a new six-axis load cell - part i design

16
A New Six-axis Load Cell. Part I: Design G. Mastinu & M. Gobbi & G. Previati Received: 3 December 2009 / Accepted: 24 March 2010 / Published online: 13 May 2010 # Society for Experimental Mechanics 2010 Abstract A new high precision six-axis load cell is presented in two companion papers. The first paper (this one) is focused on the presentation of the load cell, the conceptual design, the modelling and the embodiment design. The second paper refers to the error analysis, the construction and the experimental assessment of the performances. The new load cell is able to measure the three components of both a force and a moment acting on the load cell itself. The sensing structural element of the six-axis load cell is basically a three spoke structure. Strain gauges are conveniently located on highly stressed areas. The sensing structural element is constrained to the frame of the load cell by means of special joints conceived to avoid friction. The mechanical behaviour of the load cell is described by means of analytical equations that allow a quick preliminary design focused on the given technical specifications. A finite element model has been used to asses the mechanical behaviour of the load cell. Keywords Six-axis load cell . Sliding spherical joint . Analytical modelling . Calibration Notation F vector of forces and moments acting at the load cell centre Ε b vector of the strains " i 1¼1;...;6 ð Þ C b load cell calibration matrix T vector of reaction forces at the three joints N i , T ii¼1;2;3 ð Þ ΔV vector of the output voltages ΔV ii¼1;;6 ð Þ at the Wheatstone bridges K gauge factor V excitation voltage at the Wheatstone bridges L spoke length M i calibration matrix M tst calibration matrix (statically determined structure) M e experimental calibration matrix M thp calibration matrix (quasi-statically determined structure) k a joint axial stiffness k rx /k ry joint radial stiffnesses k t joint torsional stiffness k bt /k b joint bending stiffnesses k x /k y /k z load cell interface stiffnesses S vector of the internal forces and moments acting at the spoke tips δ i displacements and rotations at a spoke tip R t (α) rotation matrix A(ω) Inertancetransfer function acceleration/force h distance between a strain gauge and the spoke tip (see Fig. 4) h z distance between a strain gauge and the three spoke structure centre (see Fig. 4) ν vector of the bending moments acting on the six strain gauge bridges ν tst vector of the bending momentsstatically determined structure ν thp vector of the bending momentsquasi-statically determined structure χ load cell sensitivity matrix χ tst statically determined structure sensitivity matrix χ trj rigid joints model sensitivity matrix χ trs rigid spokes model sensitivity matrix δν error on the strain (bending) measurements δχ error on the sensitivity matrix Note: bold symbol refers to a vector or a matrix G. Mastinu : M. Gobbi (*) : G. Previati Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156 Milan, Italy e-mail: [email protected] Experimental Mechanics (2011) 51:373388 DOI 10.1007/s11340-010-9355-1

Upload: arturseibert

Post on 27-Nov-2014

282 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: A New Six-Axis Load Cell - Part I Design

A New Six-axis Load Cell.Part I: Design

G. Mastinu & M. Gobbi & G. Previati

Received: 3 December 2009 /Accepted: 24 March 2010 /Published online: 13 May 2010# Society for Experimental Mechanics 2010

Abstract A new high precision six-axis load cell is presentedin two companion papers. The first paper (this one) is focusedon the presentation of the load cell, the conceptual design, themodelling and the embodiment design. The second paperrefers to the error analysis, the construction and theexperimental assessment of the performances. The new loadcell is able to measure the three components of both a forceand a moment acting on the load cell itself. The sensingstructural element of the six-axis load cell is basically a threespoke structure. Strain gauges are conveniently located onhighly stressed areas. The sensing structural element isconstrained to the frame of the load cell by means of specialjoints conceived to avoid friction. The mechanical behaviourof the load cell is described by means of analytical equationsthat allow a quick preliminary design focused on the giventechnical specifications. A finite element model has been usedto asses the mechanical behaviour of the load cell.

Keywords Six-axis load cell . Sliding spherical joint .

Analytical modelling . Calibration

NotationF vector of forces and moments acting at the load

cell centreΕb vector of the strains "i 1¼1;...;6ð ÞCb load cell calibration matrixT vector of reaction forces at the three joints Ni,

Ti i¼1;2;3ð ÞΔV vector of the output voltages ΔVi i¼1;���;6ð Þ at the

Wheatstone bridges

K gauge factorV excitation voltage at the Wheatstone bridgesL spoke lengthMi calibration matrixMtst calibration matrix (statically determined structure)Me experimental calibration matrixMthp calibration matrix (quasi-statically determined

structure)ka joint axial stiffnesskrx/kry joint radial stiffnesseskt joint torsional stiffnesskbt/kb joint bending stiffnesseskx/ky/kz load cell interface stiffnessesS vector of the internal forces and moments acting

at the spoke tipsδi displacements and rotations at a spoke tipRt(α) rotation matrixA(ω) Inertance—transfer function acceleration/forceh distance between a strain gauge and the spoke tip

(see Fig. 4)hz distance between a strain gauge and the three

spoke structure centre (see Fig. 4)ν vector of the bending moments acting on the six

strain gauge bridgesνtst vector of the bending moments—statically

determined structureνthp vector of the bending moments—quasi-statically

determined structureχ load cell sensitivity matrixχtst statically determined structure sensitivity matrixχtrj rigid joints model sensitivity matrixχtrs rigid spokes model sensitivity matrixδν error on the strain (bending) measurementsδχ error on the sensitivity matrixNote: bold symbol refers to a vector or a matrix

G. Mastinu :M. Gobbi (*) :G. PreviatiDepartment of Mechanical Engineering,Politecnico di Milano,Via La Masa, 1,20156 Milan, Italye-mail: [email protected]

Experimental Mechanics (2011) 51:373–388DOI 10.1007/s11340-010-9355-1

Page 2: A New Six-Axis Load Cell - Part I Design

Introduction

In experimental testing activities the use of multi axis loadcells is widespread, e. g. balances for wind tunnels [1–4],structures [5–19],.... Many commercially available loadcells are able to measure the steady or dynamic forces andmoments acting on a structure [1, 5–10, 12–25]. Generallysuch measuring devices are quite expensive and their usageis restricted to advanced research and development activi-ties [1, 3, 4]. The high cost is often due to the relativelycomplex hardware, to time consuming calibration, and tospecial materials used for the manufacturing.

