a low energy demand scenario for meeting the 1.5 °c target

26
A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies Volker Krey IAMC Annual Meeting 2018, Seville, 13-15 November 2018

Upload: others

Post on 04-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies

Volker Krey

IAMC Annual Meeting 2018, Seville, 13-15 November 2018

A people-centredapproach to limiting global warming to 1.5°C

Volker Krey

IAMC Annual Meeting 2018, Seville, 13-15 November 2018

Credits

https://doi.org/10.1038/s41560‐018‐0172‐6

Illustrative Model Pathways to 1.5°C

Source: IPCC SR1.5, Figure SPM.3b

P3: “Conventional wisdom”P1: LED Scenario

SSP2‐based

2 Perspectives on Meeting 1.5°CGHG Emissions Profiles

Overshoot assupply‐side optionsscale slowly, but need massivelong‐term deploymentfor high demand scenarios

Negative emissions, e.g. BECCS

Rapid Transformationdriven by end‐use changes(efficiency & behavior)

“Grand Restoration”sink enhancement viareturning land to nature

Granular, distributed supply sideoptions lead the way for scalingother mitigation options, rapid changeunder low demand

Inertia in policy,social & technologychange

“Conventional wisdom” 1.5°C IAM model run LED Scenario narrative and IAM run

LED Highlights

• High levels of energy services• Assuring “decent standards of living” for all (well above

access and poverty thresholds)• (technological & service) efficiency driven “Peak” Energy• Lowest demand scenario (<250 EJ FE by 2050) in

published scenario literature• End-use transformations (efficiency, electrification) drive

upstream decarbonization• Stays below 1.5°C without negative emission

technologies• Significant SDG synergies (assessed for six SDGs)

New Trends in Social and Technological Change

• Changing consumer preferences (e.g. diets)• Generational change in materialism

(service rather than ownership)• New business models

(sharing & circular economy)• Pervasive digitalization and ICT

convergence• Rapid innovation in granular technologies

and integrated digital services

Social Change: Change in Car Driving Licenses held by YoungTrends: near-term: <50%, long-term: ~0?

Note in particular much larger prevalence of declining  driving license ownershipand shift from growth to decline trends in Austria and Israel around 2008/2010(for Finland, Netherlands, Spain no more recent data available to uncover similar trend breaks)

Location year a year b age group % of age group withdrivers license changeyear a year b %‐points

Austria 2 2010 2015 17‐18 39 28 ‐11Germany 2008 2017 18‐24 71 66 ‐5Great Britain 1995 2008 17‐20 43 36 ‐7Great Britain 1995 2008 21‐29 74 63 ‐11Israel 2 2005 2015 17‐18 34 30 ‐4Israel 2 2009 2016 19‐24 65 64 ‐1Japan 2001 2009 16‐19 19 17 ‐2Japan 2001 2009 20‐24 79 75 ‐4Norway 1991 2009 19 74 55 ‐19Norway 1991 2009 20‐24 85 67 ‐18Sweden 1983 2008 19 70 49 ‐21Sweden 1983 2008 20‐24 78 63 ‐15Switzerland 1994 2015 18‐24 71 61 ‐10USA 1983 2014 18 80 60 ‐20USA 1983 2014 19 86 69 ‐17USA 1983 2014 20‐24 91 77 ‐14

Location year a year b age group % of age group withdrivers license changeyear a year b %‐points

Austria 1 2006 2010 17‐18 32 39 7Finland 1983 2008 18‐19 37 68 31Finland 1983 2008 20‐29 51 82 31Israel 1 1983 2008 19‐24 42 64 22Israel 1 1983 2008 25‐34 62 78 16Netherlands 1985 2008 18‐19 25 45 20Netherlands 1985 2008 20‐24 64 64 0Spain 1999 2009 15‐24 37 50 13

Data sources: Sivak & Schottle, 2011; Delbosc & Currie, 2013; National Statistics, 2017 for Austria, Germany, Israel, Switzerland

Mobility: 'usership‘ vs. ownership

lumpylarge unit sizehigh unit costindivisiblehigh risk

granularsmall unit sizelow unit costmodularlow risk

TechnologyUnit Size

Source: Grubler,ESA class material

y = ‐0.02ln(x) + 0.0822 R² = 0.33179

‐40%

‐30%

‐20%

‐10%

0%

10%

20%

30%

40%

1.E‐04 1.E‐03 1.E‐02 1.E‐01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

De‐scaled

Learning Ra

te (C

umula

ve Num

ber o

f Units)

