a global comparison of ekman pumping from satellite ... · a global comparison of ekman pumping...

2
A Global Comparison of Ekman Pumping From Satellite Scatterometers and Ocean Data Assimilation Estimates Paulo S. Polito INPE - National Institute for Space Research, Brazil Tong Lee and Ichiro Fukumori Jet Propulsion Laboratory/Caltech, USA Motivation Ekman pumping, a form of wind-driven upwelling, plays important roles in upper- ocean dynamics, thermodynamics, and biology as well as in boundary-layer meteorology. Inverse models, such as those of ECCO (Estimation of the Circulation and Cli- mate of the Ocean, http://www.ecco-group.org/),estimate wind forc- ing through ocean data assimilation. Ekman pumping obtained from scatterometer is compared with those derived from ECCO models which assimilate TOPEX/POSEIDON (T/P) derived sea level anomalies using the adjoint and Kalman filter/smoother methods. Differences in Ekman pumping are quantified and changes due to the assimila- tion are analyzed to identify the spectral area over which it has a significant impact. The comparison also highlights aspects where the ECCO model and assimilation schemes need improvement. Objectives The objectives of this study are to: 1. Analyze the difference between the Ekman pumping estimates from different model designs: (a) forward (simulation), (b) adjoint (assimilation) (c) Kalman filter/smoother, 2. Compare the sea surface height anomaly from T/P with that obtained from the models. 3. For each model/data comparison analyze the difference in several areas of the period–wavelength spectrum associated to known dynamical phenomena. 4. Suggest possible model improvements based on the analysis above. Introduction The Ekman pumping w e is an estimate of wind–driven vertical velocity, directly related to the curl of the wind stress: w e = ~ ∇× ~ τ ρf This is a first order estimate that works within the constraints of the Ekman theory. The wind stress is estimated from satellite scatterometer wind vectors, accurate to approximately 1ms -1 and 20 . Estimates of sea surface height anomaly from the T/P altimeter are assimilated by the adjoint and Kalman filter/smoother models. In turn, the models yield the Ekman pumping fields that would be necessary to create the assimilated sea surface height anomaly. These Ekman pumping fields are compared to the scatterometer measurements. This comparison is performed within several areas of the zonal-temporal spectrum. Data and Methods The altimeter–derived sea surface height anomaly η was obtained from the WOCE TOPEX/POSEIDON data distributed by JPL/PODAAC. The interpolated η o is decomposed through a series of zonal–temporal finite im- pulse response (2D FIR) filters [2, 3] in the following components (numeric subscripts indicate the period in months): η o = η t + |{z} Basin η 24 + η 12 + η 6 + η 3 + | {z } Rossby waves η 1 + |{z} TIWs η K 6 + η K 3 + η K 1 + | {z } Kelvin waves η E + η r | {z } eddies From ERS-1/2 scatterometer winds the stress τ is calculated via LKB method [1] using SST fields from the Reynolds dataset [4] and water vapor estimates from SSMI. Through the analysis of the η components we obtain the filter parameters (phase speed and wavelength) used to decompose the Ekman pumping (w e ) fields. This way both the Ekman pumping and the sea surface height components refer to the same spectral area, associated with specific dynamical regimes. “Simulation” refers to the model run without T/P data assimilation, “Assimi- lation”refers to the model run with T/P data assimilation, and “Kalman” refers to the Kalman filter/smoother model. Description of the Models Adjoint The model referred to as Model-X uses the X method and assumes that Y. The Model-X run in this study uses the following set-up: a, b, c, etc. As a consequence we expect Model-X to reproduce the following aspects of the ocean physics. Forward The model referred to as Model-X uses the X method and assumes that Y. The Model-X run in this study uses the following set-up: a, b, c, etc. As a consequence we expect Model-X to reproduce the following aspects of the ocean physics. Kalman The model referred to as Model-X uses the X method and assumes that Y. The