a more holistic approach for breeding: including quality ... · 2017). in the project ‘divers and...

58
A more holistic approach for breeding: including quality from a value chain perspective Edwin Nuijten

Upload: others

Post on 12-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

A more holistic approach for breeding:

including quality from a value chain

perspective

Edwin Nuijten

Page 2: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

2 A more holistic approach for breeding: including quality from a value chain perspective

© 2020 Louis Bolk Institute

A more holistic approach for breeding: including quality from

a value chain perspective

Edwin Nuijten

Publication number 2020-012 LbP

58 pages

This publication is available on

www.louisbolk.org/publications

www.louisbolk.nl

[email protected]

T +31 343 523 860

Kosterijland 3-5

3981 AJ Bunnik, The Netherlands

@LouisBolk

Louis Bolk Institute: Research and advice to advance

sustainable agriculture, nutrition and health

Page 3: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Contents 3

Contents

Summary 5

1 Introduction 7

2 Material and methods 10

3 Results 13

3.1 ANOVA 13 3.2 Correlations 15 3.3 Taste evaluations over time 16

4 Discussion 18

References 21

Tables 22

Annexes 56

Page 4: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic
Page 5: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Summary 5

Summary

Currently, two trends in society are visible. One trend is that conventional breeding increas-

ingly focuses on F1 hybrid breeding and the use of patents. Another trend is that consumers,

in particular organic consumers, value product quality more and more. For organic traders

and farmers this means an alternative approach in breeding becomes more urgent: a

breeding approach that meets economic, societal and nutritional values in a balanced

way. The breeding of open pollinated (OP) varieties has the potential to meet these values,

important for organic consumers. However, the choice of good OP varieties in terms of yield,

storability and uniformity is often limited as the focus in plant breeding has been on F1 hy-

brids for the past 40 years. In organic agriculture, good taste and good nutritional values are

also considered important traits.

So far, breeding has focused on yield and storability. However, some field trials on carrot

and pumpkin suggested there can be a negative relation between storability on the one

hand and taste and quality on the other hand. It implies that varieties with good taste are

more difficult to store than the commonly used varieties by farmers. An important question is

what can be done to improve the storage period of vegetables with good taste and qual-

ity. One option may be to look for varieties that have a good balance in storability, taste

and nutritional value.

To answer these questions fields were conducted for two years with three vegetable crops

(pumpkin, red cabbage and carrots) on two bio-dynamic farms with different soils (clay and

sand). For each of the crops, three open pollinated varieties and two F1-hybrids were com-

pared. On each of the farms the trials were set up with three replications and completely

randomised designs. On both farms, two harvest dates were applied for all three crops.

Sowing, planting and harvesting dates on both farms were chosen as similar as possible.

Apart from general observations on crop growth, the crop traits that were measured for

analysis were yield (fresh and dry matter yield), storability, taste (after harvest, mid storage

and after storage), and nutrient quality (dry matter percentage, Brix and content of eight

minerals). Tasting was conducted at the beginning of the storage period, half-way and to-

wards the end of the storage period. ANOVA and correlations were used to analyse the re-

sults.

Results show that the interactions for yield, storability, taste and quality are complex and

crop specific. One general conclusion is that whereas yields can differ a lot between varie-

ties when calculated in fresh matter, yields are much more similar when calculated in dry

matter. Correlations also suggest negative relationships between yield fresh matter) and

quality (in particular dry matter content). Another general conclusion is that soil quality has a

big effect on storability and taste.

Page 6: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

6 A more holistic approach for breeding: including quality from a value chain perspective

This is in agreement with the growth and differentiation concept. In this research the stora-

bility on clay soil tended to better than on sandy soil. For pumpkin and red cabbage taste

was also better on sandy soil than on clay soil, which is also in agreement with the growth

and differentiation concept. However, carrot from clay soil tended to taste better than from

the sandy soil in this research, which might be explained by the weather conditions of the

two seasons under which the trials ran. At the end of the summer rainfall increased and it

seemed that the carrot crop increased speed of growth.

Time of harvesting seems to have a large effect on the outcomes of the correlations of taste

with many other parameters, for all three crops. When starting up the research, the effect of

harvest moment was an important element of discussion. The results suggests different pat-

terns in the effect on storability, taste quality for each of the crops.

For each of the crops, no general patterns were observed that were applicable to all crop

varieties in terms of change in taste during storage. For pumpkin, varieties grown on sand

tasted generally better than from clay soil. For some varieties, however, taste decreased on

clay soil during storage, whereas not for other varieties. For carrot and red cabbage, the dy-

namics in taste development during storage were more complex.

As a general conclusion it may be argued that it should be possible to breed for crop varie-

ties with a good balance in yield (fresh), dry matter yield, taste and storability. How this bal-

ance should look like exactly for each of the crops is a point of discussion with farmers, trad-

ers and consumers. Presentations of the first results to farmers and consumers at several oc-

casions in 2018 underline the importance of finding a better balance in variety quality. The

research shows clearly that in the context of bio-dynamic farming, OP varieties can have as

high yields as F1-hybrids. Variety choice can be made much more on the basis of taste and

quality, in addition to storability and yield.

Page 7: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Introduction 7

1 Introduction

Currently, two trends in society are visible. One trend is that conventional breeding increas-

ingly focuses on F1 hybrid breeding and the use of patents. Another trend is that consumers,

in particular organic consumers, value product quality more and more. The need for an al-

ternative, more holistic approach in organic breeding becomes more urgent in order to

meet economic, societal and nutritional values (Lammerts van Bueren et al., 2016; 2018).

The breeding of open pollinated varieties has the potential to meet these values, important

for organic consumers. However, the choice of good open pollinated (OP) varieties in terms

of yield and some other traits is often limited as the focus in plant breeding has been on F1

hybrids for the past 40 years (Nuijten and Lammerts van Bueren, 2014). It is suggested that

the same yield is achievable with both F1 hybrids and OP varieties (Kutka 2011). However,

recent research findings show that OP varieties of several vegetable crops often have bet-

ter taste, but F1 hybrid varieties often have better yield (Nuijten and Groenen, 2014).

Nowadays, crop varieties have to meet many criteria. For farmers, next to yield, good field

traits, uniformity and storability are important traits. In organic agriculture, good taste and

good nutritional values are also considered important traits for crop varieties (Lammerts van

Bueren et al., 2011). Successful variety introduction in small markets like the organic sector is

complex but can be successful if it is adjusted to the needs of the market (Nuijten et al.,

2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin,

together with bio-dynamic farmers and the Louis Bolk Institute, evaluated open pollinated

varieties that combine good yield and storability with good taste and quality (Nuijten and

Lammerts van Bueren, 2016b). The reason to stimulate the use of open pollinated (OP) varie-

ties is to stimulate diversity not only at the plant level, but also at the socio-economic level:

with open pollinated varieties it is expected that more farmers can be involved in seed (pos-

sibility to multiply seeds on-farm in contrast to F1 hybrid varieties) and in selection towards

crop development (Nuijten and Lammerts van Bueren, 2015). Consumers not only value the

aspects of good taste and quality of such varieties, but also that they contribute to a broad

agrobiodiversity and maintaining open source in plant breeding.

Consumers expect organic products to have better quality and taste (Reinders et al., 2009).

Research on nutritional quality (based on mineral content) showed a drastic decrease in mi-

cro nutrient content (up to 60% for various minerals) of various foods such as vegetables, di-

ary and meat (Thomas, 2003; 2007). One explanation is the increased use of synthetic fertilis-

ers in conventional farming (Thomas, 2007). As in organic farming farmers use manure

(maintaining micro nutrients at sufficient levels in the field), one would expect clear differ-

ences between conventional and organic produce. However, there is not yet clear evi-

dence for this expectation (Nordholt et al., 2004). One reason why it is difficult to provide

Page 8: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

8 A more holistic approach for breeding: including quality from a value chain perspective

such evidence is that it is based on a comparison of different farming systems with interac-

tions between many factors. Breeding can also be another factor that may contribute to

the decrease in minerals in crop varieties (Thomas, 2003; 2007)

In bio-dynamic farming research a concept has been developed that is called ‘growth and

differentiation’ referring to the balance and often trade-off in processes in plant growth and

hence also in crop production between creating quantity (kilo’s, vegetative process) and

quality (nutritional value, generative process). Generally plants show differentiation in the

leaf development from seedling to flowering plant. Plants that are more into the ripening

stage (closer to the flowering stage) have higher levels of dry matter content (Nordholt et

al., 2004), and are also expected to have higher levels of secondary metabolites (Bloksma

et al., 2002). The balance in growth and differentiation can be influenced through soil qual-

ity and plant breeding. A sandy soil is said to stimulate differentiation and the build-up of

dry matter and production of secondary metabolites , while a clayey soil is to stimulate

growth (Bloksma et al., 2002). Hence, one may expect that crop varieties with higher levels

of dry matter content are more nutritious. Project findings of the project Divers and Dichtbij

also show that there can be a positive relationship between dry matter content and taste

(Nuijten and Lammerts van Bueren, 2016). However, in some cases a negative correlation

between dry matter and taste seems to be related to the period of storage. It may also be

the case that this is variety specific. Such mechanisms are not yet well understood.

Project findings of the project Divers and Dichtbij also suggest that there can be a negative

relation between storability on the one hand and taste and quality on the other hand. Such

negative relationship has also been described by Watkins and Nock (2012). It means that

varieties with good taste are more difficult to store than the commonly used varieties by

farmers. However, storability has become a very important trait for farmers, as they need to

be able to sell their produce over a prolonged period of time.

An important question is what can be done to improve the storage period of vegetables

with high dry matter content (and hence good taste and quality). One option may be to

look for varieties that have a good balance in storability, taste and nutritional value. In oth-

ers words: to look for a balance in economic and quality aspects. Another option may be

to develop a specific marketing approach for such varieties.

In this research project the aim was to understand better several aspects important to the

underlying mechanisms of the growth and differentiation concept. One aspect is the com-

parison of the produce of two contrasting farms: one bio-dynamic farm with clay soil (the

farm GAOS in Swifterbant, the Netherlands) and the other with a sandy soil (the farm De

Beersche Hoeve, Oostelbeers, the Netherlands). Crops on the farm with sandy soil are ex-

pected to be more differentiated and therefore more advanced in ripening than the crops

Page 9: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Introduction 9

on the farm with the clay soil that tend to keep on growing. We expect to see clear differ-

ences in storability and taste. Comparing various OP and F1 varieties with different charac-

teristics will help understand whether a good balance in storability and taste is possible. An-

other aspect was to compare harvest dates: What is the effect of date of harvesting on stor-

ability and taste? The produce was tasted at several periods after harvesting to describe the

changes in taste during the storage period. Another aspect in relation to taste and storage

are plant related traits: do leaf, fruit and root crops have different optimal balances in taste

and storability? To understand this better, three crops will be compared: a cabbage crop

(red cabbage), a root vegetable (carrot) and a fruit vegetable (pumpkin).

The project findings may help understanding the possibilities of optimising cultivation, mar-

keting and storage of varieties with good dry matter content, taste and quality. Eventually,

this will need to be done together with partners in the value chain. In other words, with farm-

ers, traders and consumers.

The aim of this research

The focus of this research is to study various aspects important for successful cultivation of

OP varieties of different vegetable crops with good quality and taste, resulting in increase in

trade and higher consumption. In particular the effect of soil type and harvesting dates on

yield, storability, taste and quality were compared for a set of F1 hybrids and OP varieties.

Hypotheses

The hypotheses that were studied in this project are the following:

1. Storability is negatively related with taste and quality

2. Produce harvested on clayey and sandy soil behave very differently in storability and

taste

3. Cabbage crops and root crops grown on different soil quality behave differently in

storability and taste

4. There are crop varieties within a crop species that have a good balance in dry mat-

ter, taste and storability

Page 10: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

10 A more holistic approach for breeding: including quality from a value chain perspective

2 Material and methods

Trial set up and methods

Based on discussions with the involved farmers (one biodynamic farm on clay soil in Swifter-

bant, one biodynamic farm on sandy soil in Oostelbeers), it was decided to work with the

following crops in this research project: carrot, pumpkin and red cabbage. Also, with the in-

volved farmers it was decided to look at date of harvesting (early harvest and conventional

harvest time) instead of two different storage regimes. The tested varieties are listed in Table

1. The choice of varieties was such to have sets of varieties that differ in taste, storability

and yield. For pumpkin, Bright Summer F1 has replaced Amoro F1 which was included in the

field trial in the first season. Bright Summer F1 is not as high in yield compared to Amoro F1,

and also has a higher dry matter content and mineral content. This replacement has the

benefit that as the extremes in the data set are not that large, the correlations may be more

informative to draw conclusions upon.

Table 1: Tested varieties for carrot, pumpkin and red cabbage.

Carrot variety Seed supplier Pumpkin variety Seed supplier Red cabbage

variety

Seed supplier

Crofton F1 Rijk Zwaan Bright Summer

F1

Vitalis Granat Bingenheimer

Saatgut

Nerac F1 Bejo Fictor De Bolster Marner Lagerrot Hild

Robila Bingenheimer

Saatgut

Orange Sum-

mer F1

Vitalis Rodynda Bingenheimer

Saatgut

Rodelika Bingenheimer

Saatgut

Red Kuri Bingenheimer

Saatgut

Roxy F1 Seminis

Solvita Bingenheimer

Saatgut

Uchiki Kuri Vitalis Travero F1 Bejo

In both years the same trial set-up was used on both sites. On both farms a complete ran-

domised block design with three replications was used for each of the three crops. At both

farms, the trials for all three crops were sown and harvested as close together in time as pos-

sible. Due to dry and hot weather during sowing and planting in May 2017, the carrot trial at

the clay location had too low plant density, and with the red cabbage trial on sandy soil,

some plots had too low plant density. In 2018 all trials established well, but the red cab-

bage trial at the clay location suffered from high infestation with cabbage moth in June.

Generally, the summer of 2017 can be characterized as dry from May to August at both lo-

cations, with more significant amounts of rainfall from early September onwards that likely

has influenced the trial results. The summer of 2018 was even drier than the summer of 2017,

with almost no rainfall from May to August.

Page 11: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Material and methods 11

Field measurements

During the growing season, the trials in 2017 and 2018 were evaluated for criteria such as

plant habit, leaf development, plant health (presence of pests and diseases) and plant and

leaf development.

Evaluation of yield

For each of the crops, yield was measured twice, at an early harvest, and the normal har-

vesting time. Yield was measured at harvest and after storage in 2017 and 2018. At harvest

only gross yield was measured and recalculated in dry matter yield based on the dry matter

averages. After storage several additional parameters were measured such as amount of

rot and amount of produce that is unsuitable for sale, in this way being able to calculate a

marketable yield.

At both harvests of each crop representative samples were collected for laboratory anal-

yses. At the second harvest, samples were collected also for the three taste evaluations

over time.

The harvesting times were chosen as closely together in time as possible. In 2017, the har-

vesting time were as follows for respectively the sand and clay location:

Carrot: 1st harvest 5/7 September, 2nd harvest 4 October

Pumpkin: 1st harvest 5/7 September, 2nd harvest 21/22 September

Red cabbage: 1st harvest 21/22 September, 2nd harvest 12 October

In 2018, the harvesting time were as follows for respectively the sand and clay location::

Carrot: 1st harvest 19/20 September, 2nd harvest 4/5 October

Pumpkin: 1st harvest 23/24 August, 2nd harvest 11 September

Red cabbage: 1st harvest 19 September/5 October , 2nd harvest 4/18 October

In 2018, it was jointly decided with the farmers to harvest the pumpkins earlier because of

the warm weather and quicker growth than usual. The first harvest of the carrot in 2018 was

chosen later in time as early September (chosen in 2017) seemed to early. Due to the moth

infestation at the clay location in 2018, the harvesting of the red cabbage was delayed till

the cabbages were formed well.

Storability evaluation

The dates for storability evaluation were chosen such to ensure to see clear differences in

storability between treatments, in particular between varieties. Hence, the time of evalua-

tion was suboptimal for some of the varieties. With the evaluation for storability, also an eval-

uation for marketability was included: produce that was too small or had an irregular shape

(carrot and red cabbage) were not included in the marketable yield.

For carrot, storability evaluation was conducted on 1 March in 2017 and 28 February in

2018. For pumpkin, storability evaluation was conducted on respectively 22 January and 11

Page 12: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

12 A more holistic approach for breeding: including quality from a value chain perspective

January in 2017 and 2018. Storability evaluation of red cabbage was conducted on respec-

tively 16 and 21 February in 2017 and 2018. The storability evaluations were chosen differ-

ently for each of the crops because of differences in storability potential. Of the three crops,

pumpkin has the shortest storage potential, and carrot the longest.

Taste evaluations

Taste evaluations were done with the involved farms at three moments in time for each of

the crops. Evaluations were conducted blind and the following traits were evaluated: gen-

eral taste appreciation, intensity of aroma, sweetness for carrot and pumpkin, length of af-

tertaste and structure/mouthfeel. Each trait was evaluated using a score of 1 (low) to 9

(high). For the taste tests, on average 9 people were involved, ranging from 6 to 12.

At the first two taste evaluations, all crops were evaluated on the same day. The third taste

evaluation was combined with the storability evaluation. For both years the first two evalua-

tions were chosen in time as closely as possible. In both years the first evaluation was con-

ducted on 18 October, and the second evaluation was on 8 and 6 December in respec-

tively 2017 and 2018. The third taste evaluations were combined with the storability evalua-

tion.

Laboratory analysis

In addition to analysis of dry matter content, Brix, EC and pH, also a so-called self-decompo-

sition test (SDT) was conducted as indicator for nutritional quality from a holistic perspective

(Bokhorst 1985). For this test the same plant material was used as for the measurements of

dry matter content, Brix EC and pH. For the SDT rasped material was kept in Petri dishes for 7

days at constant temperature and moisture conditions and then evaluated for appearance

and reduction in fresh and dry weight. For the analyses the following parameters were used:

decrease in fresh weight after SDT (in %), decrease in dry matter after SDT (in %) and the ra-

tio in decrease dry/wet weight after SDT. A low value for decrease in dry matter after SDT (in

%) and the ratio in decrease dry/wet weight after SDT are indicators for good nutritional

quality (Bokhorst 1985), and a high value for decrease in fresh weight after SDT (in %) is con-

sidered an indicator for good nutritional quality. Mineral analysis was outsourced, and for

some minerals no data were generated (Sodium and Manganese for pumpkin).

Statistical analysis

The software Genstat was used for statistical analysis, e.g. ANOVA and correlations, compar-

ing crops, varieties, locations, years and harvesting times.

Page 13: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Results 13

3 Results

First the results of the ANOVA will be presented, comparing crops and varieties per crop.

Then an overview on crop performance followed by correlations of storability (percentage

rot after harvest), taste, yield fresh (after harvest) and yield dry matter (after harvest) with

other traits will be presented per crop. Last, dynamics in development of taste are be de-

scribed per crop.

3.1 ANOVA

A comparison with all data of all three crops in one ANOVA shows many interactions for the

different types of traits: yield, storability, quality, taste and mineral content (Table 2). A com-

parison of all crops for only the season of 2017 shows no interaction terms for aroma, after-

taste, Brix and dry matter percentage. However, for 2018 also interaction terms (mostly crop

x location) were found for these traits. The results of the ANOVA per crop, combining both

seasons also show interactions for all traits that were measured both harvest dates. There

seem not be consistent differences or patterns between categories of traits and between

crops. The main effects (Variety, Location, Year, Harvest date) differ for these traits for each

of the crops.

Carrot

The ANOVA for 2017 and 2018 separately show no significant interactions for the traits de-

crease in fresh weight after SDT, aftertaste and pH (Tables 3a-1 and 3a-2). The F-values for

the main effects (Varity, Location and Harvest moment) differ for both years. For the other

traits, the results suggest that location and harvest date interacted in different ways in the

two seasons.

Pumpkin

The ANOVA for 2017 and 2018 separately show no significant interactions for the traits de-

crease in fresh weight after SDT and pH (Tables 3b-1 and 3b-2). For all other traits interactions

were observed in both years or in one of the two years. In 2017, fewer interaction were ob-

served than in 2018.

Red cabbage

The ANOVA for 2017 and 2018 separately show no significant interactions for the traits after-

taste, pH and EC (Tables 3c-1 and 3c-2). In 2018, fewer interaction were observed than in

2017. In 2018, no significant interactions were observed for the term Variety x Harvest date.

Crop performance

Some general trends are that whereas total yields (fresh matter) can differ widely among

varieties of the same crop, the differences in dry matter yields are smaller (Tables 4a, b, c;

for all averages: Annex 1). Another trend was that storability on clay soil tends to be better

Page 14: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

14 A more holistic approach for breeding: including quality from a value chain perspective

for all crops. For pumpkin and red cabbage taste tended to be better on sandy soil com-

pared to clay soil. For carrot taste on clay soil tended to be better in 2018, but in 2017 taste

for carrot was similar on both locations.

Carrot

Some general trends that were observed are that storability, quality and taste were better

on the clay soil location than on the sandy soil location (Table 4a). However, taking into ac-

count year-effects, a complex picture emerges. Marketable yield after storage was the

same for both years at the clay location, but differed a lot on the sandy location. Taste was

similar for both years at the sand location, but differed for the clay location.

Results suggest that harvest moment 1 resulted in better quality and mineral content, but

that harvest moment 2 results in better taste, yield, storability and marketable yield. Particu-

larly on clay soil, in both years, the crop may have accelerated growth between the two

harvest dates because of increase in rainfall.

Pumpkin

For pumpkin, fresh yields varied for clay between 2017 and 2018, whereas the dry matter

yields were similar (Table 4b). On sand the fresh yields were very similar between the two

years, but the dry matter yields differed much. In both years storability on clay was better,

whereas taste was much better on sandy soil.

Despite lower yields of harvest moment 1 compared to harvest moment 2, marketable yield

of harvest moment 1 was better. Also storability and taste were better for harvest moment 1

compared to harvest moment 2.

The results of the SDT suggest that the quality of the second harvest in 2018 was better than

the first harvest, but dry matter content, Brix and EC were better for the first harvest. Results

of the SDT test for 2017 suggest similar quality for both harvesting moments. Dry matter con-

tent in 2017 was higher with the first harvest, but EC was higher with the second harvest. In

2018 the development stage of the plants was larger compared to 2017.

Red Cabbage

For red cabbage the general trends are that storability was clearly better on clay than on

sand, but that taste was better on sandy soil (Table 4c. Yield data were limited because part

of the trial on the sand locat

ion could not be used for yield measurement in 2017 due to heat stress after planting, and

the trial on clay was considered not representative for yield in 2018 due to a severe moth in-

festation in June.

Harvest moments 1 and 2 seem not to differ clearly for storability, quality and taste. In re-

spect to yield, it seems harvest moment 2 is better in general.