The new six-axis load cell presented in this paper is arelatively simple device, and is basically an analog deviceable to measure the three components of a force and thethree components of a moment acting on the load cell itself.

With respect to other similar six-axis load cells, thesensing element of the six-axis load cell is—in principle—astatically determined structure (actually, as it will beexplained later, it is a quasi-statically determined structure).Such a sensing element is shaped as a three spoke structure,constrained to the external body of the load cell (frame) bymeans of three special joints positioned at the tip of eachspoke. A proper design of the joints has been conceived inorder to make friction vanish. Patents are pending on theload cell [25–28].

The six-axis load cell was especially developed for theindoor characterisation of vehicle suspension systems; see[29] for further details. The construction principle of thepresented new six axis load cell has been used extensivelyreferring to measuring hubs (a special class of six-axis loadcells used to measure the forces and moments acting on awheel [11, 25–28, 30–37]).

In the following sections, the load cell concept design [25–28], the mathematical modelling, and the embodiment designwill be presented. Another paper [38], companion of thisone, will present the error analysis, the construction and theexperimental assessment of the performance of the load cell.

Load Cell Design Concept

The sensing element of the six-axis load cell is a threespoke structure [25–28], Fig. 1. The three spoke structure,is constrained to the outer (frame) of the load cell by meansof three special joints positioned at the tip of each spoke.Each joint allows 4 degrees of freedom, i.e. three rotationsand a translation (sliding) along the axis of the spoke. Sucha joint will be named hereafter ‘sliding spherical joint’. Thethree spoke structure constrained by this type of joints (1, 2,3 in Fig. 1) is statically determined. The proof can beobtained simply by inspection of Fig. 1, in which the twoconstraints (for ex. 1, 3) at two adjacent spokes are

equivalent to the virtual rotational joint (1+3). This virtualjoint makes the structure a simply supported beam which isclearly a statically determined structure. The exploitation ofa statically determined structure prevents the negativeeffects due to the non-uniform distribution of the temper-ature on the load cell and the negative effects due to thecompliance of constraints.

When the load cell is loaded, the three spoke structure inFig. 1 is subject to two forces at each spoke tip, a total of 6forces are acting at the three spoke tips. Namely, there are thethree forces T1 T2 T3 and other three forces N1 N2 N3 normalto them. By sensing the bending moments at each spoke root(or acting at a known position along the spokes) the sixforces Ti Ni at the spoke tips are obtained. Given such sixforces, the three forces and the three moments acting at thecentre of the load cell (F) can be computed by solving theequilibrium equations (see next Sect. Mathematical Model).

A special design [25, 28] of the sliding spherical jointshas been performed in order to make friction vanish. After acomprehensive analysis, the sliding spherical joint at thespoke tip has been designed as a circular spoked structure(Fig. 2) (this circular spoked structure has not to beconfused with the other three-spoke sensing structure).Some stiffnesses have been associated to the degrees offreedom of the sliding spherical joint, so actually we havean elastic sliding spherical joint. By employing these elasticjoints, the whole load cell structure is no longer staticallydetermined. Anyway, it can be considered quasi-staticallydetermined as the three sliding spherical joints are actuallysprings with weak stiffness associated to the three rotationsand to the sliding motion along the axis of the spoke.Figure 2 shows the geometry of the developed elasticsliding spherical joint. The central hole is fitted and fixed toeach spoke tip while the outer ring is constrained to theload cell frame.

y

Fx

Fz

23

11+3

y x

z

x3

z3

z2x2

x1

z1

T1

T2

T3

N1

N2

N3

Px

Pyy

Fx

Fz

23

11+3

y x

z

x3

z3

z2x2

x1

z1

T1

T2

T3

N1

N2

N3

Px

Pz

Py

Fig. 1 Concept design of the six-axis load cell suitable to measure the 3forces (Fx, Fy, Fz) and 3 moments (Px, Py, Pz) acting at the centre of theload cell. The concept design refers to a statically determined structure

374 Exp Mech (2011) 51:373–388

Page 3: A New Six-Axis Load Cell - Part I Design

As the target is a quasi-statically determined structure,the design of the joint stiffnesses is a fundamental task. Thespoked structure in Fig. 2 has low axial, low torsional andlow bending stiffness compared to radial stiffness. Thedesign of the circular spoked structure (elastic slidingspherical joint) has been successfully performed based onanalytical modelling (see Sect. Mathematical Model, thesame model can be applied to design the elastic slidingspherical joint) and on finite element analysis (Fig. 3). Theaxial stiffness (associated to the sliding motion) is set lessthan 1% of the radial stiffness.

Load Cell Modeling

Mathematical Model

In this section the mechanical and mathematical modellingof the six-axis load cell is presented. Three models havebeen derived and used. At first, a simple model, represent-ing the statically determined structure (shown in Fig. 1), isintroduced. Then, a more refined analytical model referringto the quasi-statically determined structure, is derivedwhich takes into account the actual stiffnesses of the elasticsliding spherical joints (Fig. 3) and the compliance of thethree spokes pertaining to the sensing structure in (Fig. 4).Finally a finite element model is presented.

