a new detailed map of the u.s. hydro water footprints

31
A new detailed map of the U.S. hydroeconomy: water footprints, teleconnections, and indirect vulnerability to drought Benjamin L. Ruddell, Ph.D., P.E. Associate Professor, Fulton Schools of Engineering Sr. Sustainability Scientist, Global Inst. Sustainability Arizona State University [email protected]

Upload: others

Post on 02-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A new detailed map of the U.S. hydro water footprints

A new detailed map of the U.S. hydro‐economy: water footprints, teleconnections, 

and indirect vulnerability to drought

Benjamin L. Ruddell, Ph.D., P.E.Associate Professor, Fulton Schools of EngineeringSr. Sustainability Scientist, Global Inst. SustainabilityArizona State [email protected]

Page 2: A new detailed map of the U.S. hydro water footprints

Betweenness Centrality for Amazon Rainfall, Boers et al. (2013)

Small World Network, Watts and Strogatz

(1998)

River Basin Power Law Scaling, Zaliapin et al. (2010)

Control Centrality, Liu et al. (2012)

Classic Network Theory Applications

Page 3: A new detailed map of the U.S. hydro water footprints

PROCESSES

Three types of networks intersect at a specific process node in a multitype Coupled Natural-

Human System network:

3

Page 4: A new detailed map of the U.S. hydro water footprints

Net Systemic Impact (footprint) of a Process, E: the sum of the Direct (U) and indirect (V) network impacts of a process on a stock of interest, conditioned on a local/external (l/x) boundary (Q=0 case)

“Virtual Water” (Allan, 1993) is a special single-type network case of ERA. ERA is itself a special case of I/O and LCA, which are also network concepts.

The foundation of ERA is the partial embedded resource impact Vp ; the sum across intermediaries k and rkis the net indirect impact V

Embedded Resource Impact Accounting  (ERA): A mulittype network theory for complex Coupled Natural Human Systems

l x l l x xIN OUT IN OUTE U U V V V V

Page 5: A new detailed map of the U.S. hydro water footprints

A CNH Problem: Water Scarcity

V. C. Tidwell, P. H. Kobos, L. A. Malczynski, G. Klise, C. R. Castillo, Exploring the water-thermoelectric power Nexus. Journal of Water Resources Planning and Management 138, 491-501 (2012).

Page 6: A new detailed map of the U.S. hydro water footprints

How to cope with Water Scarcity?1. Technology, efficiency, and reuse (expensive)?2. Curtail economic growth (too expensive)?3. Political reallocation of water from less valuable (energy, 

food) to more valuable uses (who decides)?4. Economic reallocation of water resources using prices and 

water rights (political barriers and high transaction costs)?5. Compromise our social, environmental, or economic values?6. Outsource largest and least valuable water uses using the 

economic network to connect to distant water supply?

These are systems-level questionsWe need systems-level information

Page 7: A new detailed map of the U.S. hydro water footprints

These are systems questionsWe need systems information

Page 8: A new detailed map of the U.S. hydro water footprints

• A complete map of the US water footprint• A hydro‐economic map of the water supply chain, including 

precise teleconnections to drought‐prone locations• A map of the “water‐everything” nexus: food, energy, services, 

manufacturing, etc.• Detailed enough for policy assessment and decision making at 

the crucial city and watershed scales• Provides the systems level information needed to evaluate 

local water problems in context• Provides complete water productivity benchmarking ($/gal)• This is basic data we need to answer Food‐Energy‐Water (FEW) 

and other complex water resource system questions!

The National Water‐Economy Database 1.0 (NWED)

Page 9: A new detailed map of the U.S. hydro water footprints

US Water Use

Also see: M. A. Maupin et al., "Estimated use of water in the United States in 2010," (US Geological Survey, 2014).

Annual Total Withdrawals (U, Mm3) Annual Agricultural Withdrawals (Uag, Mm3)

Preliminary Data – Not for Publication

Page 10: A new detailed map of the U.S. hydro water footprints

Virtual WaterVirtual Water Inflow (VIN, Mm3)

Virtual Water Outflow (VOUT, Mm3)Net Virtual Water (VNET, Mm3)

(green is net outflow, negative)

Preliminary Data – Not for Publication

Page 11: A new detailed map of the U.S. hydro water footprints

The US Net Blue Water FootprintPreliminary Data – Not for Publication

Page 12: A new detailed map of the U.S. hydro water footprints

VF = VU + VVin

, →WSI from: V. C. Tidwell, P. H. Kobos, L. A. Malczynski, G. Klise, C. R.

Castillo, Exploring the water-thermoelectric power Nexus. Journal of Water Resources Planning and Management 138, 491-501 (2012).