The biggest differences in storability, quality and taste can be observed between varieties.

An observation in the field was that the varieties that were slow in head formation, Roxy F1

and Travero F1, (and to a lesser extent Marner Lagerrot) had better storability and higher dry

Page 15: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Results 15

matter content. The SDT data suggests that with the first harvest the variety Rodynda had

best quality, and with the second harvest the variety Marner Lagerrot.

3.2 Correlations

Correlations for the traits storability, taste, yield fresh and yield dry matter differed for each of

the crops in different ways (Tables 5a-1 to table 5c-4). The strength of the correlation varied

much based on the data set used per crop: all data, Location (clay / sand), Year

(2017/2018), Harvest moment (1 / 2) and variety (five per crop). Also the direction of the

correlation (positive / negative) varied for most traits between the crops.

Correlations on storability

In regards to storability, fewest correlations higher than 0.6 or lower than -0.6 were observed

for carrot, and more for pumpkin and red cabbage (Tables 5a1, 5b1, 5c1). In general corre-

lation values were mostly low. Brix showed the most consistent pattern (mostly positive) for all

three crops. Of the other traits decrease in fresh weight after SDT showed the clearest pat-

tern, with mostly positive correlations for pumpkin and red cabbage but negative correla-

tions for carrot.

For pumpkin, storability (percentage rot) showed a consistent pattern in negative correla-

tions with EC ,a positive pattern with dry matter yield and a large number of high positive

correlations with taste. For red cabbage, about 50% of the higher correlations were ob-

served with the varieties Granat and Rodynda, suggesting a strong variety component.

These two varieties also grow faster than the other three red cabbage varieties.

Correlations on taste

For taste, more correlations higher than 0.6 or lower than 0.6 were found with pumpkin than

with carrot and red cabbage (Tables 5a2, 5b2, 5c2). Particularly for taste the correlations

could differ much between the two locations, the two seasons and also the two harvest mo-

ment.

For pumpkin, next to the correlations with storability and dry matter yield, many high correla-

tions were observed for Brix/EC and many negative correlations with EC. For 2017 and har-

vest moment one stronger correlations were found than for 2018 and harvest moment two

respectively. For carrot and red cabbage, strongest correlations were found for the taste

related traits aroma and aftertaste. For carrot, also harvest moment 1 had stronger correla-

tions than harvest moment 2. For red cabbage, most correlations were related to the varie-

ties Marner Laggerrot and Roxy F1.

Correlations on fresh yield

No strong correlations were observed between yield and taste and storability for all three

crops (Tables 5a3, 5b3, 5c3). Most correlations were found with carrot. Average dry matter

and Brix content predominantly showed negative correlations with yield, with the strongest

Page 16: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

16 A more holistic approach for breeding: including quality from a value chain perspective

correlations for pumpkin. Carrot also showed strong negative correlations between dry mat-

ter content and yield. In addition carrot also showed negative correlations between yield

and EC and decrease in fresh weight after the SDT, and showed positive correlations be-

tween yield and the ratio of decrease in dry and wet weight after the SDT.

For pumpkin and red cabbage these traits showed much lower correlations. It is noteworthy

that for all three crops yield and EC showed strong negative correlations for 2017, but not for

2018.

For red cabbage, yield showed many strong correlations for harvest moment two.

Correlations on dry matter yield

Like for fresh yield, no strong correlations were found between dry matter yield and taste

and storability (Tables 5a4, 5b4, 5c4). Most correlations were found with pumpkin and carrot.

None of the traits showed a similar pattern of correlations for all three crops. For carrot and

pumpkin, the year 2017 showed stronger correlations than the year 2018.

The high number of strong correlations with pumpkin seems related to EC which was nega-

tively related to dry matter yield. Also ECxBrix was strongly negatively related with dry matter

yield. The ratio Brix/EC was positively related to dry matter yield. For carrot, next to EC and

pH, the SDT related traits showed strongest correlations with dry matter yield, but not as

strong as EC in the case of pumpkin. In the case of red cabbage, most correlations with dry

matter yield were found for harvest moment 2.

3.3 Taste evaluations over time

For each of the crops different patterns in taste were observed. These patterns were differ-

ent between varieties of the same crop, but also different for the same variety between the

two locations and the two seasons. Both location and season can influence the develop-

ment of taste of a single variety. This also means that taste depends much on time of evalu-

ation. This was particularly the case for pumpkin, and perhaps less so for red cabbage (Ta-

bles 6 and 7).

For carrot, three varieties (Crofton F1, Nerac F1 and Robila) showed a similar pattern in 2017:

decrease in taste on clay soil and improvement in taste on sandy soil. Solvita from clay soil

had better taste than from sandy soil on all three taste evaluations. The variety Rodelika de-

scribed a somewhat irregular pattern in taste, with the best taste evaluation in December.

However, in 2018 each carrot variety showed a different pattern in taste development com-

pared to 2017.

For pumpkin, patterns in taste development were even more complex in 2018 compared to

the already different taste developments of the various varieties in 2017 with often decreas-

ing taste on clay soil and improving taste on sandy soil. This was particularly the case for the

varieties Red Kuri and Uchiki Kuri. The only variety for which the taste patterns in 2017 and

2018 were similar was the variety Fictor. The variety Fictor also showed consistent patterns in

taste for clay and sandy soil, e.g. large differences, at all three evaluations in both years.

Page 17: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Results 17

The most constant variety seemed to be Orange Summer F1, although it also had some

changes in taste in the season of 2018.

For red cabbage, also differences in patterns of taste development were observed. Loca-

tion and season effects seem to be different for each of the varieties. Perhaps the only vari-

ety that seems to have a stable pattern in taste development in both seasons for both loca-

tions is the variety Travero F1. Also the variety Marner Lagerrot seems quite stable over time

on the sandy location, but less so for the clay location. In particular the taste developments

of the varieties Granat and Roxy F1 seem different for the two locations in the two years.

Page 18: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

18 A more holistic approach for breeding: including quality from a value chain perspective

4 Discussion

The focus of this research was to study the relationships of various aspects (soil type, season

and harvest moment) important for successful cultivation of OP varieties of different vegeta-

ble crops with good quality and taste, resulting in increased cultivation trade and higher

consumption. An important question was whether a balance in yield, storability, taste and

quality is possible. Three different crop types (cabbage, root vegetable and fruit vegetable)

were used in order to understand which general conclusions can be drawn. The analyses

show that there are many interactions between varieties, soil type, season and harvest mo-

ment. And that these interactions can be different for the three crops. One general conclu-

sion is that whereas yields can differ a lot between varieties when calculated in fresh matter,

yields are much more similar when calculated in dry matter. Correlations also suggest nega-

tive relationships between yield fresh matter) and quality (in particular dry matter content).

These relationships seem clearest for carrot. It suggests that breeding for higher (fresh mat-

ter) yields results in lower quality. In other words, the nutritional quality becomes diluted. This

information may not only change the perspective on variety choice, but even on breeding.

Whether this insight can be integrated into daily practice depends on the choices made in

the value chain.

Another general conclusion is that soil quality has a big effect on storability and taste (hy-

pothesis 2). This is in agreement with the growth and differentiation concept (Bloksma et al.

2002). In this research the storability on clay soil tended to better than on sandy soil. For

pumpkin and red cabbage taste was also better on sandy soil than on clay soil, which is also

in agreement with the growth and differentiation concept. However, carrot from clay soil

tended to taste better than from the sandy soil in this research. This is not in line with earlier

ideas on taste and soil type (Bokhorst, 1985). However, the weather of 2017 and 2018 was

quite a-typical for Dutch standards. Hence, in another year with more ‘normal’ weather

findings may be more in line with earlier ideas. The data on dry matter content for carrot

were quite different from those measured in 2014 on the same farm on the clay location

(Nuijten and Lammerts van Bueren, 2016).

From the growth and differentiation perspective improved storability can be achieved by

harvesting the crop when the plants are more in the growth stage than in the differentiation

stage (Bloksma et al. 2007). However, the differentiation stage is important for quality and

taste. From this logically follows that improved storability is negatively related with taste and

quality (hypothesis one). The results on pumpkin are well in line with this hypothesis. How-

ever, the results on carrot and red cabbage cannot confirm this hypothesis. The results on

carrot suggest a negative relation between improved storability and quality but none with

taste. Data on red cabbage seem not to suggest clear relationships between storability

and taste and quality. A complicating factor here is that there are several parameters used

Page 19: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Discussion 19

as an indicator for quality: dry matter content, Brix, EC, and the SDT parameters. How ex-

actly these parameters can be used as indicator for what sort of nutritional quality needs to

be better studied. The ANOVA’s suggest that SDT parameter ‘decrease in wet weight after

the SDT’ seems to be the more stable parameter of the SDT parameters and hence may be

more suitable as indicator for quality. Of the other quality related parameters EC seemed

most stable for red cabbage. Another parameter that did not show any interactions in the

ANOVA of each of the three crops was pH. Whether this is because pH needs to be rela-

tively stable anyhow, or that it can be used as indicator for quality in combination with other

quality parameters needs to be further studied.

Time of harvesting seems to have a large effect on the outcomes of the correlations of taste

with many other parameters, for all three crops. When starting up the research, the effect of

harvest moment was an important element of discussion. The results suggests different pat-

terns in the effect on storability, taste quality for each of the crops (hypothesis 3). In general

an earlier harvest moment can have positive effects on storability, taste and dry matter con-

tent in the case of pumpkin. However, correlations with taste and storability are very differ-

ent for the first and second harvest moments, suggesting that a later harvest moment has

better nutritional quality (based on the SDT parameters), although lower dry matter and min-

eral content. For carrot, an earlier moment may have positive effects on mineral content

and perhaps even nutritional quality (contrary to the growth and differentiation theory), but

negative effects on taste, yield and storability. For red cabbage, the moment of harvesting

seems to have little effect on storability and taste. A complicating factor in both seasons

was that shortly before or in between the harvest moments rainfall started again, causing

the crops to start, or accelerate, growth again. This was particularly the case for carrot in

both years and also for pumpkin in the second year. Hence, at the second harvest moment

some varieties may have been still in a growth phase.

The assumption was that a good comparison of three crops is improved by using several va-

rieties in the comparisons. One the hand using several varieties per crop is important to un-

derstand which general lessons can be drawn. On the other hand, the set of varieties has

different qualities for each of the crops. Hence, it is difficult to draw more solid conclusions.

This seems particularly the case for red cabbage of which each variety seems to have very

different qualities, such as taste, storability and nutritional quality. For example, the SDT pa-

rameters suggest that the variety Marner Lagerrot has good nutritional quality but it scored

relatively low in taste because of its typical cabbage taste which nowadays is being less ap-

preciated. Also, the correlations with taste were positive in the case of some red cabbage

varieties but negative for other varieties for the same traits.

As a general conclusion it may be argued that it should be possible to breed for crop varie-

ties with a good balance in yield (fresh), dry matter yield, taste and storability (hypothesis 4).

Page 20: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

20 A more holistic approach for breeding: including quality from a value chain perspective

How this balance should look like exactly for each of the crops is a point of discussion with

farmers, traders and consumers. Presentations of the first results to farmers and consumers at

several occasions in 2018 underline the importance of finding a better balance in variety

qualities. The research shows clearly that in the context of bio-dynamic farming, OP varieties

can have as high yields as F1-hybrids. Looking at yield from the perspective of dry matter,

differences between varieties become very small. Choice of varieties can then be made

much more on the basis of taste and quality, in addition to storability. The research also

shows that many factors (soil, season, harvest moment) interact and influence variety per-

formance. Which varieties are best to be used is not only depending on preferences in the

value chain, but also depends on the local agro-ecological context.

Page 21: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

References 21

References

Bloksma, J. and Huber, M. (2002) Groei & Differentiatie. Driebergen: Louis Bolk Insituut.

Bloksma J., Northolt M., Huber M., Van der Burgt G.-J, and L. van de Vijver. (2007) A new

quality concept based on life processes. In: Handbook of Organic Food Safety and Qual-

ity. Woodhead Publishing Series in Food Science, Technology and Nutrition. Pages 53-73.

https://doi.org/10.1533/9781845693411.1.53

Bokhorst J.G. (1985) Kwaliteitsonderzoek biologisch-dynamische producten, akkerbouw,

tuinbouw fruit. Louis Bolk Instituut, Driebergen.

Kutka F. (2011) Open-Pollinated vs. Hybrid Maize Cultivars Sustainability 3: 1531-1554

Lammerts van Bueren, E. T.; Jones, S. S.; Tamm, L.; Murphy, K. M.; Myers, J. R.; Leifert, C.; Mess-

mer, M. M. (2011) The need to breed crop varieties suitable for organic farming, using

wheat, tomato and broccoli as examples: A review. NJAS - Wageningen J. Life Sci. 2011,

58, 193–205

Lammerts van Bueren E.T., Nuijten, E., Janmaat, L., (2016) Fair seed as a basis for organic

products: Eosta takes a stand and supports the breeding of open-pollinated varieties.

Louis Bolk Instituut, Driebergen. 4 p.

Lammerts van Bueren, E.T.,Struik, P.C., Van Eekeren, N. and Nuijten, E. 2018 Towards resili-

ence through systems-based plant breeding. A review. Agronomy for Sustainable Devel-

opment (2018) 38:42 https://doi.org/10.1007/s13593-018-0522-6

Northolt, M., Burgt, van der, G., Buisman, T. Bogaerde, A.V. (2004) Parameters for carrot qual-

ity. Driebergen: Louis Bolk Instituut.

Nuijten, E., and Groenen R. (2014) Rassenvergelijking Regioras: Kostelijk Brabant 2013. Louis

Bolk Instituut, Driebergen

Nuijten, E. and Lammerts van Bueren, E.T . (2015) Robuuste groenterassen lokaal ontwikkelen

Louis Bolk Instituut, Driebergen

Nuijten E. and Lammerts van Bueren E.T. (2016) Werken aan diversiteit in tarwe en groenten.

Voor meer variatie op het veld, in het winkelschapen op het bord. Louis Bolk Instituut,

Driebergen, 20p.

Nuijten, E., Janmaat, L., Lammerts van Bueren, E.T., (2014) New models for plant breeding:

Key elements for collaboration within the food chain. Green Breeding Program, Drieber-

gen, Wageningen, The Netherlands. http://www.louisbolk.org/downloads/2864.pdf

Nuijten, E., De Wit, J., Janmaat, L., Schmitt, A., Tamm, L. and Lammerts van Bueren, E.T.

(2017) Understanding obstacles and opportunities for successful market introduction of

crop varieties with resistance against major diseases. Org Agric (first online).

doi:https://doi.org/10.1007/s13165-017-0192-8

Thomas, D. (2003) A study on the mineral depletion of the foods available to us as a nation

over the period 1940 to 1991. Nutriion and health 17: 85-115

Thomas, D. (2007) The mineral depletion of foods available to us as a nation (1940-2002) – A

review of the 6th edition of McCance and Widdowson. Nutriion and health 19: 21-55

Watkins, C.B., Nock, J.F. (2012) Production Guide for Storage of Organic fruits and Vegeta-

bles. NYSM IPM Publication 10.

Page 22: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

22 A more holistic approach for breeding: including quality from a value chain perspective

Tables

Table 2: F and p-values for various traits based on joint analysis of carrot, pumpkin and red cabbage trials conducted in 2017 and 2018 .

Crop Trait

p-

value

Crop

p- value

Location

p-

value

Year

p-

value

Harvest

date

p- value

Crop x

Location

p- value

Crop x

Year

p- value

Location

x Year

p- value

Crop x

Harvest

date

p- value

Location

x Harvest

date

p- value

Year x

Harvest

date

p- value

Crop x

Location

x Year

p- value

Crop x

Location

x Harvest

date

p- value

Crop x

Year x

Harvest

date

p- value

Location

x Year x

Harvest

date

p- value

Crop x Lo-

cation x

Year x

Harvest

date

Yield fresh, at harvest <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,001 0,005 0,463 0,008 0,347 0,004 0,251 0,655 0,394

Yield dry matter, at harvest <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,108 0,800 <0,001 0,784 0,057 0,011 0,689 0,758

Storability (percentage loss) <0,001 <0,001 0,008 0,194 <0,001 <0,001 0,022 <0,001 0,098 0,845 0,002 0,089 0,248 0,969 0,566

Marketable yield, after storage <0,001 <0,001 <0,001 0,004 <0,001 0,003 <0,001 <0,001 0,158 0,053 0,026 0,026 0,136 0,096 0,018

Yield, after storage, dry matter <0,001 <0,001 <0,001 0,125 <0,001 0,061 <0,001 <0,001 0,330 0,061 0,013 0,039 0,015 0,172 0,019

Decrease in fresh weight after SDT <0,001 0,990 0,012 <0,001 <0,001 0,336 <0,001 <0,001 0,054 <0,001 0,914 0,572 <0,001 0,378 0,148

Decrease dry matter after SDT <0,001 0,002 0,348 0,061 <0,001 <0,001 0,100 0,554 0,005 <0,001 <0,001 0,189 <0,001 0,027 <0,001

Ratio dry/fresh matter after SDT <0,001 <0,001 0,012 <0,001 <0,001 0,004 0,714 <0,001 0,566 <0,001 <0,001 0,097 <0,001 0,364 0,072

Taste, general appreciation <0,001 <0,001 0,791 0,526 <0,001 0,064 0,016 0,025 <0,001 0,826 0,224 0,176 0,546 0,509 0,296

Aroma 0,053 0,340 0,309 0,092 0,024 0,298 0,118 0,376 0,390 0,013 0,018 0,017 0,438 0,327 0,807

Aftertaste 0,129 0,245 0,714 0,237 0,187 0,549 0,751 0,416 0,666 0,259 0,003 0,09 0,641 0,747 0,338

Structure/ Mouthfeel 0,003 0,578 0,027 0,421 0,026 <0,001 0,162 0,004 0,002 0,006 0,002 0,007 0,071 0,901 0,044

K/Ca ratio <0,001 <0,001 <0,001 <0,001 <0,001 0,041 0,914

pH <0,001 0,918 <0,001 0,002 0,651 <0,001 0,100 <0,001 0,755 <0,001 0,352 0,845 <0,001 0,033 0,627

EC (mS/cm) <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,120 <0,001 0,955 0,015 0,005 0,162 <0,001 0,031 0,142

Brix (%) <0,001 0,370 <0,001 0,21 <0,001 <0,001 <0,001 0,005 0,110 0,014 0,056 0,021 0,004 0,931 0,019

Dry matter content (%) <0,001 0,488 <0,001 <0,001 <0,001 <0,001 0,991 0,001 0,801 0,670 0,870 0,829 0,002 0,320 0,879

Calcium (gram/kg) <0,001 <0,001 <0,001 <0,001 <0,001 0,001 <0,001 Potassium (gram/kg) <0,001 <0,001 <0,001 <0,001 <0,001 0,066 0,028 Copper (mg/ kg) <0,001 <0,001 <0,001 <0,001 <0,001 0,933 0,367 Fosfor (gram /kg) <0,001 <0,001 0,054 <0,001 <0,001 0,393 0,458 Iron(mg /kg) <0,001 <0,001 0,002 0,007 <0,001 0,031 0,019 Magnesium (gram /kg) <0,001 0,029 <0,001 0,002 0,005 0,291 0,002 Sulfur (gram/kg) <0,001 <0,001 <0,001 <0,001 <0,001 0,993 0,048 Zink (mg/ kg) <0,001 <0,001 <0,001 <0,001 0,104 0,615 <0,001

Page 23: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 23

Table 2a: F and p-values for various traits based on joint analysis of carrot, pumpkin and red cabbage trials in 2017

Category Trait

F-value Crop

F-value Location

F-value Harvest date

F-value Crop x Location

F-value Crop x Harvest date

F-value Location x Harvest date

F-value Crop x Location x Har-vest date

p- value Crop

p- value Location

p- va-lue Harvest date

p- value Crop x Location

p- value Crop x Harvest date

p- value Location x Harvest date

p- value Crop x Lo-cation x Harvest date

Produce Fresh yield 63,7 44,3 41,8 15,0 6,1 0,1 1,7 <0,001 <0,001 <0,001 <0,001 0,003 0,803 0,199

Produce Dry matter yield 58,5 294,3 45,6 44,0 7,8 0,0 1,5 <0,001 <0,001 <0,001 <0,001 <0,001 0,928 0,237

Produce Percentage rot after storage 105,4 98,5 1,0 33,9 33,7 4,2 1,7 <0,001 <0,001 0,331 <0,001 <0,001 0,043 0,184

SDT Evaluation score after day 7 97,2 17,9 104,8 2,6 13,0 5,4 5,5 <0,001 <0,001 <0,001 0,078 <0,001 0,022 0,005

SDT Decrease in fresh weight after SDT 190,1 8,6 0,5 6,9 2,2 0,1 2,8 <0,001 0,004 0,481 0,001 0,117 0,782 0,061

SDT Decrease in dry matter after SDT 271,0 0,2 30,3 16,9 8,5 0,3 5,6 <0,001 0,691 <0,001 <0,001 <0,001 0,618 0,005

Taste General appreciation 30,2 68,6 1,1 33,4 1,3 0,8 2,6 <0,001 <0,001 0,302 <0,001 0,254 0,379 0,110

Taste Aroma 6,4 0,4 3,3 1,5 0,1 0,4 0,2 0,002 0,512 0,072 0,218 0,751 0,555 0,678

Taste Aftertaste 11,7 0,7 1,2 1,5 1,3 0,0 0,5 <0,001 0,391 0,271 0,231 0,251 0,855 0,481

Taste Mouthfeel 12,0 0,4 7,9 2,0 6,4 0,2 0,3 <0,001 0,507 0,005 0,132 0,012 0,667 0,558

Metabolism K/Ca ratio 141,2 13,8 0,9 2,5 1,0 0,0 0,1 <0,001 <0,001 0,357 0,090 0,322 0,833 0,807

Metabolism PH 570,4 3,6 31,5 0,2 10,0 2,0 0,2 <0,001 0,060 <0,001 0,797 <0,001 0,164 0,794

Metabolism EC (mS/cm) 68,4 275,9 1,3 35,4 0,2 1,9 0,2 <0,001 <0,001 0,262 <0,001 0,805 0,173 0,800

Nutrition Brix (%) 150,2 5,7 0,4 3,3 0,6 1,0 0,1 <0,001 0,018 0,519 0,041 0,565 0,320 0,949

Nutrition Dry matter content (%) 159,7 0,1 2,3 2,1 2,7 0,2 0,0 <0,001 0,830 0,129 0,121 0,068 0,678 0,980

Nutrition Calcium (gram/kg) 363,7 7,8 0,4 4,9 0,0 1,8 0,0 <0,001 0,006 0,509 0,009 0,965 0,186 0,979

