1m = โˆ’0.3m = 0.3

Figure 4: Call price sensivity to jump size mean in Merton in model.

80 100 120 140 160

05

1015

2025

Strike K

Opt

ion

pric

eC(K

)

ฮด = 0.1ฮด = 0.2ฮด = 0.4

Figure 5: Call price sensivity to jump size variance in Merton model.

25

Page 27: A practical guide and new trends to price European options

020

4060

80

ฮฝโˆ—(x)ฮฝ(x)

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Figure 6: The risk neutral Lรฉvy density ๐œˆหšp๐‘ฅq of the Esscher martingale measure in thevariance gamma model, compared to the initial Lรฉvy density ๐œˆp๐‘ฅq.

0 50 100 150 200 250 300

020

4060

8010

0

Strike K

opti

onpr

iceC(K

)

ฮด = 0.6ฮด = 0.8ฮด = 1

Figure 7: Call price sensivity to the volatility parameter in variance gamma model.

26

Page 28: A practical guide and new trends to price European options

Strike K

Opt

ion

pric

eC(K

)

80 120 160 200 240 280

510

1520

2530

3540

ฮบ = 0.2ฮบ = 0.02

Figure 8: Call price sensivity to the kurtosis parameter in variance gamma model.

27