Average Unit Size (MW)

'De‐scaled' Learning Rates (per doubling of cumula ve numbers of units)

Healey, S. (2015). Separating Economies of Scale and Learning Effects in Technology Cost Improvements. IR-15-009.International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.

smaller units

‐> more units

‐> more opportunities to experiment

‐> more learning

geothermal

nuclear

Granularity Benefits: faster learningHigher Learning with Smaller Unit Scale after Accounting for Economies of Scale

2000

2200

2400

2600

2800

3000

3200

LED2020 LED2050

Food ‐ kcal/day/capita

0

5

10

15

20

25

30

35

LED2020 LED2050

Thermal comfort ‐ m2/capita

0

5

10

15

20

25

30

LED2020 LED2050

Consumer goods ‐ items/capita

North2020

Decent Standards of Living

0

2000

4000

6000

8000

10000

12000

LED2020 LED2050

Mobility ‐ passenger‐km/year/capitaNorth2020

Decent Standards of Living

North2020

Decent Standards of Living

North2020

Decent Standards of Living

Granularity Benefits: equal distribution per capita energy services in the global South

Updated (Malmodin & Lundén, 2018; Bento, 2016) from Grubler et al, 2018. Pictorial representation based on Tupy, 2012.

Resource Impacts of Digital Convergence

449 Watts

72 Watts

Power

Stand-byenergy use

1706 kWh

26 kg

Embodied energy

Weight

scenario narrative

drivers of change

food

mobility

thermalcomfort

consumer goods industry & 

manufacturing

freighttransport

commercial buildings

bottom‐up quantification of activity and energy intensity

integrated modelling of system consequences

MESSAGEix(energy-

system model)

GLOBIOM (land-use

model)

MAGICC (climate)

energy supply & land‐use

climate& health

GAINS (air pollution)

‐ activity levels ‐‐ energy intensities ‐

‐ global North vs South ‐

‐ discount rate ‐‐ technology costs ‐‐ CCS constraints –

‐ cum. emission budget ‐

downstream … then upstreamPROCESS

METHOD & TOOLS

ASSU

MPT

IONS

‐ probabilistic climate

sensitivity ‐‐mortality ‐

‐ digitalisation ‐‐ end‐use diversity ‐

‐ efficiency standards ‐

LEDFinal Energy DemandCompared for 2050:

Scenarios with comparable climate outcomes:

IPCC Shared Socioeconomic Pathway 2 (SSP2)max. 1.9 W/m2 radiative forcing

Global Energy Assessment (GEA) Efficiency scenario

International Energy Agency (IEA)Below 2 Degrees Scenario (B2DS)

Greenpeace A[R]evolution scenario

LED: Factors of Change 2050/2020 GlobalMore services & amenities: Less resource inputs

LED Global Thermal Comfort (rel. to 2020): Activity x 1.5, Intensity ÷ 6.3, Energy ÷ 4.3

Netherlands: Energiesprongprefabricated thermal retrofits, net‐zero housing

Mexico: NAMAlow energy social housing projects

Austria: RaiffeisenFirst Passivhausstandard office tower & retrofit

Structure of demand remains stable

Rapid electrification and decarbonization

Rapid diffusion of renewable energy

Main Characteristics of Transitions• Scaled-down demand allows faster

systems transitions:– faster electrification– higher market share of renewables:

8% (2020), 32% (2030), 60% (2050)– with lower rates of absolute capacity additions

up to 20-50%/yr historically, 15% (2020-2030), 5-10% (>2040)

• Outperforming other scenarios on most SDG dimensions

Integration of SDGs via Goal 12 addresses 12 SDGs

LED

Pre-mature Deaths from Air Pollution

0

1

2

3

4

5

2015 2015 with2050's agestructure

SSP2 1.5°C LED LED with MFR only naturalPM sources

Million pe

ople / year

1.4 Million deaths/year avoided

MFR= maximum feasible emissions reductions (near‐term technology) Source: GAINS model

Conclusion• Demand (technological and service efficiency)

key for SDGs and 1.5°C• Transition acceleration possible with end-use &

granularity focus• Global scenario quantification informed by recent

trends and advances in transition modeling• Implications for Policy Makers: Forget global climate

policy architecture, actor coalitions with urban citizens and farmers, challenge: systemic incentives (land-use, transport, infrastructure)

• Implications for Business: New opportunities with service-oriented business models, building efficiency, granular end-use technology innovation

Thank You!

Volker KreyIIASA Energy Programhttp://www.iiasa.ac.at 

[email protected]