Vulnerability of the Footprint to Water Stress & Drought

Preliminary Data – Not for Publication

Page 13: A new detailed map of the U.S. hydro water footprints

Flagstaff’s Water Footprint

Arizona Ag. Water80%

Washington Ag. Water2%

California Ag. Water1%

Northeast Ag. Water1%

Industrial Water13%

Mining Water3%

Livestock Water<1%

Other16%

Breakdown of Flagstaff's External Water Footprint

Preliminary Data – Not for Publication

Page 14: A new detailed map of the U.S. hydro water footprints

Water Productivity Explains Flagstaff’s Water Outsourcing

Sectors: Kenessey, 1987

Preliminary Data – Not for Publication

Agriculture & Mining

Industry

Services

Government Highe

r $/gallon

Page 15: A new detailed map of the U.S. hydro water footprints

Flagstaff’s Indirect Vulnerability to Water Stress & Drought

Preliminary Data – Not for Publication

Vulnerable Footprint (VF)

Maricopa and Pinal Counties

(Phoenix & Farms)

Neighboring Farmington

(energy), Gallup, Albuquerque

Page 16: A new detailed map of the U.S. hydro water footprints

Footprint Diversity Indicators Inform Flagstaff’s Potential 

Resilience to Drought

Preliminary Data – Not for Publication

Page 17: A new detailed map of the U.S. hydro water footprints

Preliminary Data – Not for Publication

Flagstaff: Vulnerable but also Potentially Resilient to Drought

VU

LNE

RA

BIL

ITY

(WS

I)

RESILIENCE (SI)

Page 18: A new detailed map of the U.S. hydro water footprints

Phoenix Metro Virtual Water Flows

Virtual Water Inflows Virtual Water Outflows

R. Rushforth, B. Ruddell, The Hydro-Economic Interdependency of Cities: Virtual Water Connections of the Phoenix, Arizona Metropolitan Area. Sustainability 7, 8522 (2015).

Page 19: A new detailed map of the U.S. hydro water footprints

Water Productivity Benchmarking for Phoenix Area Cities

Ruddell, B.L. (2012), Embedded Values Assessment of Water Value Intensities for Phoenix MSA Cities, City of Chandler, Arizona, September, 2012.

Page 20: A new detailed map of the U.S. hydro water footprints

Summary

• The new National Water‐Economy Database (NWED) provides a complete county/city/sector water footprint for the US.

• Local and Regional connections dominate (re: Vörösmarty et al., Science 2015, “What scale for water governance?”)

• Long range teleconnections create vulnerability for major cities; cities are the hubs of the US hydro‐economic network

• This is basic data needed for FEW work (Food‐Energy‐Water), including data‐driven modeling of water & the economy

• Embedded Resource Accounting (ERA) and related Footprint‐family metrics can identify connections, efficiency, productivity, vulnerability, and resilience on the multitypesocio‐economic network coupling Food, Energy, and Water

Page 21: A new detailed map of the U.S. hydro water footprints

CAP LTER

Richard Rushforth (NWED lead contributor)Elizabeth A. AdamsSeth HerronYueming QiuVincent C. TidwellStanley MubakoAlex MayerDoug ToyMegan Konar, et al.Alfonso Mejia, et al.Manu Lall and the America’s Water TeamWater Footprint NetworkCity of FlagstaffCity of Chandler

*The views expressed are those of the authors, and not necessarily the Sponsors

• U.S. National Science Foundation: NSF-BCS-1026865: Central Arizona Phoenix Long Term Ecological Research

• Rob & Melanie Walton Sustainability Solutions Initiative

• Great Lakes Protection Fund grant #946• WECC via U.S. Department of Energy’s Sandia

Laboratories

Funding Support*

Collaborators

Page 22: A new detailed map of the U.S. hydro water footprints

Include Indirect (Embedded/Virtual)?

No Yes

Incl

ude

Exte

rnal

?

No

Narrowly self-interested Manager in typical command and control style. Ex.: Hydraulic mission style or property rights style of development and resource management [57, 58].

Narrowly self-interested Manager wishing to utilize indirect market pressure, trading, and offsets as an efficient and adaptive policy tool to augment typical command and control style. Ex.: Water Footprint, Carbon Footprint Manager [29, 59], National cap and trade and offset plans.

Yes

Socially/Environmentally activist manager causing positive or negative external direct resource stock impacts but voluntarily or by regulation counting them in management decisions. Ex.: Company purchasing land in foreign countries for direct resource use [60]

Socially/Environmentally activist manager voluntarily or by regulation counting external direct impacts and also voluntarily or by regulation participating in external indirect offsets, or landowner receiving compensation for selling external offsets. Ex.: Global EF offsets [59, 61].

 

Decision Boundaries and Worldview Determine the Perceived CNH

Perceived and accounted impacts depend on Point of View

Perform accounting against boundaries, or infer the location of the boundaries!