Let us consider:

– the vector of the forces and of the moments acting atthe load cell F ¼ Fx Fy Fz Fx Fy Fz½ � (seecoordinate system in Fig. 1),

– the vector of the strains measured at the locations shownin Fig. 4 Es¼ "1a "1b "2a "2b "3a "3b "4a "4b "5a "5b "6a "6b½ �T .

The following relationship holds

F ¼ F Esð Þ ð1Þ Fig. 4 Location of the 12 strain gauges

Fig. 3 FEM analysis of the elastic sliding spherical joint. Axial (a),torsional (b) and bending (c) deformations related to the axial,torsional and bending stiffnesses respectively

Fig. 2 Circular spoked (steel) structure as an elastic spherical slidingjoint

Exp Mech (2011) 51:373–388 375

Page 4: A New Six-Axis Load Cell - Part I Design

The above equation becomes F ¼ C � ES if a linearrelationship between F and ΕS holds. As stated in theprevious section, half bridge connections of the straingauges have been used for measuring the two bendingmoments. Therefore the vector of the bending strainssignals reduces to Eb ¼ "1 "2 "3 "4 "5 "6½ �T . Therelationship between F and Εb becomes:

F ¼ Cb � Eb ð2Þ

where Cb is a 6×6 constant square matrix referred to as theload cell stiffness matrix.

By considering the ideal statically determined structure(Fig. 1), the vector Εb is directly related to the vector of the6 reaction forces at the three joints T¼ N1 T1 N2 T2 N3 T3½ �T(Fig. 1) (l denotes the length of a single spoke)

N1

T1N2

T2N3

T3

26666664

37777775¼

0 �1=3 0 2=3l 0 0�2=3 0 0 0 �1=3l 00 �1=3 0 �1=3l 0 �1=l

ffiffiffi3

p1=3 0 1=

ffiffiffi3

p0 �1=3l 0

0 �1=3 0 �1=3l 0 1=lffiffiffi3

p1=3 0 �1=

ffiffiffi3

p0 �1=3l 0

26666664

37777775�

Fx

Fy

Fz

Px

Py

Pz

26666664

37777775¼ Ast � F ð3Þ

From the vector of the reaction forces, the strains can bederived by the following equation

Eb ¼ h

E

1=Wxx 0 0 0 0 00 1=Wyy 0 0 0 00 0 1=Wxx 0 0 00 0 0 1=Wyy 0 00 0 0 0 1=Wxx 00 0 0 0 0 1=Wyy

26666664

37777775T

ð4Þwhere E is the elastic modulus of the material, h theapplication arm (see Fig. 4) and W the spoke sectionmodulus. A well-known relationship between the vector ofthe bridges output voltages ΔV and the vector Εb exists (k

and V are respectively the gauge factor and the bridgeexcitation voltage)

ΔV ¼ ΔV1ΔV2ΔV3ΔV4ΔV5ΔV6½ �T ¼ V

2k � Eb ð5Þ

The theoretical calibration matrix Mtst is computed asfollows

ΔV ¼ V2 k � Eb � Ast

� � � F ¼ inv M tstð Þ � FF ¼ M tst �ΔV

ð6Þ

For square section spokes, the matrix Eb can be replacedby the scalar expression h/EW. In general, the matrix Mtst

has the expression

Mtst ¼ 2

V

1

k

E

h�

0 0 0 3Wyy

2 0 3Wyy

2Wxx 0 Wxx 0 Wxx 0

0ffiffiffi3

pWyy 0

ffiffi3

pWyy

2 0ffiffi3

pWyy

2

�WxxL 0 WxxL2 0 WxxL

2 00 �3LWyy 0 �3LWyy 0 �3LWyy

0 0ffiffi3

pLWxx2 0 � ffiffi

3p

LWxx2 0

266666664

377777775

The actual load cell has elastic sliding spherical joints atthe spoke tips (Figs. 3, 8 and 9), so, in order to compute thecalibration matrix, the analytical mathematical model of thequasi-statically determined structure of the load cell hasbeen derived. A single spoke tip pertaining to the sensingstructure in Fig. 4 is shown Fig. 5. The actual stiffnesses atthe spoke tip (axial ‘ka’, radial ‘krx–kry’, torsional ‘kt’ andbending ‘kbt–kb’ stiffnesses) are taken into account. Themodel accounts for the compliance of each spoke of thesensing structure, as shown in Fig. 6.

By considering

– the vector S of the 18 internal forces and momentsacting at the 3 spoke at the central node of the threespoke sensing structure as shown in Fig. 5 (localcoordinate system xi; yi; zi i¼1;2;3ð Þ in Fig. 1),

Si i¼1;2;3ð Þ ¼ SxiSyiSziMxiMyiMzi

h i

S ¼ S1S2S3½ �T

376 Exp Mech (2011) 51:373–388

Page 5: A New Six-Axis Load Cell - Part I Design

– the 3 vectors δi of the displacements “δ” androtations “φ” of each spoke tip root (local coordinatesystem)

di i¼1;2;3ð Þ ¼ dxi dyi dzi ϕxi ϕyi ϕzi

h iT– the rotation matrix Rt að Þ a ¼ �2=3pð Þ defined as

follows

Rt að Þ ¼ R að Þ 00 R að Þ

� �

R að Þ ¼cos að Þ 0 sin að Þ

0 1 0� sin að Þ 0 cos að Þ

24

35

In order to compute the 18 components of the vectorS, a 18 equations system has been written in the followingform

F ¼ I � S1 þ Rt 2=3pð Þ � S2 þ Rt �2=3pð Þ � S3

d1 ¼ Rt 2=3pð Þ � d2d1 ¼ Rt �2=3pð Þ � d3

8><>: ð7Þ

The first equation refers to the force equilibrium at thecentral node (roots of the three spokes), while the other 2equations refer to the displacement consistency at thecentral node between the spokes 1–2 and 1–3 respectively.The displacements and rotations of each spoke arecomputed as follows. Figure 6 shows the displacementof a spoke root in the x local direction when a force �Sxacts.

