a modelling assessment of the physicochemical properties ... · 1 department of applied...

15
1 Supplementary data A modelling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Melissa Ines Gomis 1 , Zhanyun Wang 2 , Martin Scheringer 2 , Ian T. Cousins 1 , 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland

Upload: others

Post on 25-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

1""

Supplementary data

A modelling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances.

Melissa Ines Gomis1, Zhanyun Wang2, Martin Scheringer2, Ian T. Cousins1, 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland

Page 2: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

2""

Table A1. Chemical formula and SMILE string of the 22 fluorinated alternatives.

Compound’s number

Chemical formula SMILE

Fluorinated alternatives replacing PFOA Adona C7H2F12O4 C(F)(F)(C(F)(F)C(F)(F)OC(F)(F)F)OC(F)C(F)(F)C(=O)O GenX C6HF11O3 C(F)(F)(F)C(F)(F)C(F)(F)OC(F)(C(=O)O)C(F)(F)F

PFTECA1 C10HF18O5Cl C(F)(F)(Cl)C(F)(F)C(F)(F)OC(F)(F)C(F)(C(F)(F)F)OC(F)(C(F)(F)F)OC(F)(F)C(=O)O PFTECA2 C11HF20O5Cl C(F)(F)(Cl)C(F)(F)C(F)(F)OC(F)(F)C(F)(C(F)(F)F)OC(F)(F)C(F)(C(F)(F)F)OC(F)(F)C(=O)O

EEA C6HF11O4 C(F)(F)(F)C(F)(F)OC(F)(F)C(F)(F)OC(F)(F)C(=O)O 6:2 FTCA C7H3F13O2 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC(=O)O

Fluorinated alternatives replacing PFOS F-53 C8HF17O3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(F)(F)C(F)(F)S(=O)(=O)O

F-53B C8HClF16O3 C(F)(F)(Cl)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(F)(F)C(F)(F)S(=O)(=O)O EF-N C8HNF18O4 O=S(=O)(NS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F

Fluorinated alternatives replacing 8:2 FTOH 3:1 FTOH C4H3F7O2 C(F)(F)(F)C(F)(F)C(F)(F)CO 5:1 FTOH C6H3F11O C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CO

Fluorinated alternatives with unknown or other predecessors PFBSaPA C14H15PF18N2S2O7 C(F)(F)(C(F)(F)C(F)(F)C(F)(F)F)S(=O)(=O)N(C)CCOP(=O)(O)OCCN(C)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F

Novec C5F12O FC(F)(F)C(F)(C(=O)C(F)(F)C(F)(F)F)C(F)(F)F Forafac C13H17F13N2O3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCS(=O)(=O)NCCCN(C)(C)=O PFOTSi C11H13F13SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC[Si](OC)(OC)OC

PFOTSi -(OH) C10H11F13SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC[Si](O)(OC)OC PFOTSi -(OH)2 C9H9F13SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC[Si](O)(O)OC PFOTSi -(OH)3 C8H7F13SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC[Si](O)(O)O

RM720 C11H16F11SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(=O)NCCC[Si](OC)(OC)OC RM720-(OH) C10H14F11SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(=O)NCCC[Si](O)(OC)OC RM720-(OH)2 C9H12F11SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(=O)NCCC[Si](O)(O)OC RM720-(OH)3 C8H10F11SiO3 C(F)(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(=O)NCCC[Si](O)(O)O

Page 3: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

3""

Table A2. Physicochemical properties for the three compound groups (alternatives, non-fluorinated analogues, legacy PFASs). The maximum and minimum molecular volume observed for the different conformers are reported.