Model-X run in this study uses the following set-up: a, b, c, etc. As a consequence we expect Model-X to reproduce the following aspects of the ocean physics. Results Pacific 2.5 N - Comparison of η and w e -300 -200 -100 0 100 200 300 Kalman Ekp t (10 -7 m/s) 130°E 180° 130°W 80°W Assimilated Ekp t (10 -7 m/s) 130°E 180° 130°W 80°W Simulated Ekp t (10 -7 m/s) 130°E 180° 130°W 80°W ERS Ekp t (10 -7 m/s) 130°E 180° 130°W 80°W Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 Kalman η t (mm) Assimilated η t (mm) Simulated η t (mm) pac 2.5N - T/P η t (mm) Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 -150 -100 -50 0 50 100 150 -250 -200 -150 -100 -50 0 50 100 150 200 250 -250 -200 -150 -100 -50 0 50 100 150 200 250 -100 -50 0 50 100 -100 -50 0 50 100 -200 -150 -100 -50 0 50 100 150 200 -150 -100 -50 0 50 100 150 Figure 1: Zonal–temporal (Hovmoller) diagrams for the basin–scale, non–propagating components (η t , w et ) for the Pacific at 2.5 N. The top row shows sea–surface height anomalies (in mm) and the bottom row shows Ekman pump- ing (in m/s). The left column shows the FIR filtered satellite data, the middle column shows the simulated model data, and the right column shows the assimilated model data. Pac 2.5 N R η,s R η,a R η,k R w,s R w,a R w,k 0.44 0.23 0.23 0.53 1.13 0.68 σ η,s σ η,a σ η,k σ w,s σ w,a σ w,k 0.80 0.95 0.95 0.72 -0.28 0.54 C η,s C η,a C η,k C w,s C w,a C w,k 0.96 0.97 0.98 0.87 0.80 0.87 -60 -40 -20 0 20 40 60 Kalman Ekp 12 (10 -7 m/s) 130°E 180° 130°W 80°W Assimilated Ekp 12 (10 -7 m/s) 130°E 180° 130°W 80°W Simulated Ekp 12 (10 -7 m/s) 130°E 180° 130°W 80°W ERS Ekp 12 (10 -7 m/s) 130°E 180° 130°W 80°W Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 Kalman η 12 (mm) Assimilated η 12 (mm) Simulated η 12 (mm) pac 2.5N - T/P η 12 (mm) Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 -40 -30 -20 -10 0 10 20 30 40 -50 -40 -30 -20 -10 0 10 20 30 40 50 -40 -30 -20 -10 0 10 20 30 40 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -60 -40 -20 0 20 40 60 -40 -30 -20 -10 0 10 20 30 40 Figure 2: Similar to Figure 1 for the components (η 12 , w e12 ) associated to annual Rossby waves. Pac 2.5 N R η,s R η,a R η,k R w,s R w,a R w,k 0.51 0.35 0.35 0.72 1.48 0.64 σ η,s σ η,a σ η,k σ w,s σ w,a σ w,k 0.74 0.88 0.87 0.48 -1.19 0.59 C η,s C η,a C η,k C w,s C w,a C w,k 0.88 0.94 0.96 0.77 0.71 0.88 -40 -30 -20 -10 0 10 20 30 40 Kalman Ekp 1 (10 -7 m/s) 130°E 180° 130°W 80°W Assimilated Ekp 1 (10 -7 m/s) 130°E 180° 130°W 80°W Simulated Ekp 1 (10 -7 m/s) 130°E 180° 130°W 80°W ERS Ekp 1 (10 -7 m/s) 130°E 180° 130°W 80°W Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 Kalman η 1 (mm) Assimilated η 1 (mm) Simulated η 1 (mm) pac 2.5N - T/P η 1 (mm) Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 -15 -10 -5 0 5 10 15 -30 -20 -10 0 10 20 30 -15 -10 -5 0 5 10 15 -60 -40 -20 0 20 40 60 -30 -20 -10 0 10 20 30 -150 -100 -50 0 50 100 150 -30 -20 -10 0 10 20 30 Figure 3: Similar to Figure 1 for the components (η 1 , w e1 ) associated to tropical instability waves. Pac 2.5 N R η,s R η,a R η,k R w,s R w,a R w,k 1.11 1.02 1.07 1.12 2.66 1.09 σ η,s σ η,a σ η,k σ w,s σ w,a σ w,k -0.22 -0.03 -0.14 -0.25 -6.06 -0.18 C η,s C η,a C η,k C w,s C w,a C w,k -0.09 0.31 0.04 -0.02 0.02 0.06 -40 -30 -20 -10 0 10 20 30 40 Kalman Ekp K3 (10 -7 m/s) 130°E 180° 130°W 80°W Assimilated Ekp K3 (10 -7 m/s) 130°E 180° 130°W 80°W Simulated Ekp K3 (10 -7 m/s) 130°E 180° 130°W 80°W ERS Ekp K3 (10 -7 m/s) 130°E 180° 130°W 80°W Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 Kalman η K3 (mm) Assimilated η K3 (mm) Simulated η K3 (mm) pac 2.5N - T/P η K3 (mm) Jan97 Apr97 Jul97 Oct97 Jan98 Apr98 Jul98 Oct98 Jan99 Apr99 Jul99 Oct99 Jan00 Apr00 Jul00 Oct00 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30 40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 -80 -60 -40 -20 0 20 40 60 80 -40 -30 -20 -10 0 10 20 30 40 Figure 4: Similar to Figure 1 for the components (η K 3 , w eK 3 ) associated to Kelvin waves with 2-3 months period. Pac 2.5 N R η,s R η,a R η,k R w,s R w,a R w,k 0.93 0.82 0.57 1.06 2.06 0.98 σ η,s σ η,a σ η,k σ w,s σ w,a σ w,k 0.13 0.33 0.67 -0.12 -3.25 0.04 C η,s C η,a C η,k C w,s C w,a C w,k 0.45 0.68 0.82 0.36 0.19 0.48

