a numerical prediction of local atmospheric processes

57
A NUMERICAL PREDICTION OF LOCAL ATMOSPHERIC PROCESSES A.V.Starchenko Tomsk State University

Upload: bayard

Post on 11-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

A NUMERICAL PREDICTION OF LOCAL ATMOSPHERIC PROCESSES. A.V.Starchenko Tomsk State University. Introduction. Nowadays a broad range of problems of atmospheric physics, climate and environment protection is solved with application of mathematical modelling approach. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

A NUMERICAL PREDICTION OF LOCAL ATMOSPHERIC

PROCESSES

A.V.Starchenko

Tomsk State University

Page 2: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

IntroductionNowadays a broad range of problems of atmospheric physics, climate and environment protection is solved with application of mathematical modelling approach. Modelling systems, developed at large centres of atmospheric research, are applied for scenario analysis, weather prediction, air quality investigation.For example, CMAQ, Community Multiscale Air Quality Chemical Transport Modelling System; EURAD, EURopean Acid Deposition model, EZM, European Zooming Model.

Dynamic core of such systems are or well-known models (e.g. MM5) either original models.

Page 3: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

MM5 (Mesoscale Model 5)The PSU/NCAR mesoscale model is a limited-area, nonhydrostatic or hydrostatic, terrain-following sigma-coordinate model designed to simulate or predict mesoscale and regional-scale atmospheric circulation. It has been developed at Penn State and NCAR as a community mesoscale model.The Fifth-Generation NCAR / Penn State Mesoscale Model (MM5) includes a multiple-nest capability, nonhydrostatic dynamics, which allows the model to be used at a few-kilometer scale, multitasking capability on shared- and distributed-memory machines, a four-dimensional data-assimilation capability, more physics options.

Page 4: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Mesoscale Model 5MM5 generates meteorological fields: - horizontal and vertical wind components, - pressure,- temperature,- air humidity,- cloudiness and precipitation parameters,- heat, moisture and momentum fluxes,- short-wave and long-wave radiation.

Page 5: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Mesoscale Model 5Modeling system MM5 includes a lot of parameterization schemes of subgrid physical processes, which are chosen in correspondence with scales of investigated processes:- 8 cumulus parameterization - 7 PBL schemes - 5 radiation schemes - 8 explicit moisture schemes- 4 surface schemes.

Page 6: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

The Weather Research and Forecast Model is a next-generation mesocale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. It features multiple dynamical cores, a 3-dimensional variational (3DVAR) data assimilation system, and a software architecture allowing for computational parallelism and system extensibility. The WRF model is a fully compressible, nonhydrostatic model. Its vertical coordinate is a terrain-following hydrostatic pressure coordinate. Model uses the Runge-Kutta 2nd and 3rd order time integration schemes, and 2nd to 6th order advection schemes in both horizontal and vertical directions. The dynamics conserves scalar variables.

Page 7: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

The WRF model is designed to be a flexible, state-of-the-art atmospheric simulation system that is portable and efficient on available parallel computing platforms. WRF is suitable for use in a broad range of applications across scales ranging from meters to thousands of kilometres, including:- Idealized simulations (e.g. LES, convection, baroclinic waves) - Parameterization research - Data assimilation research - Forecast research - Real-time NWP - Coupled-model applications - Teaching

Page 8: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

WRF includes a lot of physic options, which can be combined. Options are varied from simple and effective to complicate,required additional computations- 8 schemes of microphysics (Kessler, Lin, NCEP simple ice,NCEP mixed phase, Eta mycrophisics, ...)- 3 schemes of convection (KF, BMJ, New KF)- 2 schemes of long-wave radiation (RRTM, ETA GFDL)- 3 schemes of short-wave radiation (Dudhia, Goddard, ETA GFDL)- 3 schemes of surface layer (none, Monin-Obukhov, MYJ)- 3 schemes of land-surface parameterization (simple, OSU, ...)- 3 schemes of PBL (MRF, MYJ)- 2 schemes of subgrid diffusion parameterization

Page 9: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

MM5 & WRFSince the MM5&WRF modeling system are primarily designedfor real-data studies/simulations, it requires the following datasets to run:- Topography, landuse and vegetation (in categories); (1o - 30’’ resolution)- Gridded atmospheric data that have at least these variables: sea-level pressure, wind, temperature, relative humidity and geopotential height; and at these pressure levels: surface, 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100 mb; - Observation data that contains soundings and surface reports (final analysis data NCEP or ECMWF, global data NCEP)

Page 10: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Simulation cases• Two temporal periods: 16-17 May 2004; 20-21

October 2004; • Three local nested domains with horizontal sizes

450х450, 150х150 и 50х50km2. South of Western Siberia, Tomsk (56,5o N, 85o E) is in the centre of domains;

• Initial state of atmosphere and lateral boundary conditions were set up on the basis of NCEP final analysis data

Page 11: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Simulation conditions

D1

D2

D3

Novosibirsk

Tomsk

Kemerovo

D1

D2

D3

NovosibirskKemerovo

Three nested domains D1, D2, D3 and distribution of landuse categories

Page 12: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Simulation options

• Grids 52х52х31 for domains D1, D2, D3

• Horizontal resolution: 9; 3; 1 km for D1, D2, D3

• Temporal step: 27; 9; 3 sec for D1, D2, D3

• Vertical size of domains: 17km

• Cluster IAO SB RAS

• Grids 52х52х31 for domains D1, D2, D3

• Horizontal resolution: 9; 3; 1 km for D1, D2, D3

• Temporal step: 60; 30; 10 sec for D1, D2, D3

• Vertical size of domains: 17 km

• Cluster IAO SB RAS

MM5MM5 WRFWRF

Page 13: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Simulation options

• Mixed phase microphysics by Reisner

• RRTM scheme for long wave radiation

• Similarity theory for surface layer

• Thermal diffusion for soil

• Blackadar scheme for PBL

• None cumulus parametrization

• Eta Grid-Scale Cloud and Precipitation scheme by Ferrier

• RRTM scheme for long wave radiation

• Dudhia scheme for short wave radiation

• Similarity theory for surface layer

• Thermal diffusion for soil

• MYJ scheme for PBL

MM5MM5 WRFWRF

Page 14: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Comparison of the models