Compound’s abreviation

Log KAW a

Log KOW,dry a Log KOA a Log Klipw

b Log !!"!!!c Distribution ratio air-

water, Daw

Distribution ratio

octanol-water, Dow

Log PL (Pa)a Log Sw

a

(mol/l) Log So

a

(mol/l) pKa

d Molecular volume (Å3) a

min-max

Fluorinated alternatives

PFOA replacements: Adona -2,26 4,97 7,23 5,13* 1,78 -8,75 -1,52 1,75 -2,39 3,00 0,51 303,36-311,84 GenX -2,13 4,24 6,37 4,40* 1,05 -9,19 -2,82 2,59 -1,67 4,00 0,06 263,82-268,347

PFTECA1 -1,35 6,60 7,97 6,78* 3,41 -7,85 0,10 0,41 -4,63 3,00 0,50 458,33-467,54 PFTECA2 -1,24 6,79 8,02 6,97* 3,6 -7,89 0,14 0,11 -5,05 3,00 0,35 496,35-504,05

EEA -1,83 4,60 6,43 4,76* 1,41 -8,43 -2,00 2,31 -2,26 0,00 0,40 276,55-281,77 6:2 FTCA -2,44 3,94 6,38 4,09* 0,75 -6,62 -0,24 1,02 -2,93 0,00 2,82 306,95-308,25

PFOS replacements: F-53 -0,96 6,97 7,92 7,15* 3,22 -7,82 0,11 0,99 -4,45 0,00 0,14 394,96-404,14

F-53B -1,36 7,03 8,40 7,22* 3,28 -8,22 0,17 1,67 -4,36 0,14 407,91-413,61 PFBSaPA -7,50 5,44 12,94 5,61* 1,69 -14,4 -1,44 -6,80 -5,70 -0,33 0,12 443,61-450,50

8:2 FTOH replacements: 3:1 FTOH -1,98 1,83 3,82 1,96 3,49 -0,92 0,00 12,05 169,96-170,45 5:1 FTOH -1,24 2,98 4,22 3,12 2,80 -2,36 0,58 11,86 243,4-245,1

Alternatives with unknown or other predecessors: EF-N 2,40 8,19 4,79 8,39* 4,44 -12,63 -6,84 1,78 -8,01 0,08 -8,03 666,25-695,71 Novec 3,92 4,74 0,82 4,90 4,61 -5,70 -0,97 neutral 247,33-248,90 Forafac -10,57 0,92 11,49 1,04 -5,53 -1,36 -0,46 13,27 499,29-503,74 PFOTSi 1,23 5,80 4,58 5,97 1,44 -6,18 -0,41 neutral 424,18-441,55

PFOTSi -(OH) -1,05 4,91 5,97 5,07 0,67 -4,67 0,15 11,57 409,05-414,38 PFOTSi -(OH)2 -3,44 4,04 7,48 4,20 -0,35 -3,30 0,53 12,13 376,25-390,72 PFOTSi -(OH)3 -5,79 2,88 8,67 3,02 -1,21 -1,81 0,00 11,95 354,70-364,59

RM720 -3,12 3,93 7,04 4,08 -0,62 -3,90 -0,05 9,00 460,63-476,98 RM720-(OH) -5,35 3,49 8,83 3,64 -2,23 -3,28 0,11 11,83 433,51-443,51 RM720-(OH)2 -6,89 2,41 9,31 2,55 -2,82 -2,33 0,02 12,39 403,93-420,76 RM720-(OH)3 -8,48 1,61 10,09 1,74 -3,57 -1,49 0,07 12,21 378,58-387,52

Non-fluorinated analogues (NF-Corresponding fluorinated alternatives)

NF-Adona -6,86 0,25 7,11 1,08 0,25 0,62 4,34 204,99-209,54

Page 4: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

4""

NF-GenX -4,25 1,42 5,68 1,29 -0,86 0,61 3,72 172,33-175,08 NF-PFTECA1 -7,19 1,81 9,00 -2,46 -1,66 0,11 3,60 301,41-311,42 NF-PFTECA2 -7,88 1,79 9,67 -3,03 -1,55 0,19 3,64 326,62-336,86