Upload: dangdien

Post on 24-Dec-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Global Comparison of Ekman Pumping From Satellite ... · A Global Comparison of Ekman Pumping From Satellite Scatterometers and Ocean Data Assimilation Estimates Paulo S. Politoy

A Global Comparison of Ekman Pumping FromSatellite Scatterometers and Ocean Data Assimilation Estimates

Paulo S. Polito† INPE - National Institute for Space Research, BrazilTong Lee and Ichiro Fukumori Jet Propulsion Laboratory/Caltech, USA

Motivation

Ekman pumping, a form of wind-driven upwelling, plays important roles in upper-ocean dynamics, thermodynamics, and biology as well as in boundary-layermeteorology.

Inverse models, such as those of ECCO (Estimation of the Circulation and Cli-mate of the Ocean, http://www.ecco-group.org/),estimate wind forc-ing through ocean data assimilation.

Ekman pumping obtained from scatterometer is compared with those derivedfrom ECCO models which assimilate TOPEX/POSEIDON (T/P) derivedsea level anomalies using the adjoint and Kalman filter/smoother methods.

Differences in Ekman pumping are quantified and changes due to the assimila-tion are analyzed to identify the spectral area over which it has a significantimpact.

The comparison also highlights aspects where the ECCO model and assimilationschemes need improvement.

Objectives

The objectives of this study are to:

1. Analyze the difference between the Ekman pumping estimatesfrom different model designs:

(a) forward (simulation),

(b) adjoint (assimilation)

(c) Kalman filter/smoother,

2. Compare the sea surface height anomaly from T/P with thatobtained from the models.

3. For each model/data comparison analyze the difference in severalareas of the period–wavelength spectrum associated to knowndynamical phenomena.

4. Suggest possible model improvements based on the analysisabove.

Introduction

The Ekman pumping we is an estimate of wind–driven vertical velocity, directlyrelated to the curl of the wind stress:�

we =

~∇× ~τρ f

This is a first order estimate that works within the constraints of the Ekmantheory.

The wind stress is estimated from satellite scatterometer wind vectors, accurateto approximately 1ms−1 and 20◦ .

Estimates of sea surface height anomaly from the T/P altimeter are assimilatedby the adjoint and Kalman filter/smoother models.

In turn, the models yield the Ekman pumping fields that would be necessary tocreate the assimilated sea surface height anomaly.

These Ekman pumping fields are compared to the scatterometer measurements.This comparison is performed within several areas of the zonal-temporalspectrum.

Data and Methods

The altimeter–derived sea surface height anomaly η was obtained from theWOCE TOPEX/POSEIDON data distributed by JPL/PODAAC.