The total displacement dx Sx� �

depends on the radialand bending compliances of the elastic sliding sphericaljoint (respectively dx krxð Þ and dx kbtð Þ), additionally

dx Sx� �

depends on the compliance of the spokedx Jy� �� �

dx Sx� � ¼ dx krxð Þ þ dx Jy

� �þ dx kbtð Þ

dx Sx� � ¼ Sx

krxþ Sxl3

3EJyþ Sxl2

kbtð8Þ

The force Sx produces a rotation of the spoke tip aroundthe y local axis, due to the bending compliance of thesliding spherical joint (kbt) and due to the spoke bendingcompliance respectively

8y Sx� � ¼ � Sxl

kbt� Sxl2

2EJyð9Þ

A similar approach has been followed to derive all thedisplacements and rotations resulting at each spoke root( Sx ! dx Sx

� �=ϕy Sx� �

; Sy ! dy Sy

=ϕx Sy

; Sz ! dz Sz� �

;

Mx ! dy Mx

� �=ϕx Mx

� �;My ! dx My

=ϕy My

;Mz !

ϕz Mz

� �see equation (10)). All the parameters pertaining

to each of the three spokes (e.g. l, Jy,...) are assumed tobe equal. The following relationship between the vectorof the displacements and rotations δi (at the spoke root)

yi

zi

krx kbt kb

kakry

zi

xi

ka

Mzi

Szi

Sxi

Mxi

Syi

Myi

Mzi

Szi

Fig. 5 Model of the six-axis load cell (quasi-statically determinedstructure)—only a single spoke of the sensing structure in Figs. 1 andin 4 is shown

Fig. 6 The displacement in the x direction of a spoke root, due to aforce −Sx

Exp Mech (2011) 51:373–388 377

Page 6: A New Six-Axis Load Cell - Part I Design

and the vector of the internal forces and moments Siholds

di ¼ Δ � Si;where

Δ ¼

1krx

þ l3

3EJyþ l2

kbt0 0 0 � l2

2EJy� l

kbt0

0 1kry

þ l3

3EJxþ l2

kb0 l2

2EJxþ l

kb0 0

0 0 1kaþ l

EA 0 0 0

0 lkbþ l2

2EJx0 1

kbþ l

EJx0 0

� lkbt

� l2

2EJy0 0 0 1

kbtþ l

EJy0

0 0 0 0 0 1ktþ l

GJp

26666666664

37777777775

ð10Þ

Where JP accounts for the torsion cross section coeffi-cient of non circular sections. The system in equation (7)can be rewritten in the following compact form

I Rt 2=3pð Þ Rt �2=3pð ÞΔ �Rt 2=3pð Þ �Δ 0Δ 0 �Rt �2=3pð Þ �Δ

24

35 � S ¼

F00

24

35ð11Þ

The above system has been solved symbolically, the 18components of internal forces and moments S, have beenfound as function of the vector F of force and momentacting at the load cell.

S ¼ S Fð Þ

The above system equation reads

Sx1 ;My1¼ f Fx; Ty� �

Sy1;Mx1 ¼ f Fy; Tx

� �Sx2�3

;My2�3

¼ f Fx;Fz; Ty� �

Sy2�3;Mx2�3

¼ f Fy; Tx; Tz� �

Sz1 ¼ f Fzð Þ;Mz1 ¼ f Tzð ÞSz2�3

¼ f Fx;Fzð ÞMz2�3

¼ f Tx; Tzð Þ

ð12Þ

The analytical expressions of equation system (12) arereported in Appendix.

As the vector of the internal forces and moments S hasbeen computed, it is possible to compute the outputdifferential voltages ΔV of the Wheatstone bridges (see(5)). Let us consider the single spoke shown in Fig. 10. Theoutput voltage (strain gauges iA� iB i¼1;::;6ð Þ, correspondingstrains "iA � "iB i¼1;::;6ð Þ respectively) can be computed bythe following equation

ΔVi ¼ V

4k "iA � "iBð Þ ð13Þ

The voltages are function of the system parameters (jointstiffnesses, three spoke structure geometry, strain gauges

characteristics,...) and of the vector F of the force and of themoment acting at the load cell centre

ΔVi ¼ ΔVi Sð Þ ¼ MΔVi½ �F

ΔV ¼

MΔV1

MΔV2

MΔV3

MΔV4

MΔV5

MΔV6

26666664

37777775� F ð14Þ

Fig. 7 One spoke of the load cell model with rigid ring

378 Exp Mech (2011) 51:373–388

Page 7: A New Six-Axis Load Cell - Part I Design

By simply inverting the terms in equation (14), thecalibration matrix Mthp can be derived:

ΔV ¼M̂ � F ) F ¼ Mthp �ΔV ð15ÞThe three spokes are connected to the central part of the

structure (see Figs. 5 and 7). The central part of the threespoke structure has a very low compliance and it can beconsidered rigid with respect to the spokes. The very lowcompliance of this component of the structure can be takeninto account as follows:

& a rigid ring is considered to model the central part of thestructure (Fig. 7)

& the three beams representing the spokes of the structureare connected to the rigid ring

& the rigid ring is modelled as a rigid beam connectingeach spoke to the centre of structure. Thus each spoke iscomposed by a deformable and by a non-deformablepart.