NF-EEA -6,44 0,10 6,54 0,25 0,21 0,43 3,65 182,71-187,98 NF-F-53 -6,23 2,50 8,72 -2,27 -2,44 0,04 0,36 256,16-259,08

NF-F-53B -7,56 2,15 2,57 -4,89 -1,78 0,32 0,36 278,46-283,42 NF-PFOS -7,23 3,04 2,35 -2,20 -1,37 0,00 0,38 249,9

Legacy PFASs

PFOS -1,65 6,43 8,07 -12,5 -4,37 0,83 -3,92 - -0,21 381,77 PFOA -1,93 5,3 7,23 -8,43 -1,20 1,73 -2,73 - 0,14 322,47

8:2 FTOH -0,36 5,08 5,45 0,56 -5,61 -0,53 14,19 - a: Parameters estimated by COSMOtherm b: Log Klipw was estimated with the regression equation proposed by Endo et al. (2011): log Klipw=α log Kow + β, where α = 1.01 and β=0.12. * indicates the log Klipw that are only applicable to the undissociated fraction of the fluorinated alternatives. c: Estimated. The details on the calculation of !!"!! are presented below. d: pKa was estimated by SPARC.

Organic carbon-water partition coefficient for anionic species (!!"!!)

Following Tülp et al. (2009)’s methodology, the organic carbon-water partition coefficient of anionic species (!!"!!) was calculated for the 10

acidic fluorinated alternatives presented in this work. Because the functional group is one of the parameters determining !!" (Ahrens et al.,

2011), !!"!! of acidic alternatives containing carboxylate or sulfonate were derived from PFOA and PFOS respectively. Even though EF-N had a

different functional group than the other acidic fluorinated alternatives, PFOS was also used to calculate its !!"!! since its structure contains

sulfonamides. The ratios between the organic carbon-water partition coefficient of the neutral species (!!"!") and !!"!! of both PFOA and PFOS

were then used to calculate !!"!! of the corresponding acidic fluorinated alternatives following this relationship:

1 !!!!!!!!!!!!!!!!!!!!!!,!"!"

!!,!"!! = !!"#$/!"#$,!"!"

!!"#$/!"#$,!"!!

Page 5: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

5""

Where the left side of the equation represents the properties for the acidic fluorinated alternatives and the right side represents the properties of the

corresponding legacy PFASs. !!,!"!" and !!"#$/!"#$,!"!" were calculated from the log KOW estimated by COSMOtherm (i.e. Table A2) using the Seth

et al. (1999) equation:

2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!" = !!"*0.35

!!"#$/!"#$,!"!! was taken from the work of Higgins and Luthy (2006) who measured a !!"!! of 2.11 l/kg for PFOA and 2.68 l/kg for PFOS at pH 7.5

and 6.5 respectively. Using Equation 1 , the estimated ratios between !!"!" and !!"!! are 542 for PFOA and 1968 for PFOS.

Page 6: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

6""

Table A3. EPIsuite results for alternatives, PFOA, PFOS and 8:2 FTOH.

Compound’s abbreviation

Half-life in air with AOPWINa (hour)

Half-life in water with BIOWIN3b (hour)

Half-life in soil with BIOWIN3b (hour)

Fluorinated alternatives

PFOA replacements:

Adona 739,55 5760 5760 GenX 740,54 17280 17280

PFTECA1 740,54 17280 17280 PFTECA2 740,54 17280 17280

EEA 740,54 5760 5760 6:2 FTCA 726,57 17280 17280

PFOS replacements:

F-53 2750,58 17280 17280 F-53B 2750,58 17280 17280

PFBSaPA 27,06 17280 17280

8:2 FTOH replacements:

3:1 FTOH 2026,75 2880 2880 5:1 FTOH 2026,75 5760 5760

Alternatives with unknown or other predecessors:

EF-N -* 17280 17280 Novec -** 17280 17280 Forafac 11,23 17280 17280 PFOTSi 102,14 17280 17280