The interpolated ηo is decomposed through a series of zonal–temporal finite im-pulse response (2D FIR) filters [2, 3] in the following components (numericsubscripts indicate the ∼ period in months):

ηo = ηt+︸︷︷︸

Basin

η24 + η12 + η6 + η3+︸ ︷︷ ︸

Rossby waves

η1+︸︷︷︸

TIWs

ηK6 + ηK3 + ηK1+︸ ︷︷ ︸

Kelvin waves

ηE + ηr︸ ︷︷ ︸

eddies

From ERS-1/2 scatterometer winds the stress τ is calculated via LKB method [1]using SST fields from the Reynolds dataset [4] and water vapor estimatesfrom SSMI.

Through the analysis of the η components we obtain the filter parameters (phasespeed and wavelength) used to decompose the Ekman pumping (we) fields.

This way both the Ekman pumping and the sea surface height components referto the same spectral area, associated with specific dynamical regimes.

“Simulation” refers to the model run without T/P data assimilation, “Assimi-lation”refers to the model run with T/P data assimilation, and “Kalman”refers to the Kalman filter/smoother model.

Description of the Models

Adjoint

The model referred to as Model-X uses the X method and assumes that Y.

The Model-X run in this study uses the following set-up: a, b, c, etc.

As a consequence we expect Model-X to reproduce the following aspects of theocean physics.

Forward

The model referred to as Model-X uses the X method and assumes that Y.

The Model-X run in this study uses the following set-up: a, b, c, etc.

As a consequence we expect Model-X to reproduce the following aspects of theocean physics.

Kalman

The model referred to as Model-X uses the X method and assumes that Y.

The Model-X run in this study uses the following set-up: a, b, c, etc.

As a consequence we expect Model-X to reproduce the following aspects of theocean physics.

Results

Pacific 2.5◦N - Comparison of η and we

−300

−200

−100

0

100

200

300

Kalman Ekpt (10−7m/s)

130°E 180° 130°W 80°W

Assimilated Ekpt (10−7m/s)

130°E 180° 130°W 80°W

Simulated Ekpt (10−7m/s)

130°E 180° 130°W 80°W

ERS Ekpt (10−7m/s)

130°E 180° 130°W 80°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman ηt (mm)Assimilated η

t (mm)Simulated η

t (mm)pac 2.5N − T/P η

t (mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−150

−100

−50

0

50

100

150

−250

−200

−150

−100

−50

0

50

100

150

200

250

−250

−200

−150

−100

−50

0

50

100

150

200

250

−100

−50

0

50

100

−100

−50

0

50

100

−200

−150

−100

−50

0

50

100

150

200

−150

−100

−50

0

50

100

150

Figure 1: Zonal–temporal (Hovmoller) diagrams for thebasin–scale, non–propagating components (ηt, wet) for thePacific at 2.5◦N. The top row shows sea–surface heightanomalies (in mm) and the bottom row shows Ekman pump-ing (in m/s). The left column shows the FIR filtered satellitedata, the middle column shows the simulated model data,and the right column shows the assimilated model data.Pac 2.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

0.44 0.23 0.23 0.53 1.13 0.68ση,s ση,a ση,k σw,s σw,a σw,k

0.80 0.95 0.95 0.72 -0.28 0.54Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.96 0.97 0.98 0.87 0.80 0.87

−60

−40

−20

0

20

40

60

Kalman Ekp12

(10−7m/s)

130°E 180° 130°W 80°W

Assimilated Ekp12

(10−7m/s)

130°E 180° 130°W 80°W

Simulated Ekp12

(10−7m/s)

130°E 180° 130°W 80°W

ERS Ekp12

(10−7m/s)

130°E 180° 130°W 80°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman η12

(mm)Assimilated η12

(mm)Simulated η12

(mm)pac 2.5N − T/P η12

(mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−40

−30

−20

−10

0

10

20

30

40

−50

−40

−30

−20

−10

0

10

20

30

40

50

−40

−30

−20

−10

0

10

20

30

40

−30

−20

−10

0

10

20

30

−30

−20

−10

0

10

20

30

−60

−40

−20

0

20

40

60

−40

−30

−20

−10

0

10

20

30

40

Figure 2: Similar to Figure 1 for the components (η12,we12) associated to annual Rossby waves.Pac 2.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