Nutrition Potassium (gram/kg) 50,8 197,3 0,0 10,4 0,9 1,9 0,1 <0,001 <0,001 0,950 <0,001 0,350 0,175 0,715

Nutrition Copper (mg/ kg) 137,8 5,4 0,9 4,2 0,1 0,4 0,2 <0,001 0,021 0,359 0,018 0,798 0,554 0,660

Nutrition Fosfor (gram /kg) 30,5 10,9 1,0 9,0 0,2 3,3 1,8 <0,001 0,001 0,316 <0,001 0,695 0,072 0,183

Nutrition Iron(mg /kg) 52,5 25,9 0,1 1,4 90,6 3,2 5,3 <0,001 <0,001 0,757 0,255 <0,001 0,078 0,023

Nutrition Magnesium (gram /kg) 35,9 0,2 1,9 9,0 0,0 2,1 1,4 <0,001 0,630 0,169 <0,001 0,928 0,148 0,246

Nutrition Sulfur (gram/kg) 835,0 38,8 0,2 16,5 0,0 0,8 0,1 <0,001 <0,001 0,648 <0,001 0,998 0,384 0,772

Nutrition Zink (mg/ kg) 51,8 174,4 4,7 4,7 0,6 3,1 0,0 <0,001 <0,001 0,033 0,010 0,454 0,080 0,914

Page 24: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

24 A more holistic approach for breeding: including quality from a value chain perspective

Table 2b: F and p-values for various traits based on joint analysis of carrot, pumpkin and red cabbage trials in 2018

Category Trait

F-value Crop

F-value Location

F-value Harvest date

F-value Crop x Location

F-value Crop x Harvest date

F-value Location x Harvest date

F-value Crop x Location x Har-vest date

p- value Crop

p- value Location

p- va-lue Harvest date

p- value Crop x Location

p- value Crop x Harvest date

p- value Location x Harvest date

p- value Crop x Lo-cation x Harvest date

Produce Fresh yield 179 5 9 10 5 0 0 <0,001 0,028 0,003 0,002 0,008 0,579 0,547

Produce Dry matter yield 269 4 2 4 1 1 0 <0,001 0,043 0,148 0,047 0,246 0,405 0,575

Produce Percentage rot after storage 116 99 1 5 3 1 3 <0,001 <0,001 0,372 0,008 0,034 0,412 0,079

SDT Decrease in fresh weight after SDT 138 6 105 5 117 2 0 <0,001 0,017 <0,001 0,005 <0,001 0,137 0,902

SDT Decrease in dry matter after SDT 309 12 20 21 13 8 4 <0,001 <0,001 <0,001 <0,001 <0,001 0,005 0,023

SDT Ratio dry/fresh matter after SDT 144 8 1 13 9 0 2 <0,001 0,004 0,25 <0,001 <0,001 0,507 0,132

Taste Taste, general appreciation 12 15 0 36 2 4 0 <0,001 <0,001 0,646 <0,001 0,102 0,039 0,964

Taste Aroma 2 0 0 4 2 2 2 0,117 0,618 0,646 0,016 0,18 0,173 0,211

Taste Aftertaste 1 1 0 6 0 0 2 0,561 0,259 0,89 0,004 0,81 0,873 0,222

Taste Structure/ Mouthfeel 7 2 2 7 0 5 8 <0,001 0,177 0,149 0,001 0,788 0,027 <0,001

Metabolism K/Ca ratio 103 8 10 <0,001 0,005 <0,001

Metabolism PH 2330 0 0 3 65 3 0 <0,001 0,909 0,677 0,053 <0,001 0,074 0,723

Metabolism EC (mS/cm) 590 237 20 52 17 2 3 <0,001 <0,001 <0,001 <0,001 <0,001 0,14 0,042

Nutrition Brix (%) 63 7 4 10 8 1 5 <0,001 0,01 0,04 <0,001 <0,001 0,371 0,006

Nutrition Dry matter content (%) 89 1 10 7 6 1 0 <0,001 0,467 0,002 0,002 0,004 0,4 0,729

Nutrition Calcium (gram/kg) 30 24 7 <0,001 <0,001 0,001

Nutrition Potassium (gram/kg) 252 81 20 <0,001 <0,001 <0,001

Nutrition Copper (mg/ kg) 304 4 9 <0,001 0,04 <0,001

Nutrition Fosfor (gram /kg) 30 26 30 <0,001 <0,001 <0,001

Nutrition Iron(mg /kg) 36 3 23 <0,001 0,085 <0,001

Nutrition Magnesium (gram /kg) 76 5 0 <0,001 0,035 0,784

Nutrition Sulfur (gram/kg) 1472 50 35 <0,001 <0,001 <0,001

Nutrition Zink (mg/ kg) 102 155 60 <0,001 <0,001 <0,001

Page 25: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 25

Table 3a: p-values for various traits based on joint analysis of carrot trials conducted in 2017 and 2018

Crop Trait

p-

value

Variety

p- value

Location

p-

value

Year

p-

value

Harvest

date

p- value

Variety

x Loca-

tion

p- value

Variety

x Year

p- value

Location

x Year

p- value

Variety

x Har-

vest

date

p- value

Location

x Harvest

date

p- value

Year x

Harvest

date

p- value

Variety x

Location

x Year

p- value

Variety x

Location

x Harvest

date

p- value

Variety x

Year x

Harvest

date

p- value

Location

x Year x

Harvest

date

p- value

Variety x

Location x

Year x

Harvest

date

Yield fresh, at harvest <0,001 <0,001 <0,001 <0,001 0,338 0,320 0,001 0,814 0,334 0,075 0,332 0,399 0,829 0,309 0,934

Yield dry matter, at harvest <0,001 <0,001 <0,001 <0,001 0,055 0,142 <0,001 0,924 0,442 <0,001 0,060 0,288 0,726 0,612 0,694

Storability (percentage rot) 0,007 <0,001 0,042 <0,001 0,009 <0,001 <0,001 0,107 0,520 0,086 0,028 0,127 0,158 0,094 0,798

Marketable yield, after storage <0,001 0,985 0,028 0,019 0,129 0,596 0,002 0,594 0,386 0,204 0,607 0,275 0,980 0,04 0,985

Yield, after storage, dry matter 0,037 0,447 0,031 0,073 0,060 0,678 0,002 0,676 0,382 0,076 0,481 0,275 0,984 0,063 0,984

Decrease in fresh weight after SDT <0,001 <0,001 0,013 0,077 0,474 0,208 0,172 0,648 0,068 <0,001 0,187 0,877 0,663 0,737 0,133

Decrease dry matter after SDT 0,023 0,99 0,003 0,031 0,476 0,010 <0,001 0,401 0,655 0,113 0,182 0,051 0,97 0,149 0,262

Ratio dry/fresh matter after SDT <0,001 0,005 <0,001 0,002 0,484 0,025 <0,001 0,47 0,329 0,034 0,079 0,017 0,820 0,299 0,624

taste, general appreciation <0,001 0,014 0,118 0,009 0,198 0,178 0,015 0,018 0,017 0,902 0,004 0,674 0,028 0,461 0,029

Sweetness <0,001 0,494 0,674 0,739 0,061 0,025 0,186 0,078 0,756 0,093 0,044 0,368 0,153 0,100 0,024

Aroma 0,069 0,463 0,372 0,037 0,078 0,271 <0,001 0,035 0,938 0,677 0,262 0,720 0,870 0,899 0,163

Aftertaste 0,548 0,137 0,449 0,079 0,140 0,647 0,004 0,091 0,979 0,340 0,434 0,341 0,442 0,284 0,079

Structure/ Mouthfeel <0,001 0,526 0,399 0,227 0,039 0,801 <0,001 0,519 <0,001 0,454 0,003 0,786 0,056 0,056 0,020

K/Ca ratio 0,015 <0,001 0,450 0,038 0,926 <0,001 0,348

pH <0,001 0,452 <0,001 <0,001 0,151 0,307 0,676 0,871 0,802 <0,001 0,591 0,915 0,720 0,452 0,611

EC (mS/cm) 0,006 <0,001 0,011 0,043 <0,001 0,661 <0,001 0,695 0,134 0,877 0,766 0,803 0,852 0,354 0,927

Brix (%) <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,02 0,038 <0,001 <0,001 0,002 0,301 0,118 0,012 0,539

Dry matter content (%) <0,001 <0,001 0,008 <0,001 0,004 <0,001 0,764 0,261 0,994 <0,001 0,126 0,778 0,454 0,089 0,471

Calcium (gram/ kg) <0,001 0,189 0,042 0,112 0,907 0,343 0,593

Potassium (gram/ kg) <0,001 <0,001 0,903 0,033 0,849 <0,001 0,222

Sodium (gram/ kg) 0,013 0,862 <0,001 0,627 0,632 0,006 0,880

Copper (mg/ gram) <0,001 <0,001 <0,001 0,098 0,025 0,764 0,139

Fosfor (gram/ kg) <0,001 0,1740 0,732 0,065 0,083 0,393 0,012

Iron (mg/ gram) 0,001 <0,001 <0,001 0,320 0,005 <0,001 0,092

Magnesium (mg/ gram) <0,001 <0,001 <0,001 <0,001 0,070 0,372 0,265

Manganese (mg/ gram) <0,001 <0,001 0,230 0,198 0,968 0,129 0,126

Sulfur (gram/ kg) <0,001 0,0230 0,956 0,062 0,122 0,014 0,035

Zink (mg/ gram) <0,001 <0,001 <0,001 <0,001 0,177 0,052 0,037

Page 26: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

26 A more holistic approach for breeding: including quality from a value chain perspective

Table 3a-1: F and p-values for various traits based on ANOVA with variety, location, and time of harvesting effects for carrot in 2017

F-value Variety

F-value Location

F-value Harvest date

F-value Variety x Location

F-value Variety x Harvest date

F-value Location x Harvest date

F-value Variety x Location x Harvest date

p- value Variety

p- value Location

p- value Harvest date

p- value Variety x Location

p- value Variety x Harvest date

p- value Location x Harvest date

p- value Variety x Location x Harvest date

Yield fresh (tons/ha) 9 54 31 1 0 1 0 <0,001 <0,001 <0,001 0,691 0,812 0,250 0,068 Yield dry matter (tons/ha) 5 46 33 1 0 1 1 0,002 <0,001 <0,001 0,459 0,795 0,442 0,715 Storability (percentage rot) 1 3 43 0 3 1 1 0,33 0,102 <0,001 0,815 0,041 0,425 0,336 Average score at day 7 of SDT 4 34 189 0 1 2 1 0,007 <0,001 <0,001 0,902 0,422 0,215 0,068 Decrease in fresh weight after SDT (%) 3 16 4 2 1 3 1 0,048 <0,001 0,066 0,111 0,725 0,085 0,541 Decrease in dry matter after SDT (%) 2 10 10 3 1 3 2 0,122 0,003 0,003 0,042 0,645 0,114 0,068 General taste appreciation 2 0 6 2 1 7 3 0,166 0,947 0,016 0,101 0,393 0,011 0,041 Sweetness 2 0 3 2 2 3 4 0,169 0,879 0,115 0,094 0,066 0,081 0,007 Aroma 0 10 6 1 5 0 1 0,801 0,003 0,019 0,291 <0,001 0,947 0,666 Aftertaste 1 3 5 1 2 1 1 0,764 0,119 0,028 0,760 0,136 0,333 0,571 Structure/ Mouthfeel 3 5 0 3 2 1 1 0,043 0,035 0,647 0,048 0,217 0,276 0,556 K/Ca ratio 9 714 3 13 0 0 0 <0,001 <0,001 0,102 <0,001 0,999 0,599 0,776 pH 4 1 0 2 0 0 1 0,012 0,494 0,625 0,208 0,816 0,769 0,718 EC (mS/cm) 6 540 3 7 1 5 0 0,001 <0,001 0,094 <0,001 0,761 0,033 0,894 Brix (%) 14 62 0 2 1 3 1 <0,001 <0,001 0,947 0,079 0,243 0,079 0,685 Average dry matter (%) 19 26 2 1 1 1 0 <0,001 <0,001 0,157 0,487 0,646 0,249 0,970 Calcium (gram/ kg) 31 0 1 3 0 4 1 <0,001 0,628 0,359 0,041 0,949 0,057 0,690 Potassium (gram/ kg) 10 743 4 10 0 3 0 <0,001 <0,001 0,070 <0,001 0,994 0,087 0,870 Sodium (gram/ kg) 15 57 4 4 1 1 0 <0,001 <0,001 0,064 0,007 0,765 0,492 0,865 Copper (mg/ gram) 19 58 3 3 1 0 0 <0,001 <0,001 0,099 0,058 0,717 0,851 0,959 Fosfor (gram/ kg) 14 2 5 1 1 1 1 <0,001 0,215 0,028 0,249 0,750 0,505 0,670 Iron (mg/ gram) 1 27 59 0 0 11 0 0,729 <0,001 <0,001 0,904 0,994 0,002 0,999 Magnesium (mg/ gram) 25 23 4 5 0 0 0 <0,001 <0,001 0,055 0,001 0,866 0,751 0,816 Manganese (mg/ gram) 6 14 4 3 1 0 1 <0,001 <0,001 0,059 0,053 0,746 0,783 0,296 Sulfur (gram/ kg) 32 12 1 2 0 1 1 <0,001 0,001 0,497 0,115 0,838 0,395 0,680 Zink (mg/ gram) 40 453 30 13 1 9 1 <0,001 <0,001 <0,001 <0,001 0,729 0,004 0,557

Page 27: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 27

Table 3a-2: F and p-values for various traits based on ANOVA with variety, location, and time of harvesting effects for carrot in 2018

F-value Variety

F-value Location

F-value Harvest date

F-value Variety x Location

F-value Variety x Harvest date

F-value Location x Harvest date

F-value Variety x Location x Harvest date

p- value Variety

p- value Location

p- value Harvest date

p- value Variety x Location

p- value Variety x Harvest date

p- value Location x Harvest date

p- value Variety x Location x Harvest date

Yield fresh (tons/ha) 35 30 31 3 0 0 1 <0,001 <0,001 <0,001 0,041 0,843 0,961 0,279 Yield dry matter (tons/ha) 13 12 2 6 0 0 2 <0,001 0,001 0,174 0,001 0,898 0,817 0,161 Storability 7 77 11 5 1 2 1 <0,001 <0,001 0,002 0,001 0,345 0,131 0,370 Marketable yield, after storage 11 19 2 6 1 16 2 <0,001 <0,001 0,138 0,001 0,467 <0,001 0,086 Yield, after storage, dry matter 5 27 0 7 1 13 2 0,003 <0,001 0,981 <0,001 0,468 <0,001 0,184 Decrease in fresh weight after SDT 5 2 18 1 1 0 2 0,002 0,209 <0,001 0,407 0,243 0,560 0,213 Decrease in dry matter after SDT 4 5 0 0 1 0 2 0,008 0,028 0,717 0,770 0,700 0,536 0,179 Ratio decrease dry/fresh matter after SDT

6 1 11 2 0 2 1 <0,001 0,338 0,002 0,185 0,787 0,212 0,353

General taste appreciation 8 10 3 4 4 1 1 <0,001 0,002 0,089 0,005 0,006 0,233 0,395 Sweetness 11 2 1 4 1 1 1 <0,001 0,214 0,225 0,009 0,434 0,449 0,281 Aroma 2 6 1 2 1 0 1 0,059 0,018 0,268 0,070 0,365 0,904 0,718 Aftertaste 1 7 0 2 2 0 2 0,507 0,007 0,539 0,098 0,101 0,524 0,153 Structure/ Mouthfeel 4 9 2 5 3 16 1 0,005 0,003 0,172 <0,001 0,043 <0,001 0,411 K/Ca ratio 1 55 1 0,510 <0,001 0,536 pH 5 0 133 0 0 1 0 0,002 0,750 <0,001 0,836 0,745 0,342 0,888 EC (mS/cm) 1 109 2 2 0 0 0 0,623 <0,001 0,192 0,218 0,779 0,729 0,855 Brix (%) 73 9 55 8 3 21 1 <0,001 0,005 <0,001 <0,001 0,040 <0,001 0,301 Average dry matter (%) 70 27 98 6 2 2 1 <0,001 <0,001 <0,001 0,001 0,158 0,209 0,279 Calcium (gram/ kg) 13 0 1 <0,001 0,832 0,433 Potassium (gram/ kg) 3 56 2 0,042 <0,001 0,234 Sodium (gram/ kg) 2 3 0 0,166 0,119 0,870 Copper (mg/ gram) 11 22 2 <0,001 <0,001 0,094 Fosfor (gram/ kg) 17 0 6 <0,001 0,712 0,003 Iron (mg/ gram) 6 49 2 0,002 <0,001 0,145 Magnesium (mg/ gram) 16 4 3 <0,001 0,068 0,059 Manganese (mg/ gram) 11 73 1 <0,001 <0,001 0,342 Sulfur (gram/ kg) 40 0 7 <0,001 0,851 0,002 Zink (mg/ gram) 18 65 2 <0,001 <0,001 0,077

Page 28: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

28 A more holistic approach for breeding: including quality from a value chain perspective

Table 3b: F and p-values for various traits based on joint analysis of pumpkin trials conducted in 2017 and 2018

Crop Trait

p-

value

Variety

p-

value

Location

p-

value

Year

p-

value

Harvest

date

p- value

Variety

x Loca-

tion

p- value

Variety

x Year

p- value

Location

x Year

p- value

Variety

x Har-

vest

date

p- value

Location

x Harvest

date

p- value

Year x

Harvest

date

p- value

Variety x

Location

x Year

p- value

Variety x

Location

x Harvest

date

p- value

Variety x

Year x

Harvest

date

p- value

Location

x Year x

Harvest

date

p- value

Variety x

Location x

Year x

Harvest

date

Yield fresh, at harvest <0,001 <0,001 <0,001 <0,001 0,410 0,096 <0,001 <0,001 0,007 0,711 0,373 0,464 0,167 0,517 0,274

Yield dry matter, at harvest <0,001 <0,001 <0,001 <0,001 0,721 0,002 <0,001 0,142 0,017 0,530 0,145 0,528 0,624 0,732 0,557

Storability (percentage rot) <0,001 <0,001 0,044 <0,001 0,013 <0,001 <0,001 0,799 0,001 <0,001 0,030 0,017 0,010 0,672 0,352

Marketable yield, after storage <0,001 <0,001 <0,001 <0,001 <0,001 0,008 <0,001 0,911 <0,001 0,177 0,367 0,138 0,542 0,011 0,209

Yield, after storage, dry matter <0,001 <0,001 0,378 <0,001 <0,001 0,531 0,149 0,917 <0,001 0,041 0,361 0,256 0,836 0,055 0,260

Decrease in fresh weight after SDT 0,068 0,440 0,147 0,011 0,656 0,104 0,062 0,546 0,770 0,021 0,446 0,590 0,727 0,763 0,817

Decrease dry matter after SDT 0,024 <0,001 <0,001 0,205 <0,001 <0,001 <0,001 0,232 <0,001 <0,001 0,006 0,983 0,303 0,141 0,065

Ratio dry/fresh matter after SDT

Taste, general appreciation <0,001 <0,001 0,038 0,067 <0,001 <0,001 0,015 0,023 0,397 0,331 0,001 0,002 0,081 0,234 0,003

Sweetness <0,001 <0,001 <0,001 0,074 <0,001 <0,001 0,138 0,051 0,378 0,465 0,056 0,002 0,088 0,138 0,050

Aroma 0,062 0,018 0,761 0,341 0,039 0,006 0,261 0,799 0,215 0,159 0,018 0,061 0,953 0,258 0,667

Aftertaste 0,743 0,443 0,836 0,829 0,070 0,329 0,003 0,355 0,171 0,760 0,216 0,001 0,484 0,757 0,235

Structure/ Mouthfeel <0,001 0,221 0,109 <0,001 0,331 <0,001 0,068 <0,001 0,327 <0,001 0,014 0,034 <0,001 0,457 0,015

K/Ca ratio <0,001 <0,001 <0,001 0,338 0,652 0,26 0,583

pH 0,100 0,592 0,003 <0,001 0,936 0,213 0,034 0,992 0,847 0,410 0,098 0,960 0,565 0,532 0,947

EC (mS/cm) <0,001 <0,001 <0,001 <0,001 0,062 0,002 0,523 0,096 0,111 <0,001 0,019 0,466 0,209 0,001 0,384

Brix (%) <0,001 0,001 0,125 0,791 0,777 0,016 <0,001 0,551 0,109 0,023 0,398 0,879 0,929 0,010 0,538

Dry matter content (%) <0,001 0,056 <0,001 <0,001 0,033 0,002 0,554 0,551 0,996 0,047 0,281 0,826 0,649 0,868 0,426

Calcium (gram/kg) <0,001 0,009 <0,001 0,171 0,004 0,703 0,035

Potassium (gram/kg) <0,001 <0,001 <0,001 0,378 0,179 0,289 0,024

Sodium (gram/ kg)

Copper (mg/ kg) 0,013 0,339 0,455 0,635 0,646 0,322 0,506

Fosfor (gram /kg) <0,001 <0,001 0,009 0,645 0,232 0,013 0,206

Iron(mg /kg) 0,754 0,767 <0,001 0,887 0,974 0,018 0,974

Magnesium (gram /kg) <0,001 0,201 <0,001 0,416 0,207 <0,001 0,229

Manganese (mg/ gram)

Sulfur (gram/kg) <0,001 <0,001 <0,001 0,496 0,584 0,035 0,383

Zink (mg/ kg) 0,001 <0,001 <0,001 0,397 0,319 <0,001 0,739

Page 29: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 29

Table 3b-1: F and p-values for various traits based on ANOVA with variety, location, and time of harvesting effects for pumpkin in 2017.