PFOTSi -(OH) 60,23 17280 17280 PFOTSi -(OH)2 42,72 17280 17280 PFOTSi -(OH)3 33,10 17280 17280

RM720 38,99 17280 17280 RM720-(OH) 30,83 17280 17280 RM720-(OH)2 25,49 17280 17280 RM720-(OH)3 21,71 17280 17280

Non-fluorinated analogues (NF-Corresponding fluorinated alternatives) NF-Adona 14,81 360 360 NF-GenX 19,25 208,08 208,08

NF-PFTECA1 8,96 360 360 NF-PFTECA2 6,83 360 360 NF-PFDECA 15,41 360 360

NF-F-53 15,10 360 360 NF-F-53B 15,02 900 900 NF-PFOS 34,75 208,08 208,08

Legacy PFASs PFOS 2750,58 17280 17280 PFOA 740,54 17280 17280

8:2 FTOH 92,12 17280 17280 a: Parameters set as 5 × 105 molecules (OH radicals) /cm3 (Atkinson, 1985). b: Biowin 3 considers the complete breakdown of the chemical. Biodegradation in water and soil are assumed to be identical and to occur mainly under aerobic conditions. *: Could not be predicted. Like F-53(B), it is unlikely that this molecule get attacked by hydroxyl radicals. The same half-life as F-53(B) has been therefore used in the OECD tool. **: Could not be predicted. The half-life of 235 hours proposed by Jackson et al. (2011) was used in the OECD tool.

Page 7: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

"

7""

Table A4. Estimated (EPIsuite) and experimental second order degradation rate constants of several fluorinated alternatives and PFASs. Compound’s name/number

Atmospheric degradation rate constant (cm3/molecule * s) Esimated (cm3/(molecule * s))

Experimental Rate constant Chemical reaction involved

Reference

3:1 FTOH 1,90E-13 1,07*10-13

Second (cm3/(molecule * s))

Indirect Photolysis

Bravo et al, 2010

5:1 FTOH 1,90E-13 1*10-13

Second (cm3/(molecule * s))

Indirect Photolysis

Hurley et al., 2004

Novec - 3,1 * 10-6 to 8,2*10-7/s

First (s-1)

Direct photolysis Jackson et al., 2011

MeFBSE 1,6*10-11 5,40*10-12

Second (cm3/(molecule * s))

Indirect Photolysis

D’eon et al., 2006

EtFBSA 8,85*10-12 3,74 *10-13 Second (cm3/(molecule * s))

Indirect Photolysis

Martin et al., 2006

PFOA 7,0*10-13 1,69*10-13 Second (cm3/(molecule * s))

Indirect Photolysis

Hurley et al., 2004

8:2 FTOH 4,18*10-12

1,07 * 10-12 Second (cm3/(molecule * s))

Indirect Photolysis

Ellis et al., 2003

Page 8: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

"

8""

Table A5. POV, CTD and TE of alternatives, PFOA, PFOS and 8:2 FTOH.

Compound’s abbreviation

Overall Persistence Pov (days)

Critical Travel Distance CTDb (Km)

Travel Efficiency TE (%)

Fluorinated alternatives

Potential strong acidsa

Adona 346,25 592,68 0,0070 GenX 1038,74 1745,31 0,0025

PFTECA1 1038,74 1739,67 0,0554 PFTECA2 1038,74 1736,60 0,0506

EEA 346,25 592,69 0,0146 6:2 FTCA 1038,67 1745,19 0,8797

F-53 1038,74 1741,66 0,0595 F-53B 1038,74 1741,15 0,0237 EF-N 1038,74 1687,10 9,25E-7

PFBSaPA 1038,74 1745,23 1,22E-06

Potential weak acidsa

3:1 FTOHc 197,70 41179,08 163,729 5:1 FTOHc 273,13 69066,89 91,819

Novecc 135,59 4864,48 0,01353 Forafac 1038,74 1745,33 0,000385 PFOTSi 130,96 2118,65 0,002878