0.51 0.35 0.35 0.72 1.48 0.64ση,s ση,a ση,k σw,s σw,a σw,k

0.74 0.88 0.87 0.48 -1.19 0.59Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.88 0.94 0.96 0.77 0.71 0.88

−40

−30

−20

−10

0

10

20

30

40

Kalman Ekp1 (10−7m/s)

130°E 180° 130°W 80°W

Assimilated Ekp1 (10−7m/s)

130°E 180° 130°W 80°W

Simulated Ekp1 (10−7m/s)

130°E 180° 130°W 80°W

ERS Ekp1 (10−7m/s)

130°E 180° 130°W 80°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman η1 (mm)Assimilated η

1 (mm)Simulated η

1 (mm)pac 2.5N − T/P η

1 (mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−15

−10

−5

0

5

10

15

−30

−20

−10

0

10

20

30

−15

−10

−5

0

5

10

15

−60

−40

−20

0

20

40

60

−30

−20

−10

0

10

20

30

−150

−100

−50

0

50

100

150

−30

−20

−10

0

10

20

30

Figure 3: Similar to Figure 1 for the components (η1, we1)associated to tropical instability waves.Pac 2.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

1.11 1.02 1.07 1.12 2.66 1.09ση,s ση,a ση,k σw,s σw,a σw,k

-0.22 -0.03 -0.14 -0.25 -6.06 -0.18Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

-0.09 0.31 0.04 -0.02 0.02 0.06

−40

−30

−20

−10

0

10

20

30

40

Kalman EkpK3

(10−7m/s)

130°E 180° 130°W 80°W

Assimilated EkpK3

(10−7m/s)

130°E 180° 130°W 80°W

Simulated EkpK3

(10−7m/s)

130°E 180° 130°W 80°W

ERS EkpK3

(10−7m/s)

130°E 180° 130°W 80°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman ηK3

(mm)Assimilated ηK3

(mm)Simulated ηK3

(mm)pac 2.5N − T/P ηK3

(mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−30

−20

−10

0

10

20

30

−40

−30

−20

−10

0

10

20

30

40

−30

−20

−10

0

10

20

30

−40

−30

−20

−10

0

10

20

30

40

−40

−30

−20

−10

0

10

20

30

40

−80

−60

−40

−20

0

20

40

60

80

−40

−30

−20

−10

0

10

20

30

40

Figure 4: Similar to Figure 1 for the components (ηK3,weK3) associated to Kelvin waves with 2-3 months period.Pac 2.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

0.93 0.82 0.57 1.06 2.06 0.98ση,s ση,a ση,k σw,s σw,a σw,k

0.13 0.33 0.67 -0.12 -3.25 0.04Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.45 0.68 0.82 0.36 0.19 0.48

Page 2: A Global Comparison of Ekman Pumping From Satellite ... · A Global Comparison of Ekman Pumping From Satellite Scatterometers and Ocean Data Assimilation Estimates Paulo S. Politoy

Results

Pacific 10.5◦N - Comparison of η and we

−250

−200

−150

−100

−50

0

50

100

150

200

250

Kalman Ekpt (10−7m/s)

128°E 176°E 135°W 86°W

Assimilated Ekpt (10−7m/s)

128°E 176°E 135°W 86°W

Simulated Ekpt (10−7m/s)

128°E 176°E 135°W 86°W

ERS Ekpt (10−7m/s)

128°E 176°E 135°W 86°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman ηt (mm)Assimilated η

t (mm)Simulated η

t (mm)pac 10.5N − T/P η

t (mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−150

−100

−50

0

50

100

150

−250

−200

−150

−100

−50

0

50

100

150

200

250

−200

−150

−100

−50

0

50

100

150

200

−30

−20

−10

0

10

20

30

−25

−20

−15

−10

−5

0

5

10

15

20

25

−50

−40

−30

−20

−10

0

10

20

30

40

50

−40

−30

−20

−10

0

10

20

30

40

Figure 5: Similar to Figure 1 for 10.5◦N.Pac 10.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

0.55 0.33 0.27 1.01 1.08 0.89ση,s ση,a ση,k σw,s σw,a σw,k

0.70 0.89 0.92 0.02 -0.17 0.21Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.89 0.95 0.96 0.36 0.19 0.48