& the deformable length of each spoke is calculated as thedifference between the spoke length (l) and the radius ofthe rigid disk (r)

& the equations referring to the displacement consistencyof the structure have been modified to include the rigidpart of each spoke.

The described procedure is depicted in Fig. 8. Theresulting system has been solved symbolically and theexpression of the internal forces and moments S have beenreported in Appendix.

Load Cell Construction

Load Cell Technical Specifications

The technical specifications of the six-axis load cell werederived in order to perform experimental tests on a vehiclesuspension system [11]. The design forces and moments arerespectively (Fig. 1):

– 10 kN (Fy along load cell axis), 5 kN (Fx, Fz)– 0.5 kNm (Px, Py, Pz)

Additionally, the first natural frequency of the load cellhas to be over 500 Hz in order to perform high frequencymeasurement of the forces acting on the suspension systemunder test. The natural frequency has been computed byconsidering the load cell constrained as in an experimentaltest. That is, the load cell is connected to a very siff surface

R.R.

Fig. 8 Structure with central rigid ring (R.R.). Bold line rigid parts ofthe spokes. Continuous line non-deformed structure. Dotted lineQualitatively deformation of the spoke

Table 1 Comparison between the analytical model and the corresponding FEM model

Half bridge n° Load case

Fy [1000 N] Px [1000 Nm] Pz [1000 Nm]

Analyticalmodel

FEMmodel

Difference % Analyticalmodel

FEMmodel

Difference % Analyticalmodel

FEMmodel

Difference %

1 42.9 44.4 3.25 2172 2166 0.25 – – –

3 42.9 44.4 3.25 −1086 −1083 0.25 −1881 −1876 0.25

5 42.9 44.4 3.25 −1086 −1083 0.25 1881 1876 0.25

Half bridge n° Load case

Fx [1000 N] Fz [1000 N] Py [1000 Nm]

Analyticalmodel

FEMmodel

Difference % Analyticalmodel

FEMmodel

Difference % Analyticalmodel

FEMmodel

Difference %

2 79.5 76.1 4.45 – – – 1103 1132 2.65

4 −39.8 −38.1 4.45 −68.8 −65.9 4.45 1103 1132 2.65

6 −39.8 −38.1 4.45 68.8 65.9 4.45 1103 1132 2.65

Exp Mech (2011) 51:373–388 379

Page 8: A New Six-Axis Load Cell - Part I Design

by means of the three connecting holes on the base of theload cell (see Fig. 10).

FEM Model of the Load Cell

Given Fx, Fy, Fz, Px, Py, Pz the reaction forces at thejoints can be computed by equation (3). Thus a pre-liminary design of both the joints and the three spokestructure can be performed. On the basis of the pre-liminary design, a FEM model of the load cell has beenrealized. The FEM model (Fig. 8) takes into account allthe mechanical components needed to realize the loadcell.

This FEM model has been used to optimize the design interms of mechanical strength and stiffness of the compo-nents. The sensing structure has been optimized in order toget the maximum level of stress in the zones of applicationof the strain gauges.

The comparison between the analytical model ofthe load cell and the corresponding FEM model isreported in Table 1. The comparison shows the valuesof the deformations read by the half bridges on eachspoke. The half bridges are numbered as shown inFig. 4. The computations have been performed for thesix pure loads (three forces and three moments, seeFig. 1 for symbols). Being that the system is linear, anyother load case is a linear combination of the consideredload cases. The table is divided into two parts. In thefirst part the odd half bridges are considered. These halfbridges read only the deformation due to Fy, Px and Pz.In the second part the even half bridges. These half bridgesread only the deformation due to Fx, Fz and Py. Thecomparison shows a satisfying agreement between the twomodels.

Embodiment Design

The drawing of the prototype six-axis load cell is shown inFig. 9.

Particular attention has been devoted in designingthe reference vertical axis of the load cell, definedby pins (see Fig. 10). The sliding spherical joint (Figs. 2and 3) has been constrained to the load cell structureby means of ring nuts. Each spoke has been connected tothe corresponding sliding spherical joint by means of anut which compresses the annular inner part of thecorresponding sliding spherical joint and realizes theconstraint.

Fig. 9 FEM model of the load cell

z

x

y

1

Fig. 10 Mechanical drawingof the six-axis load cell(dimensions are in mm)

380 Exp Mech (2011) 51:373–388

Page 9: A New Six-Axis Load Cell - Part I Design

A flange provided with 4 threaded holes aligned alongthe x and z load cell axes is the connection interface withthe tested structure. The forces and moments measuredby the load cell refer to the centre of the cell (i.e. centreof the three spoke structure).

The overall dimensions of the assembled load cell areabout 150� 175� 100mm. The mass is about 5 kg.

The embodiment design considered the sequence that isneeded for assembling the load cell. Such sequence iscrucial for aligning the vertical axis to the centre line of theload cell and for suppressing internal pre-loads, dangerousfor structural integrity.

Conclusions

This paper has been devoted to the design of a new six axisload cell. The sensing element of the load cell is a quasi-statically determined three spoke structure constrained bymeans of elastic sliding spherical joints. The design of such

joints has been performed in order to avoid friction. Twelveresistive strain gauges have been used to measure bendingdeformations at the three spokes of the sensing structure.The vector of the external forces and moments applied atthe load cell is linearly related to six voltage output signalsvia a square calibration matrix. Different mathematicalmodels have been derived to design the load cell and totune its performances. Particular attention has been devotedto the derivation of an analytical model of the quasi-statically determined structure of the load cell. This hasenabled the preliminary design of the load cell. A finiteelement model has been derived to assess the stress-strainbehaviour of the load cell. A comparison between theanalytical model and the finite element model has beenperformed with satisfactory results. The six axis load cell isrelatively simple to be manufactured and the embodimentdesign has been presented. The error analysis, the con-struction and the experimental assessment of the perform-ances of the load cell are presented in another paper, whichis the companion paper of this one.