PFOTSi -(OH) 127,40 1249,45 0,02022 PFOTSi -(OH)2 384,68 840,44 0,577887 PFOTSi -(OH)3 1031,26 1732,79 0,738714

RM720 268,59 787,63 0,388535 RM720-(OH) 1012,99 1703,44 0,531366 RM720-(OH)2 1038,57 1745,76 0,342069 RM720-(OH)3 1038,74 1745,30 0,014071

Legacy PFASs PFOS 1038,74 1745,29 1,25E-06 PFOA 1038,74 1745,04 0,0146

8:2 FTOH 351,952 1910,71 0,011589 a: according the pKa estimated with SPARC. b: values in italic indicate that the transport media is water. Normal values indicate a transport through air. c: experimental half-lives in air were used as input parameters (see table A3).

Page 9: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

"

9""

Figure A6. Monte Carlo analysis for A) potential strong acids alternatives and B) potential weak acids alternatives. The uncertainty contribution of the five input parameters (log KAW, log KOW, t1/2,A , t1/2,W and t1/2,S to the final outputs (POV, CTD, TE) is given for each fluorinated alternatives.

A)

B)

"

0%"

20%"

40%"

60%"

80%"

100%"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

Adona" GenX" PFTECA1" PFTECA2" EEA" 6:2"FTCA" F<53" F<53B" EF<N" PFBSaPA"

0%"

10%"

20%"

30%"

40%"

50%"

60%"

70%"

80%"

90%"

100%"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

POV"

CTD" TE"

3:1"FTOH"5:1"FTOH" Novec" Forafac" PFOTSi" PFOTSi"<(OH)"

PFOTSi"<(OH)2"

PFOTSi"<(OH)3"

RM720" RM720<(OH)"

RM720<(OH)2"

RM720<(OH)3"

Page 10: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

"

10""

Figure A7. COSMOtherm σ-profiles of A) PFESAs, their non-fluorinated analogues and PFOS

and B) PFECAs, their non-fluorinated analogues and PFOA.

!

Page 11: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

"

11""

The local polarization charge-density, σ, occurring at the molecular surface determines the interaction

energies between two molecules. COSMOtherm provides for each molecule a σ-profile depicting the

amount of surface in the molecule, p(σ), corresponding to a given σ-value. The formation of H-bonds

starts when σ is ≥ ± 0,79 e/Å2 (Klamt, 2005), with strong H-bond formation as σ is ≥ ± 1e/Å2. Negative σ-

values correspond to positively polar regions (H-bond donor) while positive σ-values indicate a

negatively polarization (H-bond acceptor). Non-polar molecule with dominating Van der Waals forces

have a pic at σ = 0.

The presence of fluorine atoms in the molecule decreases the surface area that is polar as well as the

charge density of the polar moieties. Strong H-bonds observed for SO3H and CO2H in the non-fluorinated

analogues becomes weaker (< 1e/Å2) and weak H-bonds carried out by ethers and chlorine disappears.

Page 12: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

"

12""

Table A8. Effect of pKa variability on the predicted POV, CTD and TE. Ratios between POV, CTD and TE (see Table A5) calculated with the pKa’s from SPARC (Table A2) and POV, CTD and TE calculated with 1) a pKa of -1, and 2) a pKa of 4.