Page 23: A new detailed map of the U.S. hydro water footprints

The National Water‐Economy Database 1.0 (NWED)

Water footprint methods giving county‐to‐county virtual water flows for the United States• Blue Water, no green (yet), withdrawal‐based • 43 Commodity Types incl. ag, energy, manuf., etc. Aggregated to 5 Economic Sectors: 

Agriculture, Industry, Livestock, Mining/Energy, and misc. Urban• (dis)Aggregated to individual municipalities and MSA’s• Complete US water use and economic production are in the water footprint• Missing from version 1.0 are inter‐county service sector and electric trades, and also the 

virtual water content of foreign‐origin commodities (relatively small)Annual average County Level and Economic Sector data; not seasonal or establishment• US Commodity Flows – Freight Analysis Framework (FAF3) from Oak Ridge National Labs• US Water Census‐ USGS Water Use of the Nation• US Economic Census• USDA National Agricultural Statistics Survey

U = Water UseVIN = Virtual Water InflowVOUT = Virtual Water Outflow

Page 24: A new detailed map of the U.S. hydro water footprints

Ratio of Net Virtual Water Inflow to Estimated County Mean Annual Renewable Supply (P-ET)

Preliminary Data – Not for Publication

Impact of Virtual Water Trade on Aquatic Ecosystem Water Balances

Stanley Mubako, UTEPAlex Mayer, Michigan Tech

Page 25: A new detailed map of the U.S. hydro water footprints

Water Productivity Benchmarking for Great Lakes Industries

0

1

2

3

4

5

Value intensity

 ($/m

3 ) median and standard deviation

Preliminary Data – Not for Publication

Stanley Mubako, UTEPAlex Mayer, Michigan Tech

Page 26: A new detailed map of the U.S. hydro water footprints

Water‐in‐Electricity Analysis

CO5 Mgal

WY 6,363 Mgal

ID

COCA

MT 3,353 Mgal

ID

CA

CO

CO 16,230 Mgal

CA20,289 Mgal

868 Mgal

3,713 Mgal

4,476 Mgal

UT11,359 Mgal

NM 9,465 Mgal

AZ 13,498 Mgal

11,445 Mgal

ID14Mgal

CA

IDCO

CA

CO

IDCA ID

CA

CO

ID

CO

CA

COID

CA

92 Mgal

WA

OR 

346 Mgal

51 Mgal20 Mgal

ID 

82 Mgal

1,426 Mgal

209 Mgal

1,258 Mgal

8,579 Mgal 491 Mgal

480  Mgal

70 Mgal

27 Mgal

NV

621 Mgal

243 Mgal

4,238 Mgal

709 Mgal

277 Mgal

4,838 Mgal

836 Mgal326 Mgal

5,703 Mgal

Page 27: A new detailed map of the U.S. hydro water footprints

Virtual Water Colorado River Basin Reallocation

Preliminary Data – Not for Publication

Page 28: A new detailed map of the U.S. hydro water footprints

Embe

dded

 Water  (Mgal)

28

A systematic shift of water impacts (and carbon emissions) from California to energy exporters like Wyoming

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

External water embedded in importedelectricity (Million embedded gallons)

Internal water embedded in exportedelectricity (Million embedded gallons)

Internal water embedded in locally consumedelectricity (Million embedded gallons)

34%

42%

10% 2%

62%31%

5%

30% 8%

56%

81%

Martin and Ruddell [2012]

A risky strategy for CA, given the CO river drought and Suppliers’ junior water rights.

USBR, 2012

Page 29: A new detailed map of the U.S. hydro water footprints

15% increase in water consumption through trade in electricity on the Western U.S. power grid

29

   U (Mgal)  V (Mgal)  E (Mgal)  U' (Mgal)  RS (Mgal)  RS (%)     Actual   Actual   U + V  If‐local   U' ‐ E  RS/U' Arizona  19322 ‐5824 13498 13498 0 0

California  20289 25703 45992 31200 ‐14792 ‐47%

Colorado  16230 1471 17701 17928 227 1%

Idaho   868 3768 4636 1896 ‐2740 ‐145%

Montana  5070 ‐1717 3353 3353 0 0

New  16330 ‐6865 9465 9465 0 0

Nevada  12023 ‐578 11445 11445 0 0

Oregon   4129 ‐417 3713 3713 0 0

Utah  16461 ‐5102 11359 11359 0 0

Washington  4587 ‐111 4476 4476 0 0

Wyoming  16690 ‐10328 6363 6363 0 0

System  132000 0 132000 114695 ‐17304 ‐15%

Savings are negative, because of outsourcing to inefficient producers. Note, however, this is not ‘unsustainable’. It 

probably means water is less valuable/scarce in those places.Martin and Ruddell [2012]

Page 30: A new detailed map of the U.S. hydro water footprints

Model Results: Consumption

NGCC or importing always most cost‐effective options, regardless of scenario

1. Current demand, no drought2. Current demand, all drought3. 2040 demand, no drought4. 2040 demand, all drought

AZ becomes a net importer under drought and increasing demand

According to the model, no new transmission capacity is required to meet these loads

States do not choose to build renewables because they are expensive relative to NGCC

Page 31: A new detailed map of the U.S. hydro water footprints

In the future, regional water savings via Trade

1. Current demand, no drought2. Current demand, severe drought3. 2040 demand, no drought4. 2040 demand, severe drought

This current number is actually negative (~-15%). In reality CA buys power from water inefficient AZ rather than water efficient OR and WA. (models aren’t perfect)

Herron et al., in review