Appendix

Analytical expressions of the 18 internal forces andmoments acting at the 3 spoke tips (rigid disk consideredin the model):

Sx1

� 1=3 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �Ty �1=2

L2

EJy� RL

EJyþ �R� L

kbt

� �

þ2=3Fx 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �

� L

EAþ ka�1

� �þ 1=3 �1=2

L2

EJy� RL

EJyþ �R� L

kbt

� �3

Ty� 1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �L

EJyþ kbt�1

� �Ty

L

EAþ ka�1

� �

0BBBBBBBBBB@

1CCCCCCCCCCA

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ lð Þ2

kbt

!L

EJyþ kbt�1

� �þ L

EJyþ kbt�1

� �L

EAþ ka�1

� � !�1

1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!�1

Exp Mech (2011) 51:373–388 381

Page 10: A New Six-Axis Load Cell - Part I Design

Sy1

1=3 � L2

EJx� 2

RL

EJx� 2

Rþ L

kb

� �Tx

L

JpGþ kt�1

� �� 1=3Fy 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

þ1=3 1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy

L

JpGþ Kt�1

� �

þ1=3L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy

0BBBBBBBBBBB@

1CCCCCCCCCCCA

1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �þ L

EJxþ kb�1

� ��

1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!� 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBBB@

1CCCCCCA

�1

Sz1

2=3FZ � �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� � !

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �þ L

EJyþ kbt�1

� �þ L

EAþ Ka�1

� � !�1

Mx1

2=3TxL

JpGþ kt�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ Kry�1 þ Rþ Lð Þ2

kb

!L

EJxþ Kb�1

� �

�1=3 1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy

L

JpGþ kt�1

� ��

� 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �� 1=3

L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

Fy 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �þ 1=3Fy 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �3

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

� L

EJxþ kb�1

� ��11=3

L3

EJXþ RL Rþ Lð Þ

EJXþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �

þ L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!� 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBBB@

1CCCCCCA

�1

382 Exp Mech (2011) 51:373–388

Page 11: A New Six-Axis Load Cell - Part I Design

My1

�1=3Ty �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �Ty

þ1=3L

EJyþ kbt�1

� �Ty

L

EAþ ka�1

� �� 1=3 � L2

EJy� 2

RL

EJyþ 2

�R� L

kbt

� �Fx

L

EAþ ka�1

� �

0BBBBB@

1CCCCCA

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

Ejyþ kbt�1

� �þ L

EJyþ kbt�1

� �L

EAþ ka�1

� � !�1

Mz1

2=3Tz1

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!� 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2 !

1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �þ

þ L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!� 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBBB@

1CCCCCCA

�1

Sx2

� 1=3 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

! ffiffiffi3

p L

EJyþ kbt�1

� �Fz

L

EAþ ka�1

� �

� 1=3Fx 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ L2

kbt

� �L

EJyþ kbt�1

� �L

EAþ ka�1

� �þ 1=3 �1=2

L2

EJy� RL

EJyþ �R� L

kbt

� �3

Ty� 1=3 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �Ty �1=2

L2

EJy� RL

EJyþ �R� L

kbt

� �

� 1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �� L

EJyþ kbt�1

� �Ty

L

EAþ ka�1

� �

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!þ L

EJyþ kbt�1

� �þ L

EJyþ kbt�1

� �L

EAþ ka�1

� � !

� 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!�1

Exp Mech (2011) 51:373–388 383

Page 12: A New Six-Axis Load Cell - Part I Design

Sy2

1=3 1=3L3

EJrþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy

L

JpGþ kt�1

� �þ 1=3

L

EJrþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

Fy� 1=3Fy 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �2

þ 1=3 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �Tx

L

JpGþ kt�1

� �

þ 1=3 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� � ffiffiffi3

p L

JpGþ kt�1

� �Tz

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �þ L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

� 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBBB@

1CCCCCCA

�1

Sz2

1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

Fz� 1=3L

EJyþ kbt�1

� �Fz 1=3

L3

EJyþ RL Rþ Lð Þ

EJyþ krz�1 þ R� Lð Þ2

kbt

!

� 1=3ffiffiffi3

p�1=2

L2

EJy� RL

EJyþ �R� L

kbt

� �2

Fxþ 1=3ffiffiffi3

p L

EJyþ kbt�1

� �Fx 1=3

L3

EJyþ RL Rþ Lð Þ

EJyþ krz�1 � Rþ Lð Þ2

kbt

!0BBBBB@

1CCCCCA

� �1=2L2

EJyþ RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �þ L

EJyþ kbt�1

� �L

EAþ ka�1

� � !�1

Mx2

1=3L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �

� 1=3ffiffiffi3

p L

JpGþ kt�1

� �Tz

L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

� 1=3TxL

JpGþ kt�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

EJxþ kb�1

� �

� 1=3 1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy

L

JpGþ kt�1

� �� 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �þ 1=3Fy 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �3