F-value Variety

F-value Location

F-value Harvest date

F-value Variety x Loca-tion

F-value Variety x Har-vest date

F-value Location x Har-vest date

F-value Variety x Location x Harvest date

p- value Variety

p- value Location

p- value Harvest date

p- value Variety x Loca-tion

p- value Variety x Har-vest date

p- value Location x Har-vest date

p- value Variety x Location x Harvest date

Yield fresh (tons/ha) 38 48 11 2 1 1 1 <0,001 <0,001 0,002 0,118 0,562 0,288 0,562

Yield dry matter (tons/ha) 4 44 1 1 1 0 1 0,003 <0,001 0,494 0,624 0,244 0,878 0,391 Storability (percentage rot) 14 124 64 3 1 7 2 <0,001 <0,001 <0,001 0,048 0,796 0,009 0,071 Average score at day 7 of SDT 6 2 27 8 1 0 1 <0,001 0,187 <0,001 <0,001 0,428 0,563 0,701 Decrease in fresh weight after SDT (%) 1 1 0 0 1 0 0 0,349 0,318 0,763 0,936 0,551 0,769 0,942 Decrease in dry matter after SDT (%) 10 40 4 1 5 6 2 <0,001 <0,001 0,045 0,765 <0,001 0,022 0,187 general appreciation 74 359 0 16 4 0 8 <0,001 <0,001 0,853 <0,001 0,005 0,550 <0,001 Sweetness 45 185 0 12 5 0 2 <0,001 <0,001 0,726 <0,001 <0,001 0,912 0,053 Aroma 9 0 1 4 1 0 1 <0,001 0,845 0,252 0,007 0,696 0,557 0,275 Aftertaste 7 2 0 3 1 0 5 <0,001 0,132 0,857 0,030 0,350 0,900 0,001 Structure/ Mouthfeel 17 0 20 3 11 0 2 <0,001 0,708 <0,001 0,025 <0,001 0,708 0,100 K/Ca ratio 25 18 2 1 0 0 1 <0,001 <0,001 0,158 0,461 0,947 0,695 0,622 pH 4 2 24 1 1 0 0 0,006 0,178 <0,001 0,613 0,345 0,650 0,999 EC (mS/cm) 52 579 0 4 2 3 2 <0,001 <0,001 0,581 0,008 0,141 0,072 0,148 Brix (%) 45 3 3 2 1 1 1 <0,001 0,107 0,080 0,194 0,662 0,317 0,728 Dry matter content (%) 56 4 16 1 1 0 1 <0,001 0,062 <0,001 0,354 0,407 0,974 0,552 Calcium (gram/ kg) 28 32 1 2 1 3 1 <0,001 <0,001 0,462 0,200 0,382 0,112 0,699 Potassium (gram/ kg) 60 403 1 6 0 5 1 <0,001 <0,001 0,272 <0,001 0,840 0,031 0,583 Sodium (gram/ kg) Copper (mg/ gram) 15 0 0 1 0 0 1 <0,001 0,659 0,604 0,750 0,901 0,626 0,698 Fosfor (gram/ kg) 26 34 0 1 0 7 0 <0,001 <0,001 0,585 0,300 0,895 0,012 0,802 Iron (mg/ gram) 2 3 27 1 1 0 0 0,087 0,072 <0,001 0,637 0,804 0,777 0,990 Magnesium (mg/ gram) 24 21 2 3 1 6 1 <0,001 <0,001 0,197 0,058 0,451 0,024 0,608 Manganese (mg/ gram) Sulfur (gram/ kg) 46 57 0 3 0 3 1 <0,001 <0,001 0,521 0,027 0,944 0,120 0,720 Zink (mg/ gram) 24 148 2 3 0 2 0 <0,001 <0,001 0,210 0,040 0,951 0,140 0,811

Page 30: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

30 A more holistic approach for breeding: including quality from a value chain perspective

Table 3b-2: F and p-values for various traits based on ANOVA with variety, location, and time of harvesting effects for pumpkin in 2018.

F-value Variety

F-value Location

F-value Harvest date

F-value Variety x Loca-tion

F-value Variety x Har-vest date

F-value Location x Har-vest date

F-value Variety x Location x Harvest date

p- value Variety

p- value Location

p- value Harvest date

p- value Variety x Loca-tion

p- value Variety x Har-vest date

p- value Location x Har-vest date

p- value Variety x Location x Harvest date

Yield fresh (tons/ha) 18 2 18 1 5 4 1 <0,001 0,126 <0,001 0,728 0,002 0,048 0,286 Yield dry matter (tons/ha) 8 0 9 1 3 3 1 <0,001 0,963 0,005 0,385 0,050 0,093 0,317 Storability 20 201 7 7 2 15 2 <0,001 <0,001 0,009 <0,001 0,107 <0,001 0,170 Marketable yield, after storage 13 221 9 4 1 20 3 <0,001 <0,001 0,005 0,004 0,467 <0,001 0,037 Yield, after storage, dry matter 10 158 9 5 1 20 2 <0,001 <0,001 0,005 0,002 0,632 <0,001 0,083 Decrease in fresh weight after SDT (%) 4 5 13 1 0 1 1 0,011 0,026 <0,001 0,319 0,876 0,411 0,511 Decrease in dry matter after SDT (%) 3 4 5 6 1 14 1 0,020 0,067 0,038 <0,001 0,408 <0,001 0,726 Ratio decrease dry/fresh matter after SDT

2 0 15 5 0 5 0 0,077 0,818 <0,001 0,002 0,773 0,029 0,911

Taste, general appreciation 13 118 3 7 2 2 2 <0,001 <0,001 0,080 <0,001 0,076 0,195 0,099 Sweetness 10 163 3 7 2 2 4 <0,001 <0,001 0,097 <0,001 0,062 0,211 0,005 Aroma 0 3 0 5 0 0 2 0,753 0,111 0,644 0,001 0,991 0,972 0,092 Aftertaste 0 4 0 2 0 2 2 0,796 0,064 0,922 0,123 0,823 0,203 0,166 Structure/ Mouthfeel 7 5 0 0 2 4 3 <0,001 0,022 0,797 0,805 0,155 0,054 0,022 K/Ca ratio 9 9 1 <0,001 0,007 0,406 pH 2 3 48 2 0 0 0 0,101 0,081 <0,001 0,208 0,812 0,506 0,838 EC (mS/cm) 28 370 74 3 2 12 0 <0,001 <0,001 <0,001 0,022 0,195 0,001 0,744 Brix (%) 9 32 3 1 1 6 1 <0,001 <0,001 0,087 0,603 0,708 0,021 0,698 Average dry matter (%) 10 8 2 4 0 0 0 <0,001 0,006 0,221 0,012 0,989 0,915 0,932 Calcium (gram/ kg) 7 9 3 0,001 0,006 0,066 Potassium (gram/ kg) 19 158 2 <0,001 <0,001 0,140 Sodium (gram/ kg) Copper (mg/ gram) 4 5 0 0,020 0,034 0,983 Fosfor (gram/ kg) 3 93 1 0,032 <0,001 0,521 Iron (mg/ gram) 1 70 0 0,508 <0,001 0,746 Magnesium (mg/ gram) 4 3 1 0,021 0,110 0,319 Manganese (mg/ gram) Sulfur (gram/ kg) 12 9 1 <0,001 0,006 0,695 Zink (mg/ gram) 4 247 2 0,019 <0,001 0,149

Page 31: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 31

Table 3c: p-values for various traits based on joint analysis of red cabbage trials conducted in 2017 and 2018

Crop Trait

p-

value

Variety

p- value

Location

p-

value

Year

p-

value

Harvest

date

p- value

Variety

x Loca-

tion

p- value

Variety

x Year

p- value

Location

x Year

p- value

Variety

x Har-

vest

date

p- value

Location

x Harvest

date

p- value

Year x

Harvest

date

p- value

Variety x

Location

x Year

p- value

Variety x

Location

x Harvest

date

p- value

Variety x

Year x

Harvest

date

p- value

Location

x Year x

Harvest

date

p- value

Variety x

Location x

Year x

Harvest

date

Yield fresh, at harvest NA

Yield dry matter, at harvest NA

Storability (percentage rot) <0,001 <0,001 <0,001 0,004 0,040 <0,001 0,028 0,600 0,854 0,621 0,095 0,132 0,127 0,983 0,605

Marketable yield, after storage NA

Yield, after storage, dry matter NA

Decrease in fresh weight after SDT 0,022 <0,001 0,649 <0,001 0,268 0,113 0,011 0,741 0,054 <0,001 0,528 0,017 0,091 0,002 0,059

Decrease dry matter after SDT 0,195 <0,001 0,383 0,743 0,847 0,755 0,112 0,074 0,162 <0,001 0,035 0,284 0,060 0,002 0,776

Ratio dry/fresh matter after SDT 0,041 <0,001 0,237 <0,001 0,970 0,379 0,304 0,245 0,916 <0,001 0,058 0,430 0,069 0,136 0,870

Taste, general appreciation 0,408 0,075 0,440 0,729 0,288 0,574 0,991 0,040 <0,001 0,479 0,110 0,104 0,038 0,055 0,445

Aroma 0,249 0,591 0,009 0,927 0,213 0,573 0,561 0,819 0,002 0,012 0,706 0,286 0,138 0,321 0,584

Aftertaste 0,069 0,085 0,031 0,549 0,138 0,450 0,905 0,508 0,027 0,386 0,403 0,457 0,157 0,671 0,268

Structure/ Mouthfeel 0,014 0,008 <0,001 0,416 0,016 0,014 0,634 0,126 <0,001 0,396 0,294 0,741 0,585 0,906 0,005

K/Ca ratio <0,001 <0,001 0,003 0,021 0,237 <0,001 0,185

pH 0,020 0,743 <0,001 <0,001 0,911 0,651 0,898 0,955 0,496 0,002 0,559 0,868 0,918 0,022 0,889

EC (mS/cm) <0,001 <0,001 <0,001 0,786 0,788 0,208 0,039 0,946 0,723 0,002 0,144 0,202 0,777 0,652 0,116

Brix (%) <0,001 <0,001 <0,001 <0,001 0,291 0,747 <0,001 0,080 <0,001 <0,001 0,141 0,020 0,440 0,008 0,358

Dry matter content (%) <0,001 <0,001 <0,001 0,002 0,615 0,313 0,204 0,061 0,010 0,024 0,068 0,035 0,494 0,017 0,695

Calcium (gram/ kg) 0,009 <0,001 <0,001 0,288 0,084 <0,001 0,088

Potassium (gram/ kg) <0,001 0,002 <0,001 0,207 0,977 0,009 0,371

Sodium (gram/ kg) 0,027 <0,001 <0,001 0,591 0,164 0,014 0,746

Copper (mg/ gram) 0,006 <0,001 <0,001 0,142 0,288 <0,001 0,239

Fosfor (gram/ kg) <0,001 0,346 <0,001 0,118 0,895 0,087 0,338

Iron (mg/ gram) 0,302 0,0220 <0,001 0,122 0,586 0,533 0,282

Magnesium (mg/ gram) <0,001 <0,001 <0,001 0,406 0,201 <0,001 0,471

Manganese (mg/ gram) 0,002 0,214 <0,001 0,002 0,366 <0,001 0,125

Sulfur (gram/ kg) <0,001 <0,001 <0,001 0,448 0,996 0,015 0,048

Zink (mg/ gram) 0,001 <0,001 <0,001 0,040 0,751 <0,001 0,063

Page 32: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

32 A more holistic approach for breeding: including quality from a value chain perspective

Table 3c-1: F and p-values for various traits based on ANOVA with variety, location, and time of harvesting effects for red cabbage in 2017

F-value Variety

F-value Location

F-value Harvest date

F-value Variety x Location

F-value Variety x Harvest date

F-value Location x Har-vest date

F-value Variety x Location x Harvest date

p- value Variety

p- value Location

p- value Harvest date

p- value Variety x Location

p- value Variety x Harvest date

p- value Location x Har-vest date

p- value Variety x Location x Harvest date

Yield fresh (tons/ha) NA

Yield dry matter (tons/ha) NA Storability 2,8 49,5 3,8 1,6 1,4 0,2 0,4 0,045 <0,001 0,062 0,204 0,265 0,630 0,778 Average score at day 7 of SDT 0,3 0,5 9,0 1,4 2,5 6,3 0,4 0,845 0,490 0,006 0,275 0,064 0,018 0,817 Decrease in fresh weight after SDT (%) 0,4 3,3 1,2 0,9 1,8 6,1 2,8 0,817 0,082 0,283 0,460 0,157 0,020 0,044 Decrease in dry matter after SDT (%) 0,9 6,1 30,0 1,3 1,6 4,6 0,7 0,491 0,020 <0,001 0,307 0,195 0,040 0,619 Ratio dry/fresh matter after SDT 1,3 4,6 35,2 1,4 1,4 2,9 1,1 0,312 0,041 <0,001 0,275 0,273 0,102 0,361 Taste, general appreciation 0,3 0,8 0,1 2,9 4,9 17,4 0,2 0,898 0,381 0,730 0,026 0,003 <0,001 0,802 Aroma 0,4 0,7 5,7 0,7 1,1 2,0 0,1 0,832 0,404 0,019 0,612 0,336 0,165 0,869 Aftertaste 1,4 2,0 3,5 1,0 1,5 0,4 0,4 0,255 0,157 0,065 0,392 0,216 0,512 0,645 Structure/ Mouthfeel 2,0 12,5 5,3 1,9 0,9 4,3 3,3 0,105 <0,001 0,023 0,117 0,427 0,040 0,040 K/Ca ratio 5,0 12,6 5,3 0,013 0,004 0,014

pH 2,0 4,1 42,4 0,3 0,2 3,8 0,4 0,120 0,053 <0,001 0,895 0,933 0,062 0,838 EC (mS/cm) 1,4 53,2 6,9 0,6 0,1 0,7 2,7 0,246 <,001 0,014 0,694 0,965 0,412 0,054 Brix (%) 7,0 1,9 0,7 1,8 0,4 1,4 1,2 <0,001 0,180 0,408 0,165 0,777 0,253 0,330 Dry matter content (%) 12,8 2,8 23,8 3,3 1,1 0,0 0,3 <0,001 0,105 <0,001 0,025 0,366 0,845 0,894 Calcium (gram/ kg) 2,9 0,0 4,9 0,063 0,893 0,012 Potassium (gram/ kg) 4,6 95,8 1,3 0,014 <0,001 0,323 Sodium (gram/ kg) 8,3 509,2 3,0 0,001 <0,001 0,057 Copper (mg/ gram) 40,5 0,1 0,4 0,741 0,775 0,799 Fosfor (gram/ kg) 13,4 3,2 3,1 <0,001 0,095 0,053 Iron (mg/ gram) 0,6 12,4 0,5 0,695 0,003 0,758 Magnesium (mg/ gram) 22,9 129,3 2,1 <0,001 <0,001 0,130 Manganese (mg/ gram) 20,9 73,8 4,9 <0,001 <0,001 0,011 Sulfur (gram/ kg) 13,0 144,2 2,1 <0,001 <0,001 0,141 Zink (mg/ gram) 7,5 208,5 2,5 0,002 <0,001 0,087

Page 33: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 33

Table 3c-2: F and p-values for various traits based on ANOVA with variety, location, and time of harvesting effects for red cabbage in 2018

F-value Variety

F-value Location

F-value Harvest date

F-value Variety x Location

F-value Variety x Harvest date

F-value Location x Har-vest date

F-value Variety x Location x Harvest date

p- value Variety

p- value Location

p- value Harvest date

p- value Variety x Location

p- value Variety x Harvest date

p- value Location x Har-vest date

p- value Variety x Location x Harvest date

Yield fresh (tons/ha) NA

Yield dry matter (tons/ha) NA Storability (percentage rot) 42 45 5 5 1 0 2 <0,001 <0,001 0,034 0,002 0,289 0,779 0,076 Marketable yield, after storage NA Yield, after storage, dry matter NA Decrease in fresh weight after SDT 4 25 765 1 1 4 3 0,007 <0,001 <0,001 0,425 0,522 0,064 0,022 Decrease dry matter after SDT 1 45 42 1 1 8 2 0,226 <0,001 <0,001 0,290 0,316 0,009 0,206 Ratio dry/fresh matter after SDT 3 29 2 1 1 1 1 0,043 <0,001 0,156 0,720 0,637 0,485 0,694 Taste, general appreciation 1 1 0 1 2 3 2 0,332 0,292 0,52 0,618 0,195 0,116 0,098 Aroma 1 0 3 1 1 6 2 0,243 0,987 0,097 0,305 0,636 0,012 0,202 Aftertaste 1 1 0 1 1 1 0 0,330 0,332 0,801 0,34 0,350 0,443 0,750 Structure/ Mouthfeel 3 3 1 0 0 3 2 0,023 0,104 0,349 0,884 0,883 0,067 0,190 K/Ca ratio 5 51 1 0,006 <0,001 0,462 pH 1 2 0 1 0 2 0 0,579 0,210 0,680 0,594 0,893 0,146 0,805 EC (mS/cm) 4 22 3 2 1 0 1 0,007 <0,001 0,073 0,200 0,713 0,776 0,444 Brix (%) 7 20 47 2 2 27 3 <0,001 <0,001 <0,001 0,203 0,069 <0,001 0,056 Dry matter content (%) 8 8 1 1 2 11 2 <0,001 0,009 0,355 0,377 0,074 0,002 0,135 Calcium (gram/ kg) 4 88 1 0,018 <0,001 0,606 Potassium (gram/ kg) 2 4 1 0,113 0,075 0,313 Sodium (gram/ kg) 3 54 0 0,070 <0,001 0,880 Copper (mg/ gram) 4 40 3 0,013 <0,001 0,047 Fosfor (gram/ kg) 5 1 1 0,005 0,453 0,275 Iron (mg/ gram) 1 2 2 0,281 0,167 0,124 Magnesium (mg/ gram) 5 5 1 0,007 0,031 0,642 Manganese (mg/ gram) 1 6 4 0,304 0,023 0,020 Sulfur (gram/ kg) 6 128 2 0,003 <0,001 0,134 Zink (mg/ gram) 3 6 3 0,048 0,028 0,036

Page 34: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

34 A more holistic approach for breeding: including quality from a value chain perspective

Table 4a: Average values for various traits related to yield, storability, taste and nutritional quality for carrot, measured on two locations and with two harvesting moments in 2017

and 2018.

Catogory

Avera-ges N

Yield fresh

(tons/ha)

Yield dry matter

(tons/ha)

Stora-bility

Yield marke-table, after

storage (tons/ha)

Yield dry matter, af-

ter stor-age

(tons/ha)

Decrease in fresh

weight af-ter SDT

(%)

Decrease in dry

matter af-ter SDT

(%)

Ratio de-crease

dry/fresh weight, after

SDT

General taste ap-

pre-ciation (1-9)

Sweet-ness (1-9)

Aroma (1-9)

After- taste (1-9)

Structure/ Mouthfeel

(1-9)

pH EC (mS/cm)

Brix (in %)

Dry mat-ter con-tent (in

%)

Soil

Clay-17 10 36,0 4,6 23,1 19,0 2,4 8,1 41,7 5,2 5,9 6,0 5,9 5,6 4,9 6,8 6,1 9,4 12,9

Clay -18 10 56,0 7,2 13,4 20,8 2,6 7,5 48,3 6,6 6,4 6,3 6,4 5,8 5,3 6,3 5,9 10,3 13,2

Sand-17 10 57,0 6,7 19,4 24,8 2,9 7,3 45,3 6,3 6,0 6,1 6,3 5,9 5,3 6,8 3,9 8,6 12,0 Sand-18 10 65,6 8,0 36,2 14,9 1,8 7,1 44,7 6,3 5,8 6,1 5,9 5,2 4,9 6,3 4,5 9,9 12,3 Year

2017 20 46,5 5,7 21,3 21,9 2,7 7,7 43,5 5,7 5,9 6,0 6,1 5,8 5,1 6,8 5,0 9,0 12,4

2018 20 60,8 7,6 24,8 17,8 2,2 7,3 46,5 6,4 6,1 6,2 6,1 5,5 5,1 6,3 5,2 10,1 12,8

Harvest moment

2017-1 10 38,6 4,8 28,5 18,6 2,3 7,5 41,7 5,7 5,7 5,9 6,0 5,6 5,1 6,8 5,1 9,0 12,6 2017-2 10 60,1 7,2 17,3 22,1 2,6 7,3 46,1 6,3 6,2 6,1 6,3 5,7 5,2 6,6 5,0 9,3 12,1 2018-1 10 55,9 7,4 29,1 16,8 2,2 7,8 46,2 6,0 5,9 6,3 6,0 5,4 5,0 6,2 5,3 10,6 13,5

2018-2 10 65,7 7,7 20,5 18,8 2,2 6,8 46,8 6,9 6,3 6,1 6,2 5,5 5,2 6,4 5,1 9,6 12,0

Variety, harvest 1 only

Crofton F1 4 38,2 5,7 18,0 17,0 2,2 7,6 43,8 5,9 5,9 5,9 6,2 5,6 5,4 6,6 5,1 10,0 13,1

Nerac F1 4 51,4 6,6 25,4 22,3 2,5 7,4 44,5 6,1 5,5 5,6 6,0 5,5 5,0 6,5 5,2 8,6 11,4

Robila 4 42,5 6,2 20,8 15,9 2,1 8,0 46,8 6,0 6,2 6,4 6,3 5,7 5,4 6,5 5,4 10,1 13,2

Rodelika 4 42,4 6,8 27,3 17,1 2,4 7,7 42,8 5,6 6,7 6,7 6,3 5,8 4,8 6,6 5,0 10,4 13,9

Solvita 4 61,7 7,8 23,7 27,1 3,0 6,7 47,1 6,9 5,8 5,9 5,9 5,5 5,2 6,5 4,9 8,8 11,4

Variety, harvest 2 only Crofton F1 4 49,3 6,1 12,7 18,6 2,3 7,3 45,3 6,3 6,1 6,2 6,2 5,5 5,5 6,6 5,0 9,5 12,4 Nerac F1 4 64,6 7,1 23,7 22,3 2,5 7,4 46,7 6,5 5,8 5,6 6,0 5,5 5,0 6,5 5,1 8,5 11,1 Robila 4 52,6 6,7 13,6 18,4 2,3 7,7 47,0 6,3 6,0 6,1 6,2 5,7 5,4 6,6 5,3 9,9 12,8 Rodelika 4 56,0 7,5 21,4 19,2 2,6 7,5 42,4 5,6 7,1 6,9 6,7 6,0 4,9 6,7 4,7 10,1 13,4 Solvita 4 77,8 8,4 14,9 31,8 3,4 6,7 48,9 7,0 6,0 5,7 6,3 5,9 5,1 6,6 4,9 8,6 10,9

Page 35: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 35

Table 4a-1: Average values for various minerals for carrot, measured on two locations and with respectively two and one harvesting moments in 2017 and 2018..