−60

−40

−20

0

20

40

60

Kalman Ekp12

(10−7m/s)

128°E 176°E 135°W 86°W

Assimilated Ekp12

(10−7m/s)

128°E 176°E 135°W 86°W

Simulated Ekp12

(10−7m/s)

128°E 176°E 135°W 86°W

ERS Ekp12

(10−7m/s)

128°E 176°E 135°W 86°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman η12

(mm)Assimilated η12

(mm)Simulated η12

(mm)pac 10.5N − T/P η12

(mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−40

−30

−20

−10

0

10

20

30

40

−60

−40

−20

0

20

40

60

−50

−40

−30

−20

−10

0

10

20

30

40

50

−10

−8

−6

−4

−2

0

2

4

6

8

10

−8

−6

−4

−2

0

2

4

6

8

−8

−6

−4

−2

0

2

4

6

8

−10

−5

0

5

10

Figure 6: Similar to Figure 5 for η12 and we12, annual Rossby waves.Pac 10.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

1.12 0.80 0.64 1.02 0.85 0.81ση,s ση,a ση,k σw,s σw,a σw,k

-0.26 0.37 0.59 -0.03 0.28 0.34Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.14 0.70 0.77 0.38 0.57 0.69

−60

−40

−20

0

20

40

60

Kalman Ekp6 (10−7m/s)

128°E 176°E 135°W 86°W

Assimilated Ekp6 (10−7m/s)

128°E 176°E 135°W 86°W

Simulated Ekp6 (10−7m/s)

128°E 176°E 135°W 86°W

ERS Ekp6 (10−7m/s)

128°E 176°E 135°W 86°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman η6 (mm)Assimilated η

6 (mm)Simulated η

6 (mm)pac 10.5N − T/P η

6 (mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−40

−30

−20

−10

0

10

20

30

40

−30

−20

−10

0

10

20

30

−50

−40

−30

−20

−10

0

10

20

30

40

50

−20

−15

−10

−5

0

5

10

15

20

−10

−5

0

5

10

−25

−20

−15

−10

−5

0

5

10

15

20

25

−10

−5

0

5

10

Figure 7: Similar to Figure 5 for η6 and we6, semi–annual Rossby waves.Pac 10.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

1.01 0.96 0.64 1.06 1.41 1.08ση,s ση,a ση,k σw,s σw,a σw,k

-0.03 0.07 0.59 -0.13 -0.98 -0.16Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.34 0.31 0.77 0.19 0.19 0.19

Atlantic 27.5◦N - Comparison of η and we

−100

−50

0

50

100

Kalman Ekpt (10−7m/s)

76°W 56°W 36°W 16°W

Assimilated Ekpt (10−7m/s)

76°W 56°W 36°W 16°W

Simulated Ekpt (10−7m/s)

76°W 56°W 36°W 16°W

ERS Ekpt (10−7m/s)

76°W 56°W 36°W 16°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman ηt (mm)Assimilated η

t (mm)Simulated η

t (mm)atl 27.5N − T/P η

t (mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−80

−60

−40

−20

0

20

40

60

80

−80

−60

−40

−20

0

20

40

60

80

−80

−60

−40

−20

0

20

40

60

80

−10

−5

0

5

10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−15

−10

−5

0

5

10

15

−10

−5

0

5

10

Figure 8: Similar to Figure 1 for 27.5◦N in the Atlantic.Atl 27.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

0.53 0.40 0.39 0.90 1.07 0.95ση,s ση,a ση,k σw,s σw,a σw,k

0.72 0.84 0.85 0.19 -0.13 0.10Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.88 0.94 0.95 0.53 0.49 0.53

−40

−30

−20

−10

0

10

20

30

40

Kalman Ekp12

(10−7m/s)

76°W 56°W 36°W 16°W

Assimilated Ekp12

(10−7m/s)

76°W 56°W 36°W 16°W

Simulated Ekp12

(10−7m/s)

76°W 56°W 36°W 16°W

ERS Ekp12

(10−7m/s)