-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim e, hrs

0

1

2

3

4

5

Win

d ve

loci

ty, m

/s

-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim e, hrs

0

100

200

300

400

Win

d di

rect

ion

, deg

-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim e, h rs

10

15

20

25

30

35

40

Te

mpe

ratu

re, C

LegendH ydrom et observations

W R F m odel

TSU -IAO m odel

M M 5 m odel

TO R station IAO

16-17 M ay 2004

Time=-20…0: 16 May 2004;Time= 0…24: 17 May 2004

MM5MM5WRFWRF

Wind velocity and direction at 10mAir temperature at 2m in Tomsk

Page 15: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D1

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

16 May 2004, 14:00, Domain D1

MM5 WRF

Page 16: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D1

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

17 May 2004, 14:00, domain 1

MM5 WRF

Page 17: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Air temperature at 2m for D1

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

280

282

284

286

288

290

292

294

296

298

300

302

304

306

308

310

17 May 2004, 14:00, Domain 1

MM5 WRF

Page 18: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Vertical distribution of air potential temperature

17 May 2004, 14:00 LST, Domain D1

MM5 WRF

Page 19: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Vertical distribution of air absolute humidity

MM5 WRF

17 May 2004, 14:00 LST, Domain D1

Page 20: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D3

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

16 May 2004, 14:00, Domain D3

MM5 WRF

Page 21: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D3

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

17 May 2004, 14:00, Domain D3

MM5 WRF

Page 22: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Comparison of the models

-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim e, hrs

0

2

4

6

8

10

Win

d v

elo

city

, m/s

-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim e, hrs

0

100

200

300

400

Win

d d

ire

ctio

n, d

eg

-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim e, hrs

- 8

- 6

- 4

- 2

0

Te

mp

era

ture

, C

LegendH ydrom et observations

W R F m odel

M M 5 m odel

20-22 O ctober 2004

Wind velocity and direction at 10mAir temperature at 2m in Tomsk

Time=-20…0: 20 October 2004;Time= 0…24: 21 October 2004

MM5MM5WRFWRF

Page 23: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D1MM5 WRF

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

20 October 2004, 14:00, domain 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Page 24: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D1MM5 WRF

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

21 October 2004, 14:00, domain 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Page 25: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D3MM5 WRF

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

20 October 2004, 14:00, Domain D3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Page 26: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Wind at 10m for the domain D3

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

21 October 2004, 14:00, Domain D3

MM5 WRF

Page 27: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Generation of cloudness

Page 28: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 29: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 30: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 31: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 32: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 33: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 34: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 35: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 36: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 37: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 38: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 39: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 40: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 41: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 42: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 43: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 44: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 45: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 46: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 47: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 48: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 49: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 50: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 51: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 52: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES
Page 53: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Parallel realization of the models

• Linux cluster IAO: • 10 nodes, each with 2

processors Pentium III 1GHz and RAM 1Gb

• Communication net 1Gbs Ethernet, “star” topology

• 11Gflops on the LINPACK test

2 4 6 8 10 12 14 16 18 20

Num ber of processors

1

2

3

4

5

6

7

Sp

ee

d u

p

M odelsM esoscale M odel of the F ifth G enerationW eather Research and Forecast

2 4 6 8 10 12 14 16 18 20

Num ber of processors

0

10

20

30

40

50

60

Tim

e o

f ca

lcu

latio

n,

min

Tem pora l period o f s im ulation 1hour

MM5 80Mb, WRF 210Mb

Page 54: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Ozone concentration, measured by TOR-station IAO near Tomsk on 16 May 2004

O3,mkg/m3

Page 55: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Generic Reaction Set kinetic scheme of ozone formation

• Rsmog + hv => RP + Rsmog + APM

• RP + NO => NO2 • NO2 + hv => NO + O3• NO + O3 => NO2• RP + RP => RP + H2O2• RP + NO2 => SGN• RP + NO2 => APM• RP + SO2 => APM• H2O2 + SO2 => APM• O3 + SO2 => APM

Page 56: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Air pollution in Tomsk

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

tim e, hrs

0

40

80

120

O3

,pp

b

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

tim e, hrs

0

10

20

30

40

50

NO

2,p

pb

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

tim e, hrs

0

400

800

1200

1600

2000

CO

,pp

b

LegendTO R-stationPrediction

16-17 May 2004

Time=-20…0: 16 May 2004;Time= 0…24: 17 May 2004

Page 57: A NUMERICAL PREDICTION  OF LOCAL ATMOSPHERIC PROCESSES

Conclusion• Results of application of mesoscale models MM5 and

WRF for investigation of regional and local atmospheric processes over Western Siberia and Tomsk Region were presented.

• A comparison with observation data on 16-17 May 2004 and on 20-21 October 2004 shows a possibility of application of these models for solution of air quality problems and an atmospheric research. But additional testing of MM5 and WRF is necessary to select more appropriate land-surface parametrization options.

• Research is funded by RFBR, grant N 04-07-90219.