Category N

Cal-cium gram /kg

Potas-sium gram /kg

Fos-for gram /kg

Magne-sium gram /kg

Sodi-um gram /kg

Sul-fur gram /kg

Cup-per mg /kg

Iron mg /kg

Manga-nese mg /kg

Zink mg /kg

Cal-cium index

Potas-sium index

Fos-for in-

dex

Magne-sium in-

dex

Sodi-um in-

dex

Sul-fur

index

Cup-per in-

dex Iron

index

Manga-nese in-

dex Zink

index

Mine-rals Ave-

rage in-dex

Soil

Clay, harvest 1, 2017 5 0,39 3,6 0,39 0,16 0,20 0,20 0,69 8,0 0,91 2,6 99 131 105 94 64 103 101 144 98 74 101

Clay, harvest 2 10 0,40 3,5 0,38 0,16 0,29 0,20 0,76 6,4 0,78 2,7 100 126 101 95 96 103 111 116 85 79 101

Sand, harvest 1, 2017 5 0,40 2,1 0,39 0,18 0,29 0,18 0,55 5,2 1,15 4,4 101 74 103 107 94 95 80 94 124 128 100

Sand, harvest 2 10 0,39 2,0 0,36 0,17 0,33 0,19 0,64 4,4 1,03 4,0 99 73 96 104 110 98 93 79 111 117 98

Year 2017, harvest 1 10 0,39 2,8 0,39 0,17 0,24 0,19 0,62 6,6 1,03 3,5 100 103 104 100 79 99 90 119 111 101 101

2017, harvest 2 10 0,39 2,7 0,37 0,16 0,26 0,19 0,59 4,1 0,91 3,1 98 99 98 96 86 101 85 74 98 89 92

2018, harvest 2 10 0,40 2,7 0,37 0,17 0,41 0,19 0,85 5,9 0,84 3,7 102 99 98 104 135 101 124 107 90 109 107

Varieties, harvest 1, 2017 only Crofton F1, 2 0,44 2,9 0,46 0,18 0,25 0,18 0,70 6,6 1,35 4,36 112 103 121 107 80 92 102 118 146 127 111

Nerac F1 2 0,37 2,9 0,38 0,17 0,22 0,23 0,69 7,0 1,01 3,33 93 103 101 103 71 121 100 125 109 97 102

Robila 2 0,41 3,2 0,41 0,19 0,16 0,22 0,70 6,8 0,94 3,65 105 115 108 117 53 114 101 123 102 106 104

Rodelika 2 0,38 2,7 0,37 0,14 0,29 0,16 0,54 6,5 0,91 3,12 97 99 98 86 94 85 79 116 98 91 94

Solvita 2 0,36 2,6 0,35 0,15 0,29 0,16 0,47 6,2 0,95 2,95 92 93 93 89 96 82 69 112 102 86 91

Varieties, harvest 2, 2017 and 2018 Crofton F1, 4 0,45 2,8 0,43 0,18 0,32 0,18 0,83 5,4 1,14 4,31 113 101 115 108 106 91 120 97 123 126 110

Nerac F1 4 0,36 2,6 0,35 0,16 0,31 0,23 0,75 4,9 0,75 3,18 91 95 94 99 103 119 108 88 81 93 97

Robila 4 0,43 3,1 0,39 0,20 0,26 0,25 0,80 5,5 0,92 3,56 108 113 105 120 86 127 116 100 99 104 108

Rodelika 4 0,39 2,6 0,33 0,15 0,38 0,16 0,66 4,8 0,75 2,99 98 95 89 88 123 85 96 87 81 87 93

Solvita 4 0,36 2,5 0,33 0,14 0,41 0,16 0,57 4,5 0,80 2,99 91 90 87 83 135 81 83 82 87 87 91

Page 36: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

36 A more holistic approach for breeding: including quality from a value chain perspective

Table 4b: Average values for various traits related to yield, storability, taste and nutritional quality for pumpkin, measured on two locations and with two harvesting moments in 2017 and 2018. Catogory

N Yield fresh

(tons/ha)

Yield dry matter

(tons/ha)

Stora-bility

Yield marke-ta-ble, after stor-age (tons/ha)

Yield dry mat-ter, after stor-age (tons/ha)

Decrease in fresh

weight af-ter SDT (%)

Decrease in dry

matter after SDT

(%)

Ratio de-crease

dry/fresh weight,

after SDT

General taste ap-

pre-ciation (1-9)

Sweet-ness (1-9)

Aroma (1-9)

After- taste (1-9)

Structure/ Mouthfeel

(1-9)

pH EC (mS/ cm)

Brix (in %)

Dry mat-ter con-tent (in

%)

Soil

Clay-17 10 20,6 3,5 37,0 7,5 1,3 8,3 39,6 4,8 4,3 4,3 5,8 5,6 4,9 7,5 7,5 9,9 17,3

Clay -18 10 28,3 3,7 36,7 10,5 1,4 7,6 31,8 4,2 4,1 3,7 5,7 5,6 4,6 7,5 10,4 8,9 13,0

Sand-17 9 25,2 4,8 74,2 3,3 0,6 8,1 31,3 4,0 7,0 6,7 6,2 5,5 4,9 7,6 5,1 9,8 18,5 Sand-18 9 26,7 3,7 76,7 3,2 0,5 8,2 34,0 4,2 6,2 5,9 6,1 6,0 5,0 7,5 7,7 10,1 14,0 Year

2017 19 22,6 4,1 61,3 5,6 1,0 8,2 35,9 4,4 5,5 5,4 6,0 5,6 4,9 7,6 6,5 9,8 17,8

2018 19 27,5 3,7 56,7 6,9 0,9 7,9 32,9 4,2 5,1 4,8 5,9 5,8 4,8 7,5 9,1 9,5 13,5

Harvest moment

2017-1 9 20,6 3,8 42,2 7,0 1,3 8,2 33,4 4,2 5,5 5,5 5,8 5,6 5,2 7,6 6,5 9,7 18,6

2017-2 9 27,3 4,1 62,6 5,3 0,8 8,2 34,8 4,3 5,2 5,0 6,0 5,7 4,7 7,4 7,5 9,7 15,0 2018-1 10 25,3 3,4 52,9 7,6 1,0 7,5 34,2 4,6 5,3 4,9 6,0 5,8 4,8 7,6 9,7 9,7 13,7

2018-2 10 29,7 3,9 60,6 6,1 0,8 8,3 31,6 3,9 5,0 4,6 5,9 5,8 4,8 7,4 8,5 9,3 13,3

Variety, harvest 1 only

Bright Summer F1 3 27,2 3,6 11,7 12,1 1,6 7,2 33,2 4,7 3,9 3,2 5,7 5,7 4,4 7,6 8,1 8,3 13,5

Fictor 4 18,7 3,0 34,8 8,4 1,4 7,7 35,8 4,7 5,5 5,4 6,1 5,9 5,7 7,6 8,8 10,2 16,8

Orange Summer F1 4 25,0 4,0 55,1 6,6 1,1 8,4 34,4 4,1 5,5 5,2 5,6 5,4 4,3 7,6 7,5 9,9 16,1

Red Kuri 4 22,1 3,7 66,8 4,8 0,8 7,7 30,6 4,1 5,9 5,6 6,1 5,8 4,8 7,7 8,4 9,5 16,8

Uchiki Kuri 4 23,3 3,8 47,2 7,7 1,3 7,9 33,9 4,4 5,6 5,4 5,9 5,5 5,5 7,6 8,3 10,0 16,7

Variety, harvest 2 only

Bright Summer F1 3 34,6 4,4 56,5 7,1 0,9 7,8 36,5 4,7 4,1 4,4 5,7 5,8 4,2 7,4 7,0 8,5 12,8

Fictor 4 20,1 3,3 44,8 6,2 1,0 8,5 36,1 4,3 5,5 5,2 6,1 5,7 4,9 7,4 7,9 10,2 15,7

Orange Summer F1 4 28,5 4,3 71,0 4,3 0,7 8,4 35,6 4,3 5,8 5,4 5,8 5,6 5,2 7,4 7,1 9,7 14,7

Red Kuri 4 29,0 4,4 83,4 2,4 0,3 8,3 34,4 4,3 5,7 5,4 6,0 5,6 4,6 7,5 7,6 9,7 15,1

Uchiki Kuri 4 24,6 4,0 58,9 6,1 0,9 8,1 32,1 4,0 4,8 4,5 6,3 5,9 4,6 7,5 7,9 10,2 16,2

Page 37: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 37

Table 4b-1: Average values for various minerals for pumpkin, measured on two locations and with respectively two and one harvesting moments in 2017 and 2018..

Category N

Cal-cium gram /kg

Potas-sium gram /kg

Fos-for gram /kg

Magne-sium gram /kg

Sul-fur gram /kg

Cup-per mg /kg

Iron mg /kg

Zink mg /kg

K/Ca ratio

Cal-cium index

Potas-sium index

Fos-for in-

dex

Magne-sium in-

dex

Sul-fur

index

Cup-per in-

dex Iron

index Zink

index

Mine-rals Ave-

rage in-dex

Soil

Clay, harvest 1, 2017 5 0,21 4,6 0,43 0,19 0,30 0,85 6,4 2,8 23 73 101 87 97 100 97 106 66 91

Clay, harvest 2 10 0,30 5,3 0,43 0,20 0,32 0,86 6,2 3,0 20 107 116 86 102 106 98 103 69 98

Sand, harvest 1, 2017 4 0,17 3,2 0,62 0,18 0,27 0,90 5,4 5,5 19 60 70 125 92 89 103 89 128 95

Sand, harvest 2 9 0,30 3,9 0,55 0,20 0,28 0,89 6,1 6,0 16 106 86 112 100 95 102 100 139 105

Year

2017, harvest 1 9 0,19 4,0 0,52 0,19 0,28 0,88 5,9 4,0 21 67 87 104 95 95 100 98 94 93

2017, harvest 2 10 0,18 4,1 0,51 0,18 0,29 0,86 8,5 3,8 23 62 89 103 92 97 98 141 89 97

2018, harvest 2 10 0,46 5,5 0,46 0,22 0,32 0,89 3,9 5,0 12 163 121 93 112 107 101 65 115 110

Varieties, harvest 1, 2017 only Bright Summer F1 1 0,24 3,5 0,38 0,15 0,24 0,82 6,0 2,34 15 85 76 77 78 80 93 99 54 80

Fictor 2 0,20 4,4 0,56 0,20 0,30 0,81 5,8 4,21 22 69 97 112 103 100 92 96 98 96

Orange Summer F1 2 0,18 3,7 0,48 0,18 0,27 0,81 5,3 3,85 21 63 81 97 90 91 92 87 90 86

Red Kuri 2 0,18 3,8 0,51 0,18 0,29 1,00 5,6 4,24 21 64 83 103 91 96 114 93 99 93

Uchiki Kuri 2 0,18 4,2 0,59 0,20 0,30 0,92 7,0 4,65 23 64 93 118 104 102 105 115 108 101

Varieties, harvest 2, 2017 and 2018 Bright Summer F1 4 0,45 4,3 0,41 0,19 0,26 0,87 5,4 3,60 11 160 95 84 98 86 100 89 84 99

Fictor 4 0,33 5,2 0,51 0,22 0,33 0,82 6,5 4,53 18 119 114 103 111 110 93 107 105 108

Orange Summer F1 4 0,27 4,5 0,45 0,18 0,29 0,80 6,2 4,31 18 97 98 91 94 97 91 103 100 96

Red Kuri 4 0,30 4,7 0,48 0,18 0,30 0,95 5,9 4,59 19 105 104 97 94 102 109 97 107 102

Uchiki Kuri 4 0,30 5,3 0,55 0,22 0,34 0,94 6,3 4,93 20 107 116 112 115 113 107 104 114 111

Page 38: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

38 A more holistic approach for breeding: including quality from a value chain perspective

Table 4c: Average values for various traits related to yield, storability, taste and nutritional quality for red cabbage, measured on two locations and with two harvesting moments in 2017 and 2018. Catogory

N Yield fresh

(tons/ha)

Yield dry matter

(tons/ha)

Stora-bility

Yield marke-table, after

storage (tons/ha)

Yield dry matter,

after storage

(tons/ha)

Decrease in fresh

weight after SDT (%)

Decrease in dry

matter after SDT

(%)

Ratio de-crease

dry/fresh weight, after

SDT

General taste ap-

pre-ciation (1-9)

Aroma (1-9)

After- taste (1-9)

Structure/ Mouthfeel

(1-9)

pH EC (mS/cm)

Brix (in %)

Dry matter content (in %)

Soil

Clay-17 10 42,9 3,7 44,2 19,2 1,6 5,3 12,3 2,3 5,9 6,3 6,1 5,3 6,7 5,0 6,9 8,5

Clay -18 10 68,2 5,1 12,1 2,5 5,5 5,9 5,5 5,1 6,3 6,2 7,9 10,2 Sand-17 10 74,8 5,5 18,5 3,3 6,2 6,1 5,9 5,1 6,8 4,5 6,7 8,6 Sand-18 10 34,2 3,6 86,7 2,5 0,3 5,8 23,6 4,1 5,8 5,8 5,3 4,9 6,3 5,9 8,3 10,5

Year

2017 20 42,9* 3,7* 59,5 5,4 15,4 2,8 6,0 6,2 6,0 5,2 6,8 4,7 6,8 8,6

2018 20 34,2* 3,6* 77,5 5,4 17,9 3,3 5,7 5,8 5,4 5,0 6,3 6,0 8,1 10,3

Harvest moment

2017-1 10 34,3 2,8 65,0 12,5 1,0 5,4 8,3 1,5 6,1 6,0 5,9 5,2 6,9 4,8 6,8 8,4

2017-2 10 41,8 4,0 64,4 14,4 1,3 4,4 17,4 3,8 5,9 6,0 5,7 5,1 6,5 5,4 7,6 9,6 2018-1 10 36,4 3,7 80,1 2,1 0,2 7,4 23,4 3,1 5,6 6,0 5,4 4,9 6,3 6,0 7,9 10,3 2018-2 10 32,1 3,4 74,9 3,0 0,3 3,5 12,3 3,5 5,7 5,7 5,4 5,1 6,3 6,1 8,3 10,4

Variety, harvest 1 only

Granat 4 45,4 3,9 85,9 9,1 0,7 6,5 15,5 2,2 6,1 5,9 5,4 5,5 6,6 5,4 7,1 8,9

Marner Lagerrot 4 22,6 2,1 75,5 4,6 0,4 6,5 15,5 2,2 5,4 5,8 5,6 4,8 6,6 5,4 7,3 9,2

Rodynda 4 45,8 4,3 83,3 8,2 0,7 6,6 12,5 1,7 6,2 6,2 5,7 4,9 6,6 5,5 7,5 9,4

Roxy F1 4 32,7 3,1 53,1 6,9 0,6 6,4 17,4 2,5 5,6 5,9 5,5 5,0 6,6 5,3 7,5 9,5

Travero F1 4 30,3 2,9 64,9 7,5 0,7 6,2 18,5 2,8 5,5 6,1 5,8 5,0 6,6 5,4 7,4 9,5

Variety, harvest 2 only Granat 4 43,4 3,9 75,8 13,1 1,1 4,4 20,9 4,5 5,7 5,9 5,4 5,2 6,5 5,4 7,3 9,1 Marner Lagerrot 4 32,0 3,0 69,6 11,4 1,0 4,9 15,0 3,2 5,9 5,8 5,9 5,2 6,5 5,3 7,5 9,6 Rodynda 4 51,2 4,8 75,1 13,5 1,2 4,6 19,0 3,9 5,8 6,3 6,0 5,3 6,5 5,4 7,5 9,4 Roxy F1 4 41,6 3,9 45,9 17,7 1,6 4,2 18,2 4,0 5,7 6,1 5,8 5,1 6,5 5,3 7,7 9,6 Travero F1 4 40,9 4,1 55,6 16,5 1,6 4,1 14,0 3,5 6,2 6,0 5,7 4,9 6,5 5,4 7,8 10,1

* measured in 2017 only on clay, and in 2018 only on sand

Page 39: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 39

Table 4c-1: Average values for various minerals for red cabbage, measured on two locations and with one harvesting moment in 2017 and 2018..

Category N

Cal-cium gram /kg

Potas-sium gram /kg

Fos-for gram /kg

Magne-sium gram /kg

Sodi-um gram /kg

Sul-fur gram /kg

Cup-per mg /kg

Iron mg /kg

Manga-nese mg /kg

Zink mg /kg

Cal-cium index

Potas-sium index

Fos-for in-

dex

Magne-sium in-

dex

Sodi-um in-

dex

Sul-fur

index

Cup-per in-

dex Iron

index

Manga-nese in-

dex Zink

index

Mine-rals Ave-

rage in-dex

Soil and Year

Clay, harvest 1, 2017 5 0,45 2,7 0,33 0,10 0,02 0,73 0,19 3,8 1,37 0,73 92 93 93 81 39 94 86 98 90 94 86

Sand, harvest 1, 2017 5 0,45 2,3 0,35 0,12 0,08 0,58 0,19 2,9 1,12 0,58 91 82 97 100 124 75 85 74 74 75 88

Clay, harvest 2, 2018 5 0,61 3,3 0,38 0,13 0,05 1,00 0,28 4,8 1,69 1,00 123 114 106 107 88 129 127 122 112 129 116

Sand, harvest 2, 2018 5 0,47 3,1 0,37 0,14 0,09 0,79 0,22 4,2 1,88 0,79 94 110 104 112 149 102 101 107 124 102 111

Varieties, harvest 1, 2017 only Granat 2 0,44 2,5 0,37 0,11 0,05 0,58 0,18 3,3 1,14 0,58 88 88 103 87 81 75 82 84 75 75 84

Marner Lagerrot 2 0,45 2,4 0,33 0,11 0,05 0,68 0,20 3,3 1,09 0,68 90 86 93 85 77 88 93 83 72 88 86

Rodynda 2 0,46 2,5 0,32 0,11 0,05 0,66 0,18 3,1 1,23 0,66 94 87 90 92 81 85 84 80 81 85 86

Roxy F1 2 0,48 2,5 0,32 0,13 0,05 0,67 0,19 3,7 1,32 0,67 96 87 90 101 87 87 85 95 87 87 90

Travero F1 2 0,44 2,6 0,35 0,11 0,05 0,68 0,18 3,4 1,42 0,68 89 91 98 87 81 88 84 87 94 88 89

Varieties, harvest 2, 2018 only Granat 2 0,55 3,2 0,40 0,14 0,07 0,81 0,23 3,8 1,81 0,81 110 113 112 112 117 105 107 96 119 105 110

Marner Lagerrot 2 0,51 3,1 0,36 0,13 0,07 0,90 0,28 4,1 1,65 0,90 103 110 100 103 106 116 127 104 109 116 109

Rodynda 2 0,59 3,1 0,37 0,13 0,08 0,90 0,23 5,0 1,84 0,90 120 110 103 106 123 116 104 127 121 116 115

Roxy F1 2 0,53 3,1 0,35 0,15 0,07 0,91 0,25 4,8 1,76 0,91 107 110 98 117 109 118 117 123 116 118 113

Travero F1 2 0,51 3,4 0,40 0,14 0,09 0,95 0,26 4,8 1,88 0,95 102 118 111 109 139 122 117 122 124 122 119

Page 40: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

40 A more holistic approach for breeding: including quality from a value chain perspective

Table 5a-1: correlations between storability (percentage rot) with various traits for the crop carrot, based on two locations and two harvest moments in 2017 and

2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Crofton

F1 Nerac

F1 Robila Rodelika Solvita

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 40 20 20 20 20 20 20 8 8 8 8 8 12

Brix (%) 0,1 0,1 0,3 0,0 0,0 -0,1 0,1 0,3 0,6 -0,3 0,2 0,2 1 0,1 2 10

EC (mS/cm) -0,2 0,3 0,4 0,3 -0,7 -0,3 -0,2 -0,1 -0,4 0,1 -0,2 -0,2 1 -0,1 8 4

pH -0,2 0,3 -0,5 -0,2 -0,1 0,0 -0,2 -0,2 -0,2 0,2 -0,5 -0,1 0 -0,1 10 2

Dry matter content (%) 0,0 0,2 0,1 0,1 -0,1 -0,2 -0,1 0,5 0,0 -0,1 -0,1 0,2 0 0,0 6 6

Decrease in fresh weight after SDT (%) -0,1 0,3 -0,1 -0,2 -0,1 -0,3 -0,2 0,5 -0,2 0,0 -0,2 -0,3 0 -0,1 10 2

Decrease in dry matter after SDT (%) -0,3 -0,5 -0,3 -0,4 -0,5 -0,4 -0,2 -0,3 -0,3 -0,6 -0,3 -0,4 1 -0,4 12 0

Ratio decrease dry/wet weight after SDT -0,2 -0,5 -0,1 -0,1 -0,3 -0,1 0,0 -0,6 -0,1 -0,4 -0,2 0,0 1 -0,2 12 0

Yield fresh, at harvest (tons/ha) 0,0 -0,6 0,0 -0,5 0,2 0,2 0,2 -0,3 0,3 -0,6 0,1 -0,2 2 -0,1 6 6

Yield dry matter, at harvest (tons/ha) 0,0 -0,5 0,1 -0,6 0,3 0,2 0,1 -0,1 0,3 -0,6 0,1 -0,2 2 -0,1 6 6

Storability (percentage rot) - - - - - - - - - - - -

taste, general appreciation (1-9) -0,1 -0,1 -0,1 -0,2 -0,1 -0,2 0,1 -0,5 0,0 -0,2 -0,5 0,1 0 -0,1 9 3

Aroma( 1-9) -0,3 -0,3 -0,4 -0,4 -0,3 -0,3 -0,2 0,0 0,0 -0,2 -0,6 -0,4 1 -0,3 11 1

Aftertaste (1-9) -0,4 -0,2 -0,4 -0,5 -0,3 -0,5 -0,2 0,4 -0,8 -0,3 -0,8 -0,3 2 -0,4 11 1

Structure/ Mouthfeel (1-9) -0,3 0,0 -0,5 -0,1 -0,4 -0,4 -0,2 -0,4 -0,4 0,0 -0,4 -0,2 0 -0,3 11 1

Brix/EC 0,2 0,0 -0,2 -0,3 0,6 0,2 0,3 0,3 0,5 -0,3 0,3 0,3 1 0,1 4 8

EC*Brix -0,1 0,2 0,4 0,2 -0,4 -0,3 -0,2 0,1 -0,3 -0,1 0,0 -0,2 0 -0,1 8 4

# Correlations <0 13 10 10 12 12 13 11 8 11 13 12 12

# Correlations >0 3 6 6 4 4 3 5 8 5 3 4 4

Page 41: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 41

Table 5a-2: correlations between taste (general appreciation) with various traits for the crop carrot, based on two locations and two harvest moments in 2017 and

2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Crofton

F1 Nerac

F1 Robila Rodelika Solvita

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 40 20 20 20 20 20 20 8 8 8 8 8 15 Brix (%) 0,5 0,7 0,1 0,2 0,7 0,7 0,4 0,2 0,2 0,5 0,5 0,3 3 0,4 0 12

EC (mS/cm) 0,1 -0,3 -0,2 -0,1 0,2 0,4 -0,1 0,0 0,0 0,3 0,2 0,1 0 0,1 4 8

pH 0,0 -0,3 0,4 0,2 0,4 -0,1 0,0 -0,3 0,5 -0,3 -0,2 -0,1 0 0,0 7 5

Dry matter content (%) 0,5 0,7 0,1 0,2 0,6 0,8 0,4 0,2 -0,3 0,7 0,3 -0,2 4 0,3 2 10