1) pKa = -1 2) pKa = 4

Pov,pKa-1 / Pov,sparc

CTDpKa-1 / CTDsparc

TEpKa -1 / TEsparc

Pov,pKa4 / Pov,sparc

CTDpKa4 / CTDsparc

TEpKa4 / TEsparc

Adona 1,00 1,00 0,03 1,00 3,32 1,11E+03

GenX 1,00 1,00 0,12 0,99 1,30 3,64E+03

PFTECA1 1,00 1,00 0,03 0,96 2,15 2,95E+02

PFTECA2 1,01 1,01 0,04 0,96 2,31 3,59E+02

EEA 1,00 1,00 0,04 0,99 4,53 7,00E+02

6:2 FTCA 1,00 1,00 0,00 1,00 1,00 2.12e-5

F-53 1,00 1,00 0,07 0,98 3,69 7,17E+02

F-53B 1,00 1,00 0,07 0,99 2,58 9,97E+02

PFBSaPA 1,00 1,00 0,08 1,00 1,00 7,57E+03

EF-N* 1,00 1,03 6 877 0,45 32,19 1,59E+07

* EF-N has the lowest estimated pKa among the acidic alternatives (-8.03). The large difference in the estimated CTDs and TEs, as shown in the table, is the result of a larger pKa gap between the SPARC value and the arbitrary values -1 and 4 compared to the other acidic alternatives.

CTD and TE are highly sensitive to changes in pKa, especially when the pKa is increased to 4 and enters

the environmental pH range. POV is relatively insensitive to changes of pKa. The alternatives that have a

lower estimated half-life in water and an estimated log KAW higher than -2 (see Table A2) become 2 to

4.5 times more mobile than with a pKa lower than 1. Examples are Adona, PFTECA1, PFTECA1, EEA, F-

53 and F-53B. Since these substances partition preferably in air as they become neutral, they are

transported more rapidly than if distributed to water. Also, when the degradation half-life is higher in air

than in water, the molecules are able to cover larger distances before being degraded. TE decreases with

lower pKa,, while it increases 700 times or more with higher pKa. As a consequence of the protonation of

strong acids when pKa increases, log KOC, which is linked to log KOW, increases and favors partitioning to

suspended particles.

Page 13: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

13##

Table A9. Comparison with the legacy PFASs and suggestions on future experimental studies for each of the fluorinated substances. Suggested experimental studies on environmental fate are defined as priority according to the Monte Carlo analysis and the parameters with high uncertainty. The suggested bioaccumulation studies are defined as priority for the neutral fluorinated alternatives if their estimated log KOW is above 3.5 and if their structure suggest potential internal metabolism. Bioaccumulation studies for all ionic fluorinated alternatives are defined as priority due to the knowledge gap on their proteinophilic behavior.

Comparison of estimated properties to legacy PFASs Suggestions on future experimental studies