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

L

EJxþ kb�1

� ��11=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �þ L

EJxþ kb�1

� �� 1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

� 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBB@

1CCCCCA

�1

384 Exp Mech (2011) 51:373–388

Page 13: A New Six-Axis Load Cell - Part I Design

My2

�1=3Ty �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �Ty

þ 1=3L

EJyþ kbt�1

� �Ty

L

EAþ ka�1

� �þ 1=3

ffiffiffi3

p�1=2

L2

EJy� RL

EJyþ��R� L

kbt

� �L

EAþ ka�1

� �Fz

þ 1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �Fx

L

EAþ ka�1

� �

0BBBBBBBBBBB@

1CCCCCCCCCCCA

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!� L

EJyþ kbt�1

� �

þ L

EJyþ kbt�1

� �L

EAþ ka�1

� �

0BBBBB@

1CCCCCA

�1

Mz2

�1=3ffiffiffi3

p1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

Txþ 1=3 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �2

Tz

þ 1=3L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

! ffiffiffi3

pTx� 1=3

L

EJxþ kb�1

� �� 1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Tz

0BBBBBB@

1CCCCCCA

1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �þ L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

� 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBBBBBBB@

1CCCCCCCCCCA

�1

Sx3

1=3 �1=3L3

EJy� RL Rþ Lð Þ

EJy� krx�1 � Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �Ty �1=2

L2

EJy� RL

EJyþ��R� L

kbt

� �

� 1=3Fx 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �

� L

EAþ ka�1

� �þ 1=3 1=3

L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

! ffiffiffi3

p L

EJyþ kbt�1

� �Fz

L

EAþ ka�1

� �

þ 1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �3

Ty� 1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �L

EJyþ kbt�1

� �Ty

L

EAþ ka�1

� �

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �

þ L

EJyþ kbt�1

� �� L

EAþ ka�1

� �

0BBBBB@

1CCCCCA

�1

1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!�1

Exp Mech (2011) 51:373–388 385

Page 14: A New Six-Axis Load Cell - Part I Design

Sy3

�1=3 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� � ffiffiffi3

p L

JpGþ kt�1

� �Tzþ 1=3 1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy

L

JpGþ kt�1

� �

þ 1=3L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy� 1=3Fy 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

þ 1=3 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �Tx

L

JpGþ kt�1

� �

0BBBBBBBBBBB@

1CCCCCCCCCCCA

1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!� L

JpGþ kt�1

� �þ L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

� 1=2L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBBBBBBB@

1CCCCCCCCCCA

�1

Sz3

�1=3L

EJyþ kbt�1

� �Fz 1=3

L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!� 1=3

ffiffiffi3

p L

EJyþ kbt�1

� �Fx 1=3

L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!

þ 1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

Fzþ 1=3ffiffiffi3

p�1=2

L2

EJy� RL

EJyþ �R� L

kbt

� �2

Fx

0BBBBB@

1CCCCCA

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ Krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �þ L

EJyþ kbt�1

� �L

EAþ ka�1

� � !�1

Mx3

� 1=3TxL

JpGþ kt�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

EJxþ kb�1

� �

þ 1=3ffiffiffi3

p L

JpGþ kt�1

� �Tz

L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!

� 1=3L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �

� 1=3 1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Fy

L

JpGþ kt�1

� �� 1=2

L2

EJxþ RL

kb

� �þ 1=3Fy 1=2

L2

EJxþ FL

EJxþ Rþ L

kb

� �3

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

L

EJxþ kb�1

� ��11=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �

þ L

EJxþ kb�1

� �� 1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!� 1=2

L2

EJrþ RL

EJrþ Rþ L

kb

� �2

0BBBBBB@

1CCCCCCA

�1

386 Exp Mech (2011) 51:373–388

Page 15: A New Six-Axis Load Cell - Part I Design

My3

1=3 1=3L3

EJyþ RL Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

!L

EJyþ kbt�1

� �Tyþ 1=3

L

EJyþ kbt�1

� �Ty

L

EAþ ka�1

� �

� 1=3Ty �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

� 1=3ffiffiffi3

p�1=2

L2

EJy� RL

EJyþ� R� L

kbt

� �L

EAþ ka�1

� �Fz

þ 1=3 �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �Fx

L

EAþ ka�1

� �

0BBBBBBBBBBB@

1CCCCCCCCCCCA

� �1=2L2

EJy� RL

EJyþ �R� L

kbt

� �2

þ 1=3L3

EJyþ R Rþ Lð Þ

EJyþ krx�1 þ Rþ Lð Þ2

kbt

� �� L

EJyþ kbt�1

� �þ L

EJyþ kbt�1

� �L

EAþ Ka�1

� �� ��1

M�z3

�1=3L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!Tzþ 1=3 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

Tz

þ 1=3L

EJxþ kb�1

� �1=3

L3

EJrþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!�ffiffiffi3

pTxþ 1=3

ffiffiffi3

p1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

Tx

0BBBBBB@

1CCCCCCA

1=3L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!L

JpGþ kt�1

� �þ L

JpGþ kt�1

� �

þ L

EJxþ kb�1

� �1=3

L3

EJxþ RL Rþ Lð Þ

EJxþ kry�1 þ Rþ Lð Þ2

kb

!� 1=2

L2

EJxþ RL

EJxþ Rþ L

kb

� �2

0BBBBBB@

1CCCCCCA

�1

References

1. Fischer U, Zimmermann C, Jörg W (2002) SG-Balance 192-6Icalibration report. RUAG Center Aerodynamics

2. http://www.windtunnel.soton.ac.uk/balance/balance_ RJMitchell.html University of Southampton, 2010. Accessed 4/2010

3. http://www.mmtool.com/balances.html Modern machine & tool CO.,INC, Strain Gage Wind Tunnel Balances, 2010. Accessed 4/2010

4. http://www.ruag.com RUAG Aerospace Defence Technology,Strain Gauge Balances for Wind Tunnel Measurements, 2005.Accessed 4/2010