Decrease in fresh weight after SDT (%) 0,2 0,2 0,1 0,0 0,4 0,6 0,0 0,0 -0,1 0,5 0,1 -0,3 1 0,1 3 9

Decrease in dry matter after SDT (%) 0,2 0,1 0,3 0,3 0,0 0,3 -0,1 0,6 0,1 0,5 0,0 0,5 1 0,2 1 11

Ratio decrease dry/wet weight after SDT -0,1 -0,1 0,0 0,2 -0,4 -0,2 -0,2 0,5 0,1 -0,2 0,0 0,2 0 0,0 7 5

Yield fresh, at harvest (tons/ha) 0,0 0,0 0,1 0,1 -0,3 -0,3 0,0 0,4 -0,1 -0,1 0,6 0,1 1 0,0 6 6

Yield dry matter, at harvest (tons/ha) 0,2 0,4 0,2 0,2 0,1 0,0 0,2 0,4 -0,2 0,1 0,7 0,1 1 0,2 1 11x

Storability (percentage rot) -0,1 -0,1 -0,1 -0,2 -0,1 -0,2 0,1 -0,5 0,0 -0,2 -0,5 0,1 0 -0,1 9 3

taste, general appreciation - - - - - - - - - - - - Aroma 0,7 0,8 0,6 0,4 0,9 0,6 0,8 0,4 0,4 1,0 0,9 0,6 x 0,7 0 12

Aftertaste 0,6 0,6 0,6 0,4 0,7 0,5 0,6 0,3 0,3 0,7 0,9 0,7 x 0,6 0 12

Structure/ Mouthfeel 0,1 0,0 0,3 0,3 0,1 0,2 0,1 0,3 0,4 -0,2 0,5 0,2 x 0,2 1 11

Brix/EC 0,2 0,7 0,4 0,2 0,2 0,2 0,3 0,2 0,1 -0,1 0,2 -0,1 1 0,2 2 10

EC*Brix 0,4 0,7 0,0 0,0 0,6 0,7 0,1 0,2 0,1 0,5 0,4 0,1 3 0,3 2 10

# Correlations <0 3 4 3 3 3 4 7 2 5 6 3 4 0 # Correlations >0 13 12 13 13 13 12 9 14 11 10 13 12 9

Page 42: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

42 A more holistic approach for breeding: including quality from a value chain perspective

Table 5a-3: correlations between yield (fresh after harvest) with various traits for the crop carrot, based on two locations and two harvest moments in 2017 and

2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Crofton

F1 Nerac

F1 Robila Rodelika Solvita

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 40 20 20 20 20 20 20 8 8 8 8 8 47 Brix (%) -0,3 -0,2 -0,2 -0,7 -0,6 -0,1 -0,4 -0,1 -0,1 0,2 0,3 -0,4 2 -0,2 10 2

EC (mS/cm) -0,5 0,1 -0,4 -0,7 -0,4 -0,4 -0,6 -0,8 -0,5 -0,7 -0,4 -0,5 4 -0,5 11 1

pH -0,3 -0,6 -0,2 -0,1 0,3 -0,6 -0,4 -0,2 -0,6 -0,5 -0,4 -0,2 3 -0,3 11 1

Dry matter content (%) -0,6 -0,4 -0,7 -0,8 -0,8 -0,3 -0,8 -0,4 -0,7 -0,2 -0,2 -0,8 7 -0,5 12 0

Decrease in fresh weight after SDT (%) -0,6 -0,4 -0,6 -0,5 -0,7 -0,4 -0,7 -0,6 -0,6 -0,4 -0,3 -0,6 7 -0,5 12 0

Decrease in dry matter after SDT (%) 0,4 0,6 0,2 0,6 0,0 0,4 0,2 0,2 0,4 0,8 -0,1 0,4 3 0,3 2 10

Ratio decrease dry/wet weight after SDT 0,7 0,7 0,5 0,7 0,5 0,6 0,6 0,5 0,5 0,9 0,2 0,6 7 0,6 0 12

Yield fresh, at harvest (tons/ha) - - - - - - - - - - - - Yield dry matter, at harvest (tons/ha) 0,9 0,9 0,9 1,0 0,8 0,9 0,9 1,0 1,0 1,0 0,9 1,0 X Storability (percentage rot) 0,0 -0,6 0,0 -0,5 0,2 0,2 0,2 -0,3 0,3 -0,6 0,1 -0,2 2 -0,1 6 6

taste, general appreciation 0,0 0,0 0,1 0,1 -0,3 -0,3 0,0 0,4 -0,1 -0,1 0,6 0,1 1 0,0 6 6

Aroma 0,1 0,2 -0,1 0,5 -0,4 -0,2 0,0 0,5 -0,5 -0,1 0,6 0,5 1 0,1 5 7

Aftertaste -0,1 0,1 -0,1 0,5 -0,3 -0,2 -0,1 0,3 -0,5 -0,4 0,4 0,0 0 0,0 7 5

Structure/ Mouthfeel 0,0 0,1 0,0 0,3 -0,2 -0,1 0,1 0,1 -0,3 0,7 0,4 -0,1 1 0,1 5 7

Brix/EC 0,4 -0,2 0,3 0,7 -0,1 0,4 0,4 0,7 0,4 0,9 0,8 0,5 4 0,4 2 10

EC*Brix -0,5 -0,1 -0,3 -0,8 -0,7 -0,3 -0,6 -0,6 -0,5 -0,4 -0,1 -0,6 5 -0,5 12 0

# Correlations <0 10 7 10 7 12 10 9 8 11 9 7 9 # Correlations >0 6 9 6 9 4 6 7 8 5 7 9 7

Page 43: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 43

Table 5a-4: correlations between yield (in dry matter, after harvest) with various traits for the crop carrot, based on two locations and two harvest moments in

2017 and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Crofton

F1 Nerac

F1 Robila Rodelika Solvita

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 40 20 20 20 20 20 20 8 8 8 8 8 33 Brix (%) 0,1 0,2 0,1 -0,6 -0,1 0,3 -0,1 0,2 0,0 0,4 0,5 -0,2 1 0,1 5 7

EC (mS/cm) -0,4 0,0 -0,2 -0,7 -0,4 -0,3 -0,6 -0,8 -0,5 -0,6 -0,2 -0,4 4 -0,4 12 0

pH -0,5 -0,7 -0,4 0,0 0,2 -0,7 -0,4 -0,4 -0,6 -0,7 -0,6 -0,5 5 -0,4 10 2

Dry matter content (%) -0,2 0,0 -0,4 -0,6 -0,2 0,1 -0,5 -0,1 -0,5 0,0 0,2 -0,7 2 -0,2 8 4

Decrease in fresh weight after SDT (%) -0,4 -0,2 -0,4 -0,4 -0,3 -0,1 -0,7 -0,4 -0,4 -0,3 0,0 -0,5 1 -0,3 12 0

Decrease in dry matter after SDT (%) 0,4 0,6 0,1 0,6 -0,2 0,5 0,1 0,2 0,3 0,9 0,0 0,4 3 0,3 2 10

Ratio decrease dry/wet weight after SDT 0,5 0,5 0,4 0,7 0,1 0,4 0,5 0,4 0,4 0,8 -0,1 0,6 3 0,4 1 11

Yield fresh, at harvest (tons/ha) 0,9 0,9 0,9 1,0 0,8 0,9 0,9 1,0 1,0 1,0 0,9 1,0 x Yield dry matter, at harvest (tons/ha) - - - - - - - - - - - - Storability (percentage rot) 0,0 -0,5 0,1 -0,6 0,3 0,2 0,1 -0,1 0,3 -0,6 0,1 -0,2 2 -0,1 6 6

taste, general appreciation 0,2 0,4 0,2 0,2 0,1 0,0 0,2 0,4 -0,2 0,1 0,7 0,1 1 0,2 1 11

Aroma 0,2 0,4 -0,1 0,5 -0,1 0,1 0,3 0,6 -0,5 0,1 0,7 0,4 2 0,2 3 9

Aftertaste 0,0 0,3 -0,2 0,6 -0,1 -0,1 -0,1 0,4 -0,6 -0,3 0,4 -0,1 2 0,0 7 5

Structure/ Mouthfeel 0,0 0,1 -0,1 0,3 -0,3 -0,1 0,1 0,1 -0,4 0,6 0,3 0,1 1 0,0 4 8

Brix/EC 0,5 0,2 0,4 0,7 0,2 0,5 0,5 0,8 0,5 0,9 0,7 0,4 4 0,5 0 12

EC*Brix -0,3 0,2 0,0 -0,7 -0,3 0,0 -0,6 -0,5 -0,5 -0,2 0,2 -0,4 2 -0,3 10 2

# Correlations <0 7 4 9 6 10 6 8 7 11 6 6 9 # Correlations >0 9 12 7 10 6 10 8 9 5 10 10 7

Page 44: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

44 A more holistic approach for breeding: including quality from a value chain perspective

Table 5b-1: correlations between storability (percentage rot) with various traits for the crop pumpkin, based on two locations and two harvest moments in 2017

and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2

Bright Summer

F1 Fictor

Orange Summer

F1 Red Kuri

Uchiki Kuri

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 38 20 18 18 20 19 19 6 8 8 8 8 25

Brix (%) 0,3 0,2 0,0 0,0 0,6 0,4 0,2 0,5 0,5 0,4 0,2 0,6 2 0,3 2 10

EC (mS/cm) -0,5 0,0 -0,1 -0,7 -0,7 -0,4 -0,6 -0,5 -0,6 -0,6 -0,7 -0,5 6 -0,5 12 0

pH -0,1 -0,2 0,0 0,1 -0,2 0,1 0,3 -0,3 0,0 -0,4 -0,4 -0,1 0 -0,1 7 5

Dry matter content (%) 0,0 0,1 -0,3 0,1 0,2 0,0 0,2 -0,1 0,2 -0,3 -0,1 0,2 0 0,0 4 8

Decrease in fresh weight after SDT (%) 0,3 0,3 0,2 -0,1 0,5 0,2 0,2 0,3 0,1 0,4 0,0 0,5 0 0,2 1 11

Decrease in dry matter after SDT (%) -0,1 0,2 0,2 -0,4 0,3 0,1 -0,3 0,3 -0,2 0,3 0,0 -0,5 0 0,0 6 6

Ratio decrease dry/wet weight after SDT -0,2 0,0 0,0 -0,4 0,0 -0,1 -0,3 0,2 -0,2 0,2 0,0 -0,7 1 -0,1 6 6

Yield fresh, at harvest (tons/ha) 0,3 0,1 0,5 0,7 0,0 0,2 0,3 0,3 0,3 0,5 0,5 0,2 1 0,3 1 11

Yield dry matter, at harvest (tons/ha) 0,5 0,4 0,4 0,9 0,1 0,3 0,6 0,4 0,6 0,4 0,4 0,8 4 0,5 0 12

Storability (percentage rot) - - - - - - - - - - - -

taste, general appreciation (1-9) 0,6 0,1 -0,2 0,6 0,5 0,7 0,6 0,5 0,7 0,5 0,6 0,7 7 0,5 1 11

Aroma 0,2 -0,1 0,0 0,5 -0,1 0,3 0,0 -0,3 0,4 0,3 0,4 0,3 0 0,2 5 7

Aftertaste 0,0 -0,2 0,0 0,0 0,1 0,3 -0,2 -0,3 -0,3 0,8 0,0 0,1 1 0,0 6 6

Structure/ Mouthfeel -0,1 -0,2 -0,4 -0,4 0,3 0,0 0,0 -0,2 -0,5 0,4 0,0 -0,2 0 -0,1 10 2

Brix/EC -0,1 -0,1 0,0 -0,6 0,3 0,0 -0,2 -0,1 -0,8 0,5 -0,5 -0,2 2 -0,2 9 3

EC*Brix 0,1 -0,1 0,0 0,2 0,0 0,4 -0,1 -0,3 0,0 0,7 0,3 0,2 1 0,1 6 6

# Correlations <0 6 7 7 9 5 4 9 8 8 3 8 7

# Correlations >0 10 9 9 7 11 12 7 8 8 13 8 9

Page 45: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 45

Table 5b-2: correlations between taste (general appreciation) with various traits for the crop pumpkin, based on two locations and two harvest moments in 2017

and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2

Bright Summer

F1 Fictor

Orange Summer

F1 Red Kuri

Uchiki Kuri

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 38 20 18 18 20 19 19 6 8 8 8 8 41 Brix (%) 0,4 0,1 0,2 -0,2 0,8 0,8 0,6 -0,3 0,2 0,1 0,4 0,4 3 0,3 2 10

EC (mS/cm) -0,5 0,0 -0,2 -0,8 -0,4 -0,7 -0,7 -0,5 -0,7 -0,4 -0,5 -0,6 4 -0,5 12 0

pH 0,2 0,3 0,4 0,3 0,0 0,5 0,0 0,0 0,1 0,4 0,3 0,1 0 0,2 1 11

Dry matter content (%) 0,4 0,2 0,6 0,3 0,7 0,6 0,5 0,1 0,2 0,1 0,4 0,3 3 0,4 0 12

Decrease in fresh weight after SDT (%) 0,2 0,1 0,1 -0,5 0,4 0,4 -0,1 -0,1 0,1 0,1 0,3 0,2 0 0,1 3 9

Decrease in dry matter after SDT (%) -0,3 -0,1 -0,4 -0,7 0,0 0,6 -0,4 -0,1 -0,5 -0,6 -0,3 -0,4 3 -0,3 11 1

Ratio decrease dry/wet weight after SDT -0,4 -0,2 -0,3 -0,6 -0,2 0,5 -0,4 0,0 -0,5 -0,6 -0,4 -0,4 2 -0,3 11 1

Yield fresh, at harvest (tons/ha) -0,1 -0,2 -0,4 0,5 -0,4 -0,6 -0,1 0,4 0,4 0,4 -0,1 0,0 1 0,0 8 4

Yield dry matter, at harvest (tons/ha) 0,3 0,0 0,1 0,6 -0,1 -0,2 0,4 0,6 0,6 0,8 0,4 0,4 4 0,3 2 10

Storability (percentage rot) 0,6 0,1 -0,2 0,6 0,5 0,7 0,6 0,5 0,7 0,5 0,6 0,7 7 0,5 1 11

taste, general appreciation - - - - - - - - - - - - Aroma 0,3 -0,4 0,9 0,1 0,4 -0,8 0,7 0,7 0,8 -0,3 0,6 0,1 X 0,3 3 9

Aftertaste 0,0 -0,5 0,1 -0,2 0,3 -0,4 0,2 0,4 0,5 -0,5 0,2 -0,2 X 0,0 6 6

Structure/ Mouthfeel 0,3 0,2 0,4 0,1 0,6 0,4 0,0 0,7 0,1 0,3 0,2 0,4 X 0,3 0 12

Brix/EC 0,6 0,1 0,4 0,8 0,7 0,9 0,7 0,6 0,7 0,5 0,6 0,7 9 0,6 0 12

EC*Brix -0,4 0,0 -0,1 -0,8 0,0 -0,4 -0,6 -0,6 -0,8 -0,4 -0,4 -0,4 3 -0,4 10 2

# Correlations <0 7 7 7 8 5 6 8 7 5 7 6 7 # Correlations >0 9 9 9 8 11 10 8 9 11 9 10 9

Page 46: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

46 A more holistic approach for breeding: including quality from a value chain perspective

Table 5b-3: correlations between yield (fresh after harvest) with various traits for the crop pumpkin, based on two locations and two harvest moments in 2017

and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2

Bright Summer

F1 Fictor

Orange Sum-

mer F1 Red Kuri

Uchiki Kuri

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 38 20 18 18 20 19 19 6 8 8 8 8 29 Brix (%) -0,6 -0,8 -0,6 -0,5 -0,6 -0,5 -0,8 -0,6 -0,6 -0,1 -0,2 -0,5 7 -0,5 12 0

EC (mS/cm) -0,1 0,2 -0,2 -0,7 -0,3 0,2 -0,2 0,1 0,3 0,0 -0,3 0,4 1 0,0 7 5

pH -0,3 -0,2 -0,4 0,1 -0,4 0,1 -0,2 -0,9 0,1 -0,5 -0,7 -0,2 2 -0,3 9 3

Dry matter content (%) -0,6 -0,7 -0,5 -0,4 -0,5 -0,6 -0,6 -0,7 -0,5 -0,5 -0,3 -0,8 6 -0,5 12 0

Decrease in fresh weight after SDT (%) -0,2 -0,4 0,2 -0,1 -0,1 -0,4 -0,4 0,0 -0,2 0,0 0,5 -0,6 1 -0,1 10 2

Decrease in dry matter after SDT (%) -0,3 -0,5 0,0 -0,3 -0,2 -0,3 -0,4 -0,4 -0,5 -0,4 -0,2 -0,7 1 -0,3 12 0

Ratio decrease dry/wet weight after SDT -0,2 -0,3 -0,1 -0,3 -0,1 -0,1 -0,3 -0,6 -0,4 -0,3 -0,3 -0,4 1 -0,3 12 0

Yield fresh, at harvest (tons/ha) - - - - - - - - - - - - Yield dry matter, at harvest (tons/ha) 0,6 0,7 0,6 0,9 0,9 0,5 0,7 0,7 0,6 0,8 0,5 0,3 X Storability (percentage rot) -0,1 -0,4 0,1 -0,2 0,0 -0,3 0,1 -0,4 -0,7 -0,5 -0,3 -0,3 1 -0,3 10 2

taste, general appreciation -0,1 -0,2 -0,4 0,5 -0,4 -0,1 0,0 -0,6 -0,1 0,4 0,4 0,4 1 0,0 8 4

Aroma -0,1 0,0 -0,3 0,1 -0,1 0,0 -0,1 0,3 -0,4 0,8 0,2 -0,5 1 0,0 8 4

Aftertaste 0,0 0,0 -0,1 -0,1 -0,1 -0,1 0,0 -0,1 -0,4 0,7 -0,1 -0,2 1 0,0 9 3

Structure/ Mouthfeel -0,4 -0,4 -0,5 -0,4 -0,5 -0,6 -0,2 -0,7 -0,7 0,4 0,1 -0,1 3 -0,3 10 2

Brix/EC -0,1 -0,4 -0,1 0,6 0,0 -0,3 -0,1 -0,4 -0,2 0,2 0,3 -0,4 1 -0,1 9 3

EC*Brix -0,3 -0,2 -0,3 -0,7 -0,7 0,0 -0,5 -0,1 0,1 -0,1 -0,4 0,3 2 -0,2 9 3

# Correlations <0 15 13 12 11 15 12 13 13 12 10 10 12 # Correlations >0 1 3 4 5 1 4 3 3 4 6 6 4

Page 47: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 47

Table 5b-4: correlations between yield (in dry matter, after harvest) with various traits for the crop pumpkin, based on two locations and two harvest moments in

2017 and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2

Bright Summer

F1 Fictor

Orange Summer

F1 Red Kuri

Uchiki Kuri

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 38 20 18 18 20 19 19 6 8 8 8 8 38 Brix (%) -0,2 -0,4 -0,4 -0,3 -0,3 -0,2 -0,2 -0,4 0,0 -0,5 0,3 0,1 0 -0,2 10 2

EC (mS/cm) -0,6 -0,3 -0,8 -0,8 -0,4 -0,5 -0,7 -0,4 -0,6 -0,5 -0,8 -0,6 7 -0,6 12 0

pH 0,1 0,1 0,1 0,3 -0,3 0,6 0,4 -0,5 0,2 0,0 0,1 -0,1 0 0,1 4 8

Dry matter content (%) 0,2 0,0 0,4 0,1 0,0 0,4 0,2 0,1 0,4 0,1 0,6 0,3 1 0,2 2 10

Decrease in fresh weight after SDT (%) 0,1 -0,1 0,2 -0,1 0,1 0,3 -0,3 0,5 -0,4 -0,1 0,6 0,1 1 0,1 5 7

Decrease in dry matter after SDT (%) -0,4 -0,2 -0,4 -0,6 -0,4 -0,5 -0,4 0,3 -0,5 -0,5 -0,4 -0,5 1 -0,4 11 1

Ratio decrease dry/wet weight after SDT -0,4 -0,2 -0,5 -0,6 -0,4 -0,7 -0,3 -0,2 -0,4 -0,4 -0,6 -0,5 3 -0,4 12 0

Yield fresh, at harvest (tons/ha) 0,6 0,7 0,6 0,9 0,9 0,5 0,7 0,7 0,6 0,8 0,5 0,3 X Yield dry matter, at harvest (tons/ha) - - - - - - - - - - - - Storability (percentage rot) 0,0 0,1 -0,4 -0,2 0,1 0,2 -0,1 0,0 -0,3 -0,5 -0,2 0,0 0 -0,1 8 4

taste, general appreciation 0,3 0,0 0,1 0,6 -0,1 0,4 0,4 -0,2 0,4 0,6 0,6 0,8 4 0,3 2 10

Aroma 0,2 0,1 0,0 0,3 -0,1 0,2 0,1 -0,1 -0,3 0,6 0,5 -0,1 1 0,1 4 8

Aftertaste -0,1 0,0 -0,4 0,0 -0,2 -0,2 -0,1 -0,4 -0,7 0,5 0,1 -0,4 1 -0,2 9 3

Structure/ Mouthfeel -0,3 -0,4 -0,4 -0,4 -0,3 -0,2 -0,3 -0,6 -0,4 0,4 -0,5 -0,1 1 -0,3 11 1

Brix/EC 0,6 0,1 0,7 0,8 0,2 0,5 0,6 0,2 0,7 0,5 0,9 0,7 11 0,5 0 12

EC*Brix -0,7 -0,5 -0,8 -0,8 -0,6 -0,6 -0,8 -0,6 -0,7 -0,5 -0,9 -0,7 11 -0,7 12 0

# Correlations <0 9 9 9 10 12 8 10 9 11 9 7 10 # Correlations >0 7 7 7 6 4 8 6 7 5 7 9 6

Page 48: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

48 A more holistic approach for breeding: including quality from a value chain perspective

Table 5c-1: correlations between storability (percentage rot) with various traits for the crop red cabbage, based on two locations and two harvest moments in

2017 and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Granat

Marner Lager-

rot Rodyn-

da Roxy F1 Travero

F 1

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 40 20 20 20 20 20 20 8 8 8 8 23

Brix (%) 0,3 0,3 0,3 -0,5 -0,2 0,2 0,4 0,8 0,3 0,8 0,2 0,1 2 0,2 2 10

EC (mS/cm) 0,3 0,6 0,6 -0,6 0,0 0,3 0,3 0,8 0,0 0,7 0,0 -0,2 5 0,2 3 9

pH -0,3 -0,5 -0,5 0,3 0,2 -0,3 -0,4 -0,7 -0,5 -0,7 -0,3 0,1 2 -0,3 9 3

Dry matter content (%) 0,3 0,3 0,3 -0,3 -0,3 0,3 0,3 0,8 0,4 0,8 0,3 0,0 2 0,3 2 10