76°W 56°W 36°W 16°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman η12

(mm)Assimilated η12

(mm)Simulated η12

(mm)atl 27.5N − T/P η12

(mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−10

−8

−6

−4

−2

0

2

4

6

8

10

−15

−10

−5

0

5

10

15

−10

−5

0

5

10

−6

−4

−2

0

2

4

6

−4

−3

−2

−1

0

1

2

3

4

−10

−5

0

5

10

−6

−4

−2

0

2

4

6

Figure 9: Similar to Figure 8 for η12 and we12, annual Rossby waves.Atl 27.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

0.93 0.72 0.88 1.09 1.93 1.16ση,s ση,a ση,k σw,s σw,a σw,k

0.13 0.48 0.22 -0.19 -2.73 -0.35Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.40 0.77 0.52 0.14 0.23 0.27

−60

−40

−20

0

20

40

60

Kalman Ekp6 (10−7m/s)

76°W 56°W 36°W 16°W

Assimilated Ekp6 (10−7m/s)

76°W 56°W 36°W 16°W

Simulated Ekp6 (10−7m/s)

76°W 56°W 36°W 16°W

ERS Ekp6 (10−7m/s)

76°W 56°W 36°W 16°WJan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

Kalman η6 (mm)Assimilated η

6 (mm)Simulated η

6 (mm)atl 27.5N − T/P η

6 (mm)

Jan97

Apr97

Jul97

Oct97

Jan98

Apr98

Jul98

Oct98

Jan99

Apr99

Jul99

Oct99

Jan00

Apr00

Jul00

Oct00

−10

−8

−6

−4

−2

0

2

4

6

8

10

−20

−15

−10

−5

0

5

10

15

20

−10

−5

0

5

10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−6

−4

−2

0

2

4

6

−10

−8

−6

−4

−2

0

2

4

6

8

10

−8

−6

−4

−2

0

2

4

6

8

Figure 10: Similar to Figure 8 for η6 and we6, semi–annual Rossby waves.Atl 27.5◦N Rη,s Rη,a Rη,k Rw,s Rw,a Rw,k

1.00 0.84 1.00 1.11 1.35 1.16ση,s ση,a ση,k σw,s σw,a σw,k

0.00 0.29 0.00 -0.23 -0.81 -0.34Cη,s Cη,a Cη,k Cw,s Cw,a Cw,k

0.07 0.63 0.09 0.07 0.10 0.10

Concluding Remarks

For sea surface height anomalies (η) the assimilation andKalman filer/smoother runs improve on the simula-tion results. In all tested cases except one it reducesthe rms difference (Rη,a < Rη,s), increases thefractional variance (ση,a > ση,s) and the correla-tion between data and model (Cη,a > Cη,s).

For the Ekman pumping estimates (we) only the Kalmanfilter/smoother assimilation improves the statistics at2.5◦N and 10.5◦N for most components. At 27.5◦Nnone of the assimilation schemes gave positive re-sults.

In most figures the Ekman pumping patterns from dataassimilation models are qualitatively more similar tothe satellite derived patternsthan the simulation runs.

Results are relatively better for the low–frequency, large

wavelength end of the spectrum. As a consequence,results are generally better at low latitudes.

Apparently, the models reproduce better the Pacific basinthan the Atlantic or Indian (not shown).

References

[1] W.T. Liu, K.B. Katsaros, and J.A. Businger. Bulk parameterizations of air-sea exchangesof heat and water vapor including the molecular constraints at the interface. Journal of

Atmospheric Sciences, 36:1722–1735, 1979.

[2] P. S. Polito, O. T. Sato, and W. T. Liu. Characterization and validation of heat stor-age variability from Topex/Poseidon at four oceanographic sites. Journal of Geophysical

Research, 105(C7):16,911–16,921, 2000.

[3] P. S. Polito, O. T. Sato, and W. T. Liu. Global characterization of Rossby waves atseveral spectral bands. In print, Journal of Geophysical Research, 2002.

[4] R. W. Reynolds and T. M. Smith. Improved global sea surface temperature analysesusing optimum interpolation. Journal of Climate, 7:929–948, 1994.

Contact: For more details, please e-mail us: Paulo S. Polito ([email protected])

Acknowledgments: P. S. Polito was fully supported bythe Fundacao para Amparo a Pesquisa do Estado de Sao

Paulo (FAPESP) under project 01-06921-3.