5. Carignan F et al (1985) Force measuring platform and load cellusing strain gages to measure shear forces, Advanced MechanicalTechnology, Inc., Patent US4493220

6. Spletzer B, Marron L (2000) Information package for thesimplified six-axis load cell. Sandia National Laboratories,January, e-mail: blsplet @sandia.gov

7. BermeN (2002) Multi-component force and moment measuringplatform and load transducer. Bertec Corporation, Patent US6354155

8. Blakeborough A, Clément D, Williams MS, Woodward N (2002)Novel load cell for measuring axial force, shear force, andbending movement in large-scale structural experiments. ExpMech 42(1):115–122

9. Engeler P et al (1995) Multicomponent force and momentmeasuring arrangement. K.K. Holding AG, US5402684

10. Meyer R et al (1998) Six axis load cell. MTS SYSTEMSCORPORATION, European Patent EP0632884B1

11. Gobbi M, Mastinu G, Giorgetta F (2005) Sensors for measuringforces and moments with application to ground vehicle design andengineering. Proceedings ASME IMECE, paper n. IMECE2005-81143

12. http://www.amti.biz/ Advanced Mechanical Technology, Inc, 2010.Accessed 4/2010

13. http://www.jr3.com/ Multi-axis load cell technologies, 2010.Accessed 4/2010

14. Yee AG, Akeel HA (1996) Six axis force sensor employingmultiple shear strain gages. Fanuc USA Corporation (ElkgroveVillage, IL), United States Patent 5490427

15. Meyer RA, Olson DJ (1994) Six axis load cell. MTS SystemsCorporation (Eden Prairie, MN), United States Patent 5315882

16. Liu H, Willberg B, Meusel P (2005) Force moment sensor.Deutsches Zentrum fur Luft-und Raumfahrt e.V. (Koln, DE),United States Patent 6871552

17. Berme N (2002) Multi-component force and moment measuringplatform and load transducer. Bertec Corporation (Worthington,OH), United States Patent 6354155

Exp Mech (2011) 51:373–388 387

Page 16: A New Six-Axis Load Cell - Part I Design

18. Meyer RA, Olson DJ (2005) Multi-axis load cell. MTS SystemsCorporation (Eden Prairie, MN), United States Patent 6845675

19. Meyer, RA, Kempainen AJ, Olson DJ (2004) Multi-axis load cellbody. MTS Systems Corporation (Eden Priarie, MN), UnitedStates Patent 6769312

20. Lerat B (1989) Transducer for bending and twisting moments.Commissariat A L’Energie Atomique, Patent US4879913

21. Wensink H, de Boer MJ, Wiegerink RJ, Zwijze AF, Elwenspoek MC(1998) First micromachined silicon load cell for loads up to 1000 kg.Proc. SPIE ‘98, vol. 3514Micromachined Devices and Components IV

22. Zwijze AF, Wiegerink RJ, Lammerink TSJ, Elwenspoek MC(1998) Low creep and hysteresis load cell based on a force toliquid pressure transformation. Proceedings of the Dutch NationalSensor Conference, Enschede, pp 287–292, March 2

23. Byun Y et al (2002) Parallel type six-axes force moment measuringapparatus. Samsung Electronics Co., Ltd., Patent US6349604

24. http://www.ati-ia.com/ ATI Industrial Automation, (Series OME-GA and GAMMA), 5/2005

25. Mastinu G, Gobbi M (2006) Giunto elastico a cerniera sfericatraslante e sensore di forze e momenti perfezionato con talegiunto. Italian Patent, ME.05.025.A, 22 May 2006

26. Mastinu G, Gobbi M (2003) Dispositivo e metodo per la misura diforze e momenti. Italian Patent MI2003A 001500, 22 July 2003

27. Mastinu G, Gobbi M (2005) Device and method for measuringforces and moments. Patent WO2005015146, 17 February 2005

28. Mastinu G, Gobbi M (2007) Elastic joint with translating sphericalhinge and force and moment sensor improved by means of the

said joint. International Application number PCT/IB2007/001335,16 May 2007

29. Gobbi M, Mastinu G, Pennati M (2007) Indoor testing of roadvehicle suspensions. Meccanica 43(2):173–184. doi:10.1007/s11012-008-9119-5, 28 February 2008

30. Cook H, Carignan FJ, White BF (1999) Multi-axis wheel transducerwith angular position detector. Advanced Mechanical Technology,Inc. Patent, US5886350

31. http://www.sendev.com/ Sensor Development Inc. (Model 77016and 6 axis WFS), 5/2005. Accessed 4/2010

32. http://www.michsci.com/ Michigan Scientific Corporation (modelLW 12.8), 5/2005. Accessed 4/2010

33. http://www.mts.com/ MTS Systems Corporation (SWIFT WheelForce Transducer), 5/2005. Accessed 4/2010

34. http://www.kistler.com Kistler (RoaDynWheel Force Sensor), 5/2005.Accessed 4/2010

35. http://www.igel-ingenieure.de/ (IGel WFT Wheel Sensor), 5/2005.Accessed 4/2010

36. Giorgetta F, Gobbi M, Mastinu G (2007) On the testing ofvibration performances of road vehicle suspensions. Exp Mech47:485–495. doi:10.1007/s11340-006-9022-8

37. Gobbi M, Mastinu G (2004) Wheels with integrated sensors formeasuring tyre forces and moments. Proc. of the AVEC 04Symposium, Arnhem, August

38. Gobbi M, Previati G, Guarneri P, Mastinu G (2010) A new six-axis load cell. Part II: error analysis, construction and experimen-tal assessment of performances. Exp Mech, xxx, DOI xxx

388 Exp Mech (2011) 51:373–388