Decrease in fresh weight after SDT (%) 0,3 0,1 0,3 0,5 0,3 0,6 -0,1 0,1 0,3 0,2 0,5 0,2 1 0,3 1 11

Decrease in dry matter after SDT (%) 0,2 0,0 0,0 0,0 0,4 0,5 0,0 0,0 0,5 0,0 0,7 0,3 1 0,2 5 7

Ratio decrease dry/wet weight after SDT 0,1 -0,2 -0,2 -0,1 0,3 0,5 0,1 0,0 0,4 0,0 0,5 0,2 0 0,1 5 7

Yield fresh, at harvest (tons/ha) - - - - - - - - - - - -

Yield dry matter, at harvest (tons/ha) - - - - - - - - - - - -

Storability (percentage rot) - - - - - - - - - - - -

taste, general appreciation 0,1 0,1 0,0 0,3 0,3 -0,1 0,3 0,0 -0,3 -0,1 0,4 0,1 0 0,1 5 7

Aroma -0,2 -0,3 -0,1 -0,2 0,0 -0,3 -0,2 -0,6 0,0 -0,3 0,1 -0,5 1 -0,2 10 2

Aftertaste -0,5 -0,6 -0,2 -0,2 -0,3 -0,6 -0,3 -0,8 -0,2 -0,4 -0,8 -0,4 4 -0,5 12 0

Structure/ Mouthfeel 0,0 0,4 -0,2 -0,2 0,3 -0,3 0,4 0,0 -0,2 -0,2 -0,2 -0,4 0 0,0 7 5

Brix/EC -0,2 -0,7 -0,8 0,3 -0,2 -0,3 0,0 -0,4 0,5 -0,3 0,2 0,4 2 -0,1 8 4

EC*Brix 0,3 0,5 0,5 -0,7 -0,1 0,3 0,4 0,8 0,2 0,7 0,1 -0,1 3 0,2 3 9

# Correlations <0 4 6 8 9 5 6 7 6 5 8 4 5

# Correlations >0 10 8 6 5 9 8 7 8 9 6 10 9

Page 49: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 49

Table 5c-2: correlations between taste (general appreciation) with various traits for the crop red cabbage, based on two locations and two harvest moments in

2017 and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Granat

Marner Lager-

rot Rodyn-

da Roxy

F1 Travero

F 1

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 40 20 20 20 20 20 20 8 8 8 8 13

Brix (%) -0,2 -0,3 -0,1 0,3 0,3 -0,4 -0,1 0,0 -0,5 0,2 -0,5 -0,1 0 -0,1 9 3

EC (mS/cm) -0,3 -0,3 -0,3 -0,2 0,1 -0,3 -0,4 -0,4 -0,6 0,2 -0,6 -0,5 2 -0,3 10 2

pH 0,3 0,4 0,3 0,0 0,2 0,4 0,3 0,4 0,7 0,1 0,4 0,4 1 0,3 0 12

Dry matter content (%) -0,3 -0,4 -0,2 0,0 0,2 -0,5 0,0 -0,1 -0,6 -0,1 -0,4 -0,2 1 -0,2 10 2

Decrease in fresh weight after SDT (%) 0,0 0,3 -0,2 0,2 0,0 -0,3 0,4 0,3 -0,1 0,0 0,4 -0,5 0 0,0 6 6

Decrease in dry matter after SDT (%) -0,1 -0,3 -0,2 0,0 -0,1 -0,5 0,3 0,2 -0,6 -0,5 0,7 -0,4 2 -0,1 9 3

Ratio decrease dry/wet weight after SDT -0,1 -0,5 0,0 -0,1 0,1 -0,6 0,2 0,1 -0,5 -0,5 0,6 -0,1 2 -0,1 7 5

Yield fresh, at harvest (tons/ha) - - - - - - - - - - - -

Yield dry matter, at harvest (tons/ha) - - - - - - - - - - - -

Storability (percentage rot) 0,1 0,1 0,0 0,3 0,3 -0,1 0,3 0,0 -0,3 -0,1 0,4 0,1 0 0,1 5 7

taste, general appreciation - - - - - - - - - - - -

Aroma 0,5 0,4 0,6 0,4 0,5 0,5 0,5 0,6 0,7 0,6 0,8 -0,1 x 0,5 1 11

Aftertaste 0,3 0,3 0,3 0,1 0,1 0,5 0,1 0,5 0,7 0,3 -0,2 0,2 x 0,3 1 11

Structure/ Mouthfeel 0,3 0,4 0,4 0,2 0,3 0,4 0,2 0,0 1,0 0,2 0,6 0,2 x 0,4 0 12

Brix/EC 0,4 0,2 0,4 0,3 0,2 0,0 0,6 0,7 0,2 -0,3 0,5 0,8 3 0,3 2 10

EC*Brix -0,3 -0,3 -0,2 0,0 0,3 -0,3 -0,2 -0,3 -0,6 0,2 -0,6 -0,3 2 -0,2 10 2

# Correlations <0 7 7 8 4 3 10 4 5 9 7 5 9

# Correlations >0 7 7 6 10 11 4 10 9 5 7 9 5

Page 50: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

50 A more holistic approach for breeding: including quality from a value chain perspective

Table 5c-3: correlations between yield (fresh after harvest) with various traits for the crop red cabbage, based on two locations and two harvest moments in 2017

and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Granat

Marner Lager-

rot Rodyn-

da Roxy F1

Tra-vero F

1

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 20 10 10 10 10 10 10 17

Brix (%) -0,4 -0,5 -0,3 see clay

see sand

0,0 -0,9 1 -0,4 4 1

EC (mS/cm) -0,4 -0,4 0,3 0,1 -0,7 1 -0,2 3 2

pH 0,3 -0,5 0,5 0,0 0,9 1 0,2 2 3

Dry matter content (%) -0,4 0,0 -0,4 -0,1 -0,8 1 -0,3 4 1

Decrease in fresh weight after SDT (%) 0,0 -0,6 0,2 0,0 0,7 2 0,1 2 3

Decrease in dry matter after SDT (%) -0,1 0,4 0,0 -0,1 0,0 0 0,1 3 2

Ratio decrease dry/wet weight after SDT -0,1 0,5 -0,5 -0,1 -0,7 1 -0,2 4 1

Yield fresh, at harvest (tons/ha) - - - - -

Yield dry matter, at harvest (tons/ha) 0,9 1,0 1,0 0,9 0,9 X

Storability (percentage rot) -0,3 0,0 0,3 0,3 -0,7 1 -0,1 2 3

taste, general appreciation 0,2 -0,1 0,4 0,6 -0,5 1 0,1 2 3

Aroma 0,6 0,4 0,6 0,4 0,8 3 0,5 0 5

Aftertaste 0,3 -0,4 0,4 -0,1 0,7 1 0,2 2 3

Structure/ Mouthfeel 0,4 0,3 0,0 0,4 0,3 2 0,3 0 5

Brix/EC -0,3 -0,1 -0,4 -0,2 -0,6 1 -0,3 5 0

EC*Brix -0,4 -0,5 -0,1 0,0 -0,8 1 -0,4 4 1

# Correlations <0 10 8 5 8 5 7 9

# Correlations >0 6 8 11 8 11 9 7

Page 51: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 51

Table 5c-4: correlations between yield (in dry matter, after harvest) with various traits for the crop red cabbage, based on two locations and two harvest moments

in 2017 and 2018.

Trait all

data Location

clay Location

sand Year 2017

Year 2018

Harvest moment

1

Harvest moment

2 Granat

Marner Lager-

rot Rodyn-

da Roxy F1

Tra-vero F

1

# corre-lations > 0,6

average corre-la-

tions

# Corre-lations

<0

# Corre-lations

>0

N 20 10 10 10 10 10 10 11 Brix (%) -0,1 -0,4 -0,1 see

clay see

sand 0,4 -0,7 1 -0,2 4 1

EC (mS/cm) 0,0 -0,4 0,3 0,4 -0,5 0 0,0 3 2

pH 0,0 -0,5 0,4 -0,4 0,7 1 0,1 3 2

Dry matter content (%) 0,0 0,2 -0,2 0,3 -0,6 1 -0,1 3 2

Decrease in fresh weight after SDT (%) 0,0 -0,7 0,1 0,4 0,5 1 0,1 1 4

Decrease in dry matter after SDT (%) 0,1 0,5 -0,1 0,3 -0,2 0 0,1 2 3

Ratio decrease dry/wet weight after SDT 0,1 0,5 -0,5 0,2 -0,7 1 -0,1 2 3

Yield fresh, at harvest (tons/ha) 0,9 1,0 1,0 0,9 0,9 x Yield dry matter, at harvest (tons/ha) - - - - -

Storability (percentage rot) 0,0 -0,1 0,3 0,6 -0,5 1 0,1 2 3

taste, general appreciation 0,2 -0,1 0,5 0,5 -0,3 0 0,1 2 3

Aroma 0,5 0,4 0,7 0,2 0,8 2 0,5 0 5

Aftertaste 0,2 -0,3 0,4 -0,3 0,7 1 0,1 2 3

Structure/ Mouthfeel 0,2 0,2 0,0 0,1 0,2 0 0,1 0 5

Brix/EC -0,2 0,0 -0,3 -0,3 -0,6 1 -0,3 5 0

EC*Brix -0,1 -0,5 0,1 0,4 -0,6 1 -0,1 3 2

# Correlations <0 5 8 4 8 4 3 8 # Correlations >0 10 7 11 7 11 12 7

Page 52: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

52 A more holistic approach for breeding: including quality from a value chain perspective

Table 6: F and p-values for three crops based on three taste evaluations, five varieties and two locations in 2017 and 2018.

Crop Crop Trait p- value Variety

p- value Location

p- va-lue Year

p- value Tasting date

p- value Variety x Location

p- value Variety x Year

p- value Location x Year

p- value Variety x Tasting date

p- value Location x Tasting date

p- value Year x Tasting date

p- value Variety x Location x Year

p- value Va-riety x Loca-tion x Tast-ing date

p- value Va-riety x Year x Tasting date

p- value Lo-cation x Year x Tast-ing date

p- value Vari-ety x Location x Year x Tast-ing date

Carrot general appreciation <0,001 0,048 0,005 0,071 <0,001 0,325 0,746 0,238 0,003 <0,001 <0,001 0,116 0,007 0,001 0,243 Carrot Sweetness <0,001 0,006 0,171 0,127 0,036 0,094 0,025 0,869 0,022 0,003 0,212 <0,001 0,040 <0,001 0,012 Carrot Aroma <0,001 0,248 0,017 0,176 0,016 0,428 0,549 0,215 0,134 0,081 0,002 0,211 0,993 0,017 0,335 Carrot Aftertaste 0,021 0,766 0,780 0,385 0,175 0,963 0,201 0,547 0,293 0,004 0,090 0,782 0,796 0,031 0,606 Carrot Structure/ Mouthfeel <0,001 <0,001 <0,001 0,599 0,159 0,745 0,023 0,675 0,435 0,108 0,040 0,398 0,088 0,671 0,724 Pumpkin general appreciation <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,709 <0,001 <0,001 0,898 0,474 0,008 <0,001 0,001 <0,001 Pumpkin Sweetness <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,991 0,014 <0,001 0,002 0,519 0,169 0,030 0,063 0,008 Pumpkin Aroma 0,013 0,003 0,057 0,508 0,009 0,099 0,111 0,143 0,375 0,005 0,252 0,006 0,060 0,389 0,769 Pumpkin Aftertaste 0,035 0,188 0,844 0,270 0,006 0,054 0,008 0,678 0,213 0,212 0,170 0,003 0,065 0,287 0,313 Pumpkin Structure/ Mouthfeel <0,001 0,033 0,020 <0,001 0,539 0,032 0,718 0,474 0,126 <0,001 0,331 0,297 0,040 0,448 0,825 Red Cabbage general appreciation 0,014 <0,001 0,091 0,106 0,003 0,394 0,372 0,007 0,038 0,011 0,173 0,181 0,340 0,305 0,882 Red Cabbage Sweetness NA Red Cabbage Aroma 0,241 0,014 0,642 0,102 0,768 0,437 0,774 0,591 0,669 0,004 0,009 0,889 0,746 0,592 0,416 Red Cabbage Aftertaste 0,282 0,202 0,148 0,304 0,737 0,669 0,583 0,080 0,662 0,090 0,806 0,180 0,142 0,161 0,639 Red Cabbage Structure/ Mouthfeel 0,016 0,608 0,118 <0,001 0,002 0,614 0,047 0,185 0,089 0,096 0,563 0,832 0,078 0,345 0,324

Crop Crop Trait F- value Variety

F- value Location

F- value Year

F- value Tasting date

F- value Variety x Location

F- value Variety x Year

F- value Location x Year

F- value Variety x Tasting date

F- value Location x Tasting date

F- value Year x Tasting date

F- value Variety x Location x Year

F- value Va-riety x Loca-tion x Tast-ing date

F- value Va-riety x Year x Tasting date

F- value Lo-cation x Year x Tast-ing date

F- value Vari-ety x Location x Year x Tast-ing date

Carrot general appreciation 21 4 8 3 6 1 0 1 6 9 6 2 3 7 1 Carrot Sweetness 18 8 2 2 3 2 5 0 4 6 1 4 2 8 2 Carrot Aroma 5 1 6 2 3 1 0 1 2 3 4 1 0 4 1 Carrot Aftertaste 3 0 0 1 2 0 2 1 1 6 2 1 1 4 1 Carrot Structure/ Mouthfeel 13 15 18 1 2 0 5 1 1 2 3 1 2 0 1 Pumpkin general appreciation 22 249 19 12 11 8 0 5 22 0 1 3 5 7 4 Pumpkin Sweetness 11 240 27 24 10 8 0 2 17 7 1 1 2 3 3 Pumpkin Aroma 3 9 4 1 3 2 3 2 1 5 1 3 2 1 1 Pumpkin Aftertaste 3 2 0 1 4 2 7 1 2 2 2 3 2 1 1 Pumpkin Structure/ Mouthfeel 9 5 5 34 1 3 0 1 2 17 1 1 2 1 0 Red Cabbage general appreciation 3 14 3 2 4 1 1 3 3 5 2 1 1 1 0 Red Cabbage Sweetness NA Red Cabbage Aroma 1 6 0 2 0 1 0 1 0 6 3 0 1 1 1 Red Cabbage Aftertaste 1 2 2 1 1 1 0 2 0 2 0 1 2 2 1 Red Cabbage Structure/ Mouthfeel 3 0 2 9 4 1 4 1 2 2 1 1 2 1 1

Page 53: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 53

Table 6-1: F and p-values for three crops based on three taste evaluations, five varieties and two locations in 2017

Crop Trait

F-value Variety

F-value Soil type

F-value Tasting

date

F-value Variety x Soil type

F-value Variety x Tasting

date

F-value Soil type x

Tasting date

F-value Variety x

Soil type x Tasting

date

p-value Variety

p-value Soil type

p-value Tasting

date

p-value Variety x Soil type

p-value Variety x Tasting

date

p-value Soil type x

Tasting date

p-value Variety x

Soil type x Tasting

date

Carrot Taste 8 1 4 5 0 14 2 <0,001 0,237 0,024 0,002 0,918 <0,001 0,127

Carrot Sweetness 7 14 8 1 1 11 2 <0,001 <0,001 <0,001 0,696 0,587 <0,001 0,072

Carrot Aroma 2 2 1 3 1 4 2 0,167 0,155 0,244 0,015 0,322 0,019 0,044

Carrot Aftertaste 1 1 5 0 1 2 1 0,321 0,243 0,009 0,947 0,878 0,104 0,824

Carrot Mouthfeel 5 20 0 1 1 0 1 <0,001 <0,001 0,837 0,623 0,688 0,961 0,626

Pumpkin Taste 68 131 3 9 4 10 6 <0,001 <0,001 0,084 <0,001 <0,001 <0,001 <0,001

Pumpkin Sweetness 44 116 5 7 2 6 4 <0,001 <0,001 0,008 <0,001 0,150 0,005 <0,001

Pumpkin Aroma 26 3 9 2 3 3 2 <0,001 0,117 <0,001 0,181 0,002 0,071 0,047

Pumpkin Aftertaste 23 0 2 4 2 0 3 <0,001 0,531 0,117 0,006 0,023 0,734 0,010

Pumpkin Mouthfeel 26 5 18 1 2 2 1 <0,001 0,024 <0,001 0,695 0,084 0,100 0,255

Red Cabbage Taste 2 9 1 4 3 3 2 0,172 0,003 0,308 0,007 0,010 0,072 0,069

Red Cabbage Sweetness Red Cabbage Aroma 1 2 2 3 1 0 1 0,245 0,230 0,220 0,021 0,613 0,803 0,512

Red Cabbage Aftertaste 1 1 1 0 1 0 1 0,403 0,460 0,596 0,982 0,386 0,767 0,708

Red Cabbage Mouthfeel 2 0 7 4 1 0 2 0,150 0,631 0,001 0,003 0,420 0,948 0,089

Page 54: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

54 A more holistic approach for breeding: including quality from a value chain perspective

Table 6-2: F and p-values for three crops based on three taste evaluations, five varieties and two locations in 2018

Crop Trait

F-value Variety

F-value Soil type

F-value Tasting

date

F-value Variety x Soil type

F-value Variety x Tasting

date

F-value Soil type x

Tasting date

F-value Variety x

Soil type x Tasting

date

p-value Variety

p-value Soil type

p-value Tasting

date

p-value Variety x Soil type

p-value Variety x Tasting

date

p-value Soil type x

Tasting date

p-value Variety x

Soil type x Tasting

date

Carrot Taste 14 3 8 8 3 1 1 <0,001 0,109 <0,001 <0,001 0,001 0,594 0,193

Carrot Sweetness 13 0 2 3 2 2 4 <0,001 0,619 0,199 0,011 0,102 0,194 <0,001

Carrot Aroma 4 0 3 4 1 3 1 0,006 0,687 0,045 0,003 0,808 0,077 0,581

Carrot Aftertaste 2 0 1 3 1 3 1 0,112 0,521 0,348 0,010 0,456 0,084 0,554

Carrot Mouthfeel 9 2 3 4 2 1 1 <0,001 0,185 0,064 0,008 0,080 0,308 0,444

Pumpkin Taste 20 136 6 5 5 18 1 <0,001 <0,001 0,004 <0,001 <0,001 <0,001 0,472

Pumpkin Sweetness 13 142 20 6 3 14 1 <0,001 <0,001 <0,001 <0,001 0,003 <0,001 0,443

Pumpkin Aroma 4 9 6 3 1 0 1 0,002 0,002 0,005 0,042 0,631 0,839 0,205

Pumpkin Aftertaste 3 5 1 2 1 2 2 0,027 0,023 0,299 0,122 0,520 0,169 0,081

Pumpkin Mouthfeel 4 1 32 1 1 1 1 0,005 0,304 <0,001 0,381 0,216 0,524 0,705

Red Cabbage Taste 3 4 3 2 2 0 0 0,026 0,040 0,041 0,049 0,139 0,713 0,976

Red Cabbage Sweetness NA

Red Cabbage Aroma 1 4 4 1 1 1 1 0,391 0,059 0,024 0,213 0,608 0,490 0,768

Red Cabbage Aftertaste 1 0 1 1 3 3 1 0,443 0,532 0,228 0,456 0,008 0,076 0,185

Red Cabbage Mouthfeel 2 3 5 2 2 3 0 0,047 0,094 0,011 0,072 0,023 0,075 0,959

Page 55: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Tables 55

Table 7-1: Average values for taste general appreciation for three crops based on three taste evaluations, five varieties and two locations in 2017.

Soil type Carrot Oct. Dec. Mar. Avg. Pumpkin Oct. Dec. Jan. Avg. Red Cabbage Oct. Dec. Feb. Mar. Avg.

Clay Crofton F1 6,3 5,8 5,6 5,9 Bright Summer F1 6,2 5,0 4,7 5,3 Granat 5,7 5,7 4,8 5,6 5,4

Sand Crofton F1 5,9 6,1 6,3 6,1 Bright Summer F1 NA NA NA NA Granat 5,8 5,6 6,4 5,9

Clay Nerac F1 5,9 5,5 5,5 5,6 Fictor 4,2 6,1 4,7 5,0 Marner Lagerrot 5,9 4,9 5,5 4,8 5,3

Sand Nerac F1 4,8 6,3 5,9 5,7 Fictor 7,6 8,2 6,6 7,5 Marner Lagerrot 6,1 6,1 6,4 6,2

Clay Robila 5,9 5,5 5,6 5,7 Orange Summer F1 5,4 5,9 5,8 5,7 Rodynda 5,9 5,5 5,5 5,8 5,7

Sand Robila 5,4 6,6 6,5 6,2 Orange Summer F1 6,6 6,1 7,0 6,6 Rodynda 6,3 6,6 6,3 6,4

Clay Rodelika 6,4 7,8 6,1 6,8 Red Kuri 6,2 5,7 4,3 5,4 Roxy F1 4,6 4,5 5,1 6,1 5,0

Sand Rodelika 6 6,6 6,6 6,4 Red Kuri 6,0 6,9 7,8 6,9 Roxy F1 6,2 6,6 6,8 6,5

Clay Solvita 6,5 6,2 6,4 6,4 Uchiki Kuri 5,3 5,4 2,4 4,4 Travero F1 5,3 5,9 5,9 6,4 5,9

Sand Solvita 5,6 5,6 5,5 5,6 Uchiki Kuri 6,7 6,2 7,1 6,6 Travero F1 5,3 5,4 6,1 5,6

Table 7-2: Average values for general appreciation for three crops based on three taste evaluations, five varieties and two locations in 2018.

Soil type Carrot Oct. Dec. Mar. Avg. Pumpkin Oct. Dec. Jan. Avg. Red Cabbage Oct. Dec. Feb. Avg.