Physicochemical

properties

Pov CTD TE Environmental fate Bioaccumulation

physicochemical

properties

(bio)degradation

Alternatives to

PFOA

Adona similar KAW as PFOA

similar KOW than

PFOA

lower than PFOA lower than PFOA

lower than PFOA

priority

• pKa

• KAW

• KOC

priority

• half-life in water

priority

• elimination kinetics

• tissue distributions

• protein-binding kinetics

• membrane-water partition

constant

GenX similar KAW as PFOA

lower KOW

same as PFOA same as PFOA PFTECA1 similar KAW as PFOA

higher KOW than PFOA

PFTECA2 similar KAW as PFOA

higher KOW than PFOA higher than PFOA

EEA similar KAW as PFOA

lower KOW lower than PFOA lower than PFOA similar as PFOA

6:2 FTCA Higher KAW as PFOA

lower KOW same as PFOA same as PFOA higher than PFOA

Alternatives to

PFOS

F-53 similar as PFOS

same as PFOS same as PFOS

higher than PFOS F-53B

PFBSaPa lower than PFOS lower than PFOS

Priority

• half-life in water

• half-life in air

Alternatives to 8:2

FTOH

3:1 FTOHs

lower KOW and KAW lower than 8:2

FTOH

higher than 8:2

FTOH

higher than 8:2

FTOH

low priority# priority

• half-life in water

data available for half-life in air

low priority

5:1 FTOHs

Page 14: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

#

14##

Alternatives

replacing certain

POSF- and

fluorotelomer-

based substances

EF-N similar KAW as PFOS same as

PFOA/PFOS

same as

PFOA/PFOS

lower than

PFOA/PFOS

priority

• pKa,

• KAW

• KOC

priority

• half-life in water

• half-life in air

priority

• elimination kinetics

• tissue distributions

• protein-binding kinetics

• membrane-water partition

constant

Forafac lower Kaw than PFOA same as

PFOA/PFOS

same as

PFOA/PFOS lower than PFOA

priority

• KOW

• KAW

priority

• half-life in water

low priority

Novec

higher KOW and KAW

than PFOS/PFOA

lower than

PFOA/PFOS

higher than

PFOA/PFOS similar to PFOA

low priority priority

• half-life in water

data available for half-life in air

priority

• KOW, KlipW

PFOTSi

lower than

PFOA/PFOS

higher than

PFOA/PFOS

higher than PFOA

priority

• half-life in water

• half-life in air

priority

• KOW, KlipW

• internal metabolism and

possible fluorinated

metabolites

PFOTSi-

(OH)

similar as

PFOA/PFOS priority

• half-life in air

• half-life in soil PFOTSi-

(OH)2

lower than

PFOA/PFOS

PFOTSi-

(OH)3 same as

PFOA/PFOS

same as

PFOA/PFOS

priority

• half-life in water

• half-life in air

priority

• internal metabolism and

possible fluorinated

metabolites

RM720 lower than

PFOA/PFOS

lower than

PFOA/PFOS

priority

• half-life in air

• half-life in soil

priority

• KOW, Klipw

• internal metabolism and

possible fluorinated

metabolites

RM720-

(OH)

same as

PFOA/PFOS

same as

PFOA/PFOS

priority

• half-life in water

• half-life in air RM720-

(OH)2

priority

• internal metabolism and

possible fluorinated

metabolites

RM720-

(OH)3

Similar KAW as PFOA similar as PFOA priority

• KAW

priority

• half-life in water

Page 15: A modelling assessment of the physicochemical properties ... · 1 Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden 2 Institute for

15##

References:

Ahrens, L., L. Yeung, et al. (2011). "Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment." Chemosphere 85(5), 731-737.

Bravo, I., Y. Diaz-de-Mera, et al. (2010). "Atmospheric chemistry of C4F9OC2H5 (HFE-7200), C4F9OCH3 (HFE-7100), C3F7OCH3 (HFE-7000) and C3F7CH2OH: temperature dependence of the kinetics of their reactions with OH radicals, atmospheric lifetimes and global warming potentials." Physical Chemistry Chemical Physics 12(19): 5115-5125.

D'Eon, J. C., M. D. Hurley, et al. (2006). "Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH." Environmental Science & Technology 40(6): 1862-1868.

Ellis, D. A., J. W. Martin, et al. (2003). "Atmospheric lifetime of fluorotelomer alcohols." Environmental Science & Technology 37(17): 3816-3820.

Higgins, C. P. and R. G. Luthy (2006). "Sorption of perfluorinated surfactants on sediments." Environmental Science & Technology 40(23), 7251-7256.

Hurley, M. D., T. J. Wallington, et al. (2004). "Atmospheric chemistry of fluorinated alcohols: Reaction with Cl atoms and OH radicals and atmospheric lifetimes." Journal of Physical Chemistry 108(11): 1973-1979.

Jackson, D. A., C. J. Young, et al. (2011). "Atmospheric degradation of perfluoro-2-methyl-3-pentanone: photolysis, hydrolysis and hydration." Environmental Science & Technology 45(19): 8030-8036.

Klamt, A. (2003). "COSMO-RS: A novel bridge from quantum chemistry to fluid phase thermodynamics." Abstracts of Papers of the American Chemical Society 226: U432-U433.

Martin, J. W., D. A. Ellis, et al. (2006). "Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide." Environmental Science & Technology 40(3): 864-872.

Seth, R., D. Mackay, et al. (1999). "Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals." Environmental Science & Technology 33(14), 2390-2394.

Tülp, H. C., K. Fenner, et al. (2009). "pH-dependent sorption of acidic organic chemicals to soil organic matter." Environmental science & technology 43(24), 9189-9195.