Clay Crofton F1 6,7 5,9 6,3 6,3 Bright Summer F1 4,5 4,0 2,2 3,6 Granat 5,8 5,4 5,0 5,4

Sand Crofton F1 6,9 6,4 5,6 6,3 Bright Summer F1 6,0 4,7 4,3 5,0 Granat 6,9 6,5 6,4 6,6

Clay Nerac F1 5,9 4,3 6,0 5,4 Fictor 4,2 5,2 4,1 4,5 Marner Lagerrot 6,0 5,7 5,6 5,7

Sand Nerac F1 6,3 4,3 6,0 5,6 Fictor 6,8 6,5 7,0 6,8 Marner Lagerrot 5,5 5,9 5,9 5,8

Clay Robila 6,9 5,4 6,8 6,4 Orange Summer F1 6,4 7,3 4,7 6,1 Rodynda 6,9 5,5 6,2 6,2

Sand Robila 6,2 5,7 5,1 5,7 Orange Summer F1 7,7 6,3 6,0 6,7 Rodynda * 5,9 6,2 6,1

Clay Rodelika 7,6 7,9 7,9 7,8 Red Kuri 3,7 4,7 3,9 4,1 Roxy F1 5,6 4,9 5,0 5,2

Sand Rodelika 6,0 6,1 7,2 6,4 Red Kuri 6,4 4,8 7,2 6,1 Roxy F1 6,3 5,3 5,5 5,7

Clay Solvita 5,8 5,3 5,6 5,6 Uchiki Kuri 3,0 5,5 3,8 4,1 Travero F1 5,5 5,3 6,0 5,6

Sand Solvita 6,3 6,1 6,8 6,4 Uchiki Kuri 6,8 6,3 6,1 6,4 Travero F1 5,4 5,2 6,4 5,6

Average least significant difference Carrot: 1,052; Pumpkin: 1,189; Red cabbage: 1,172

Page 56: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

56 A more holistic approach for breeding: including quality from a value chain perspective

Annexes

Annex 1a: Average values for various traits related to yield, storability, taste and nutritional quality for carrot, measured on two locations and with two har-vesting moments in 2017 and 2018. Variety Soil

type Year Har-

vest mo-

ment

Yield fresh

(tons/ha)

Yield dry matter

(tons/ha)

Stora-bility

Yield marke-ta-ble, after storage (tons/ha

Yield mar-ketable, af-ter storage

(tons/ha

Decrease in fresh

weight af-ter SDT

(%)

Decrease in dry

matter af-ter SDT

(%)

Ratio de-crease

dry/fresh weight,

after SDT

General taste ap-

pre-ciation

Sweet-ness

Aroma pH EC (mS/cm)

Brix (in %)

Dry mat-ter con-tent (in

%)

Crofton F1 Clay 17 1 23 3,1 18 17 2,3 8,0 38 4,7 5,2 5,2 5,6 6,8 5,7 9,7 13,1 Crofton F1 Clay 17 2 32 4,0 21 16 2,0 8,0 44 5,6 6,0 6,3 5,9 6,8 5,7 9,2 12,8 Crofton F1 Sand 17 1 42 5,4 27 19 2,4 7,0 40 5,7 5,2 5,5 6,6 6,8 4,5 9,3 12,8 Crofton F1 Sand 17 2 63 7,7 8 32 3,9 7,0 42 6,0 6,6 6,9 6,5 6,8 4,1 9,0 12,1 Nerac F1 Clay 17 1 33 4,0 28 19 2,3 7,8 38 4,8 6,5 6,6 6,2 6,7 6,3 9,1 12,0 Nerac F1 Clay 17 2 52 6,3 17 28 3,4 9,1 42 4,6 5,3 5,3 6,2 6,8 6,2 8,8 12,1 Nerac F1 Sand 17 1 49 5,7 26 22 2,6 7,5 43 5,8 4,9 5,3 6,4 6,6 4,1 8,0 11,8 Nerac F1 Sand 17 2 63 7,0 20 18 2,0 7,2 50 7,2 6,3 6,3 6,2 6,7 3,7 8,4 11,2 Robila Clay 17 1 26 3,4 39 12 1,5 7,7 38 4,9 6,3 6,8 6,3 6,7 6,3 9,4 13,0 Robila Clay 17 2 30 4,0 18 14 1,8 8,6 39 4,6 5,4 5,7 5,8 6,8 6,6 9,7 13,3 Robila Sand 17 1 43 5,2 29 17 2,1 8,0 44 5,7 6,0 6,2 6,2 6,8 4,4 8,7 12,3 Robila Sand 17 2 58 7,2 12 27 3,3 8,2 50 6,1 6,7 6,3 6,5 6,7 4,1 9,0 12,4 Rodelika Clay 17 1 24 3,4 25 16 2,3 7,5 41 5,6 6,2 6,0 5,8 6,8 5,8 10,2 14,1 Rodelika Clay 17 2 39 5,6 16 18 2,6 8,5 45 5,3 6,4 6,5 6,2 6,9 5,8 9,8 14,3 Rodelika Sand 17 1 39 5,2 22 16 2,1 8,0 48 6,0 5,9 6,4 5,7 6,9 4,1 8,7 13,1 Rodelika Sand 17 2 64 8,1 11 26 3,2 7,3 45 6,1 7,0 6,6 7,0 6,9 3,4 9,1 12,6 Solvita Clay 17 1 42 5,1 37 19 2,3 7,7 41 5,4 5,5 5,5 5,0 6,7 6,2 9,2 12,2 Solvita Clay 17 2 59 7,0 11 31 3,7 8,4 52 6,2 6,3 6,0 6,5 6,6 6,2 9,0 11,8 Solvita Sand 17 1 64 7,0 33 28 3,1 5,7 47 8,1 5,7 5,8 6,1 6,8 3,3 8,0 11,2 Solvita Sand 17 2 85 8,9 6 43 4,5 6,7 44 6,5 5,3 5,5 6,3 6,8 3,1 8,1 10,5 Crofton F1 Clay 18 1 37 5,6 18 12 1,8 7,9 46 5,8 6,5 6,2 6,2 6,2 5,4 11,7 15,0 Crofton F1 Clay 18 2 42 5,4 7 15 1,9 7,1 52 7,3 6,3 5,8 6,4 6,4 5,7 9,7 12,7 Crofton F1 Sand 18 1 50 7,1 30 13 1,9 8,5 46 5,5 5,9 5,8 6,4 6,2 4,8 11,0 14,2 Crofton F1 Sand 18 2 60 7,2 16 11 1,4 6,9 43 6,2 5,6 5,7 5,9 6,4 4,5 10,1 12,2 Nerac F1 Clay 18 1 54 6,1 21 22 2,6 7,0 50 7,2 4,6 4,8 5,7 6,1 6,3 8,4 11,4 Nerac F1 Clay 18 2 66 7,0 9 32 3,3 6,6 49 7,4 5,9 4,9 5,8 6,3 6,1 7,9 10,5 Nerac F1 Sand 18 1 70 8,2 33 25 2,9 7,1 38 5,3 4,7 5,9 5,5 6,1 4,4 8,9 11,7 Nerac F1 Sand 18 2 77 8,3 49 11 1,2 6,8 46 6,8 5,9 5,9 6,0 6,4 4,4 8,9 10,7 Robila Clay 18 1 44 6,7 19 10 1,5 8,7 53 6,2 7,4 6,8 6,9 6,2 6,2 12,3 15,0 Robila Clay 18 2 54 7,4 7 16 2,1 8,0 50 6,3 6,8 7,2 6,9 6,4 6,1 10,8 13,7 Robila Sand 18 1 57 7,8 24 15 2,1 8,7 50 5,7 6,0 6,8 6,1 6,2 4,9 10,9 13,8 Robila Sand 18 2 68 8,2 18 18 2,1 6,2 48 8,1 5,1 5,4 5,5 6,4 4,3 10,0 12,0 Rodelika Clay 18 1 56 9,1 25 20 3,2 8,7 46 5,4 7,7 7,4 6,8 6,2 6,0 13,3 16,3 Rodelika Clay 18 2 58 8,1 8 25 3,5 7,2 38 5,3 7,8 7,4 7,3 6,5 5,5 10,9 13,9 Rodelika Sand 18 1 50 6,9 61 8 1,1 7,4 38 5,2 5,4 6,6 5,6 6,2 4,7 10,9 13,8 Rodelika Sand 18 2 63 8,1 50 8 1,0 7,2 42 5,8 7,1 7,0 6,3 6,5 4,3 10,6 12,9 Solvita Clay 18 1 64 7,9 15 21 2,6 6,8 47 7,0 5,6 6,6 5,7 6,2 6,1 9,9 12,4 Solvita Clay 18 2 84 8,9 6 35 3,7 6,6 51 7,8 5,6 5,9 5,9 6,5 5,9 8,3 10,6 Solvita Sand 18 1 77 8,9 45 21 2,5 6,9 47 6,9 5,4 6,2 5,4 6,2 4,1 9,0 11,5 Solvita Sand 18 2 84 8,8 37 18 1,9 5,0 48 7,5 6,7 5,5 6,4 6,5 4,2 9,1 10,6

Page 57: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

Annexes 57

Annex 1b: Average values for various traits related to yield, storability, taste and nutritional quality for pumpkin, measured on two locations and with two harvesting moments in 2017 and 2018. Variety Soil

type Year Har-

vest mo-

ment

Yield fresh

(tons/ha)

Yield dry matter

(tons/ha)

Stora-bility

Yield marke-ta-ble, after storage (tons/ha

Yield mar-ketable, af-ter storage

(tons/ha

Decrease in fresh

weight af-ter SDT

(%)

Decrease in dry

matter af-ter SDT

(%)

Ratio de-crease

dry/fresh weight,

after SDT

General taste ap-

pre-ciation

Sweet-ness

Aroma pH EC (mS/cm)

Brix (in %)

Dry mat-ter con-tent (in

%)

Bright Summer F1 Clay 17 1 24 3,6 90 10,4 1,6 8,2 37 4,5 4,7 4,2 5,1 7,6 6,3 8,3 15,2 Bright Summer F1 Clay 17 2 31 4,8 59 6,9 1,1 8,3 43 5,2 4,6 5,1 5,6 7,6 6,1 8,8 15,6 Bright Summer F1 Sand 17 1 * * * * * * * * * * * * * * * Bright Summer F1 Sand 17 2 * * * * * * * * * * * * * * * Fictor Clay 17 1 15 2,6 67 8,0 1,5 7,9 38 4,9 4,1 4,6 5,9 7,4 8,7 10,5 18,2 Fictor Clay 17 2 16 2,6 39 5,9 1,0 8,5 45 5,3 4,6 4,3 6,2 7,3 8,1 10,3 16,6 Fictor Sand 17 1 17 3,5 47 7,0 1,5 7,6 30 4,2 7,4 7,3 6,2 7,7 5,6 10,2 20,6 Fictor Sand 17 2 22 4,5 38 4,1 0,8 8,2 35 4,3 6,4 6,5 5,9 7,5 5,2 10,8 18,8 Orange Summer F1 Clay 17 1 19 3,3 88 10,4 1,8 8,5 34 4,0 4,1 4,2 4,8 7,7 7,0 9,7 17,7 Orange Summer F1 Clay 17 2 21 3,2 54 7,4 1,3 7,9 44 5,5 5,7 5,2 5,3 7,4 8,0 9,7 15,1 Orange Summer F1 Sand 17 1 25 4,6 80 3,2 0,6 8,7 31 3,5 6,9 6,1 5,9 7,7 4,9 9,1 18,2 Orange Summer F1 Sand 17 2 34 5,6 28 1,5 0,2 7,9 34 4,4 6,8 6,3 6,0 7,5 4,7 9,3 15,6 Red Kuri Clay 17 1 19 4,2 95 7,6 1,5 8,4 31 3,7 5,2 5,1 6,1 7,7 7,3 10,3 21,2 Red Kuri Clay 17 2 23 4,1 83 2,8 0,5 8,2 44 5,4 4,1 3,8 6,1 7,6 7,4 10,2 17,3 Red Kuri Sand 17 1 26 5,1 97 0,6 0,1 7,7 26 3,5 7,5 7,5 6,6 7,8 5,1 9,3 19,4 Red Kuri Sand 17 2 31 6,0 32 0,6 0,1 8,2 27 3,3 7,6 7,4 6,8 7,5 5,1 10,0 18,2 Uchiki Kuri Clay 17 1 18 3,3 56 9,2 1,7 8,3 42 5,1 3,6 3,9 5,8 7,6 8,1 10,2 17,9 Uchiki Kuri Clay 17 2 20 3,6 54 6,0 1,1 8,5 40 4,8 2,2 2,9 7,3 7,5 8,1 10,9 17,9 Uchiki Kuri Sand 17 1 23 4,3 63 6,3 1,2 8,1 33 4,2 6,3 6,3 6,1 7,6 5,3 9,5 19,2 Uchiki Kuri Sand 17 2 25 4,6 33 3,3 0,6 8,0 35 4,3 6,9 6,4 6,1 7,5 5,1 10,3 17,7 Bright Summer F1 Clay 18 1 30 3,5 12 13,8 1,6 6,1 29 4,8 3,1 2,1 6,3 7,6 9,9 8,2 11,7 Bright Summer F1 Clay 18 2 40 4,5 26 13,0 1,5 7,7 33 4,3 2,3 2,6 6,3 7,3 8,2 7,5 11,4 Bright Summer F1 Sand 18 1 28 3,5 70 4,4 0,5 7,4 37 5,1 5,1 5,7 5,7 7,5 7,3 9,4 12,4 Bright Summer F1 Sand 18 2 40 4,6 75 4,0 0,5 7,8 33 4,2 4,4 4,3 5,3 7,3 6,5 8,1 11,6 Fictor Clay 18 1 26 3,4 28 14,2 1,9 7,4 35 4,8 3,3 3,3 5,6 7,6 12,2 8,8 13,2 Fictor Clay 18 2 19 2,4 31 7,8 1,0 9,0 36 4,0 4,1 3,3 6,0 7,5 10,5 9,8 12,8 Fictor Sand 18 1 18 2,6 57 4,4 0,7 8,0 40 5,0 7,4 6,5 6,7 7,5 8,9 11,2 15,3 Fictor Sand 18 2 23 3,4 45 7,1 1,1 8,2 29 3,6 7,1 6,6 6,2 7,2 7,7 9,8 14,9 Orange Summer F1 Clay 18 1 29 4,2 23 12,5 1,8 7,9 29 3,7 5,8 5,4 6,4 7,6 10,3 9,5 14,4 Orange Summer F1 Clay 18 2 31 4,5 53 8,3 1,2 8,6 28 3,3 4,7 4,2 5,9 7,4 8,7 9,4 14,3 Orange Summer F1 Sand 18 1 27 3,7 98 0,3 0,0 8,4 44 5,3 5,1 4,9 5,4 7,5 7,6 11,3 14,0 Orange Summer F1 Sand 18 2 28 3,8 100 0,0 0,0 9,1 36 4,0 6,0 6,1 6,0 7,4 7,0 10,4 13,6 Red Kuri Clay 18 1 23 2,9 40 9,9 1,3 7,4 30 4,1 4,5 3,9 5,4 7,7 12,7 8,7 13,0 Red Kuri Clay 18 2 28 3,6 79 3,8 0,5 8,0 33 4,1 3,9 3,7 4,4 7,4 10,2 9,0 12,7 Red Kuri Sand 18 1 20 2,7 92 1,1 0,2 7,1 35 5,0 6,4 6,0 6,3 7,6 8,3 9,9 13,4 Red Kuri Sand 18 2 33 4,0 84 2,2 0,3 8,6 34 4,2 7,2 6,6 6,9 7,4 7,5 9,5 12,3 Uchiki Kuri Clay 18 1 28 3,8 35 11,3 1,5 6,9 30 4,4 5,2 4,9 5,3 7,7 11,4 8,9 13,7 Uchiki Kuri Clay 18 2 29 3,7 41 10,4 1,3 7,4 34 4,6 3,8 3,3 6,0 7,4 10,3 9,1 12,9 Uchiki Kuri Sand 18 1 25 4,0 75 3,9 0,6 8,4 31 3,7 7,4 6,4 6,4 7,7 8,2 11,2 16,0 Uchiki Kuri Sand 18 2 26 4,2 72 4,6 0,8 8,6 20 2,4 6,2 5,5 5,7 7,5 8,1 10,5 16,3

Page 58: A more holistic approach for breeding: including quality ... · 2017). In the project ‘Divers and Dichtbij’ (Diverse and Closeby) the retailer Estafette Odin, together with bio-dynamic

58 A more holistic approach for breeding: including quality from a value chain perspective

Annex 1c: Average values for various traits related to yield, storability, taste and nutritional quality for red cabbage, measured on two locations and with two harvesting moments in 2017 and 2018.. Variety Soil

type Year Har-

vest mo-

ment

Yield fresh

(tons/ha)

Yield dry matter

(tons/ha)

Stora-bility

Yield marke-ta-ble, after storage (tons/ha

Yield mar-ketable, af-ter storage

(tons/ha

Decrease in fresh

weight af-ter SDT

(%)

Decrease in dry

matter af-ter SDT

(%)

Ratio de-crease

dry/fresh weight,

after SDT

General taste ap-

pre-ciation

Sweet-ness

Aroma pH EC (mS/cm)

Brix (in %)

Dry mat-ter con-tent (in

%)

Granat Clay 17 1 55 4,3 60 18 1,4 5,5 6 1,1 6,4 6,5 6,3 6,8 4,9 6,6 7,9 Granat Clay 17 2 54 4,4 40 26 2,1 4,9 19 3,8 5,0 6,6 6,3 6,7 5,0 6,4 8,2 Granat Sand 17 1 * * 83 * * 5,8 9 1,5 6,2 5,8 5,8 7,0 4,8 6,6 8,2 Granat Sand 17 2 * * 63 * * 5,3 34 6,2 6,6 6,4 6,4 6,8 4,3 6,8 8,6 Marner Lagerrot Clay 17 1 24 2,0 53 7 0,6 5,6 7 1,3 * * * 6,7 5,0 6,9 8,2 Marner Lagerrot Clay 17 2 44 3,9 42 21 1,8 5,2 17 3,3 5,9 5,6 5,9 6,6 5,0 6,8 8,8 Marner Lagerrot Sand 17 1 * * 100 * * 5,0 11 2,1 * * * 6,9 4,8 6,8 8,2 Marner Lagerrot Sand 17 2 * * 84 * * 7,0 17 2,5 6,3 6,1 6,4 6,6 4,3 6,3 8,6 Rodinda Clay 17 1 45 3,7 54 16 1,4 5,2 3 0,5 7,2 6,3 6,5 6,8 5,2 7,0 8,4 Rodinda Clay 17 2 60 5,2 47 27 2,3 5,5 16 3,0 5,8 6,4 6,3 6,7 5,0 6,9 8,7 Rodinda Sand 17 1 * * 85 * * 5,5 10 1,8 5,8 6,2 6,2 6,9 4,6 6,7 8,3 Rodinda Sand 17 2 * * 66 * * 5,6 38 6,8 5,4 6,5 6,3 6,7 4,5 6,8 8,8 Roxy F1 Clay 17 1 22 1,9 31 10 0,9 5,5 6 1,1 5,6 6,8 5,9 6,8 5,1 7,0 8,5 Roxy F1 Clay 17 2 48 4,2 33 26 2,3 5,1 21 4,2 5,6 6,6 6,6 6,7 4,7 7,0 8,7 Roxy F1 Sand 17 1 * * 55 * * 5,3 10 1,9 5,6 6,3 5,8 6,9 4,5 7,0 9,0 Roxy F1 Sand 17 2 * * 58 * * 5,7 33 5,6 6,9 6,3 6,8 6,7 4,6 7,0 9,0 Travero F1 Clay 17 1 26 2,3 50 10 0,9 5,9 14 2,2 6,3 6,5 6,4 6,8 5,1 7,1 8,8 Travero F1 Clay 17 2 52 4,8 33 30 2,7 5,0 15 3,1 5,7 6,5 6,3 6,7 4,9 7,0 9,2 Travero F1 Sand 17 1 * * 79 * * 5,1 8 1,7 5,7 5,9 5,4 6,9 4,7 6,6 8,3 Travero F1 Sand 17 2 * * 74 * * 5,2 15 3,0 7,1 6,1 6,1 6,7 4,3 7,0 8,9 Granat Clay 18 1 * * 100 * * 7,5 22 2,8 6,3 6,3 6,4 6,4 6,1 7,5 9,7 Granat Clay 18 2 * * 100 * * 3,3 10 3,2 4,9 5,3 4,9 6,3 6,3 7,6 9,4 Granat Sand 18 1 36 3,6 100 0 0,0 7,2 26 3,5 5,4 5,5 5,3 6,4 5,9 7,6 9,9 Granat Sand 18 2 33 3,3 100 0 0,0 4,1 21 5,0 6,3 5,8 5,9 6,4 6,1 8,3 10,1 Marner Lagerrot Clay 18 1 * * 60 * * 7,1 9 1,2 6,0 6,1 6,0 6,3 6,1 7,6 10,0 Marner Lagerrot Clay 18 2 * * 70 * * 3,1 8 2,5 5,5 5,5 5,5 6,3 6,2 8,0 10,3 Marner Lagerrot Sand 18 1 21 2,2 89 2 0,2 8,4 35 4,2 4,9 5,6 5,7 6,3 5,9 8,0 10,5 Marner Lagerrot Sand 18 2 20 2,2 82 2 0,2 4,2 18 4,3 5,8 5,7 5,6 6,3 5,7 8,8 10,8 Rodinda Clay 18 1 * * 94 * * 7,0 12 1,7 5,4 6,0 5,8 6,3 6,2 8,0 10,4 Rodinda Clay 18 2 * * 89 * * 4,0 9 2,3 6,1 6,0 6,0 6,2 6,1 8,1 9,7 Rodinda Sand 18 1 47 4,9 100 0 0,0 8,6 25 3,0 6,6 6,1 6,3 6,3 6,1 8,3 10,5 Rodinda Sand 18 2 43 4,5 99 0 0,0 3,6 12 3,3 6,1 6,4 6,6 6,4 6,2 8,5 10,5 Roxy F1 Clay 18 1 * * 40 * * 6,7 17 2,5 5,5 6,1 6,0 6,3 5,9 8,1 10,4 Roxy F1 Clay 18 2 * * 36 * * 2,9 7 2,6 4,9 5,8 5,4 6,3 6,2 8,2 10,3 Roxy F1 Sand 18 1 43 4,4 87 4 0,4 8,0 36 4,5 5,8 5,8 6,0 6,3 5,6 7,8 10,1 Roxy F1 Sand 18 2 35 3,6 56 9 0,9 3,2 12 3,6 5,4 5,4 5,7 6,4 5,6 8,7 10,4 Travero F1 Clay 18 1 * * 56 * * 6,2 16 2,5 5,1 6,6 6,9 6,3 6,2 8,1 10,8 Travero F1 Clay 18 2 * * 37 * * 2,9 10 3,4 5,9 6,3 5,8 6,2 6,3 8,2 10,5 Travero F1 Sand 18 1 35 3,5 75 5 0,5 7,4 36 4,9 5,1 5,1 5,6 6,3 5,7 7,6 10,1 Travero F1 Sand 18 2 30 3,5 79 4 0,4 3,3 16 4,7 6,3 5,6 5,8 6,3 6,0 9,1 11,6