a flat approximation of inverse meg-problemsnovikov/miptip16/slides/galchenkova.pdf · a flat...

19
A flat approximation of inverse MEG-problems Authors: Galchenkova Marina , Demidov Alexander, Kochurov Alexander

Upload: others

Post on 23-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

A flat approximation of inverse MEG-problems

Authors: Galchenkova Marina,

Demidov Alexander,

Kochurov Alexander

Page 2: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Plan

•What is magnetoencephalography (MEG)?

•Inverse problem

•The reason of our interest in this problem

•Steps of solution

•Subsequent goals

2

Page 3: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

What is MEG?

Magnetoencephalography is a noninvasive technique for

investigating neuronal activity in the living human brain.

3

Page 4: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Inverse problem

- a problem of finding electrical impulses’

distribution in some area Y (associated with cortex), that based on data of its induced

magnetic field in another place X that we obtain by

MEG system.

4

Page 5: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Forward computation

Inverse computation

The reason of our interest in this problem

Page 6: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

According to Biot–Savart law

,

6

Page 7: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

At first we observe a following model:

7

𝑋 = ℝ2 ∋ 𝑥 = 𝑥1, 𝑥2 , 𝑥𝑘 < ∞

(ℝ3 ⊃ 𝑌) ∋ 𝑦 = 𝑦1, 𝑦2, −𝜀 : 𝑦𝑘 < ∞𝜀 = 1

Page 8: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

The equation assumes the following form:

8

𝑚=1

3

𝐾𝑙𝑚 𝑥 − 𝑦 𝑄𝑚 𝑦 𝑑𝑦 = 𝐵𝑙 𝑥 , 𝑙 = 1,2,3

Y

Page 9: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Lemma 1

9

𝐾12 𝜉 = 𝐸 𝜉 ,where 𝐸 𝜉 = 2𝜋𝑒−2𝜋|𝜉| ∶

𝜉 = 𝜉1, 𝜉2 , 𝜉 = 𝜉12 + 𝜉2

2, and

𝐾23 𝜉 = −𝑖𝜉1𝜉𝐸 𝜉 , 𝐾31 𝜉 = −𝑖

𝜉2𝜉𝐸 𝜉 ,

where 𝐾 𝜉 =ℱ𝑠→𝜉 𝐾(𝑠)

Page 10: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

A consequence of Lemma 1

10

(1) 𝑂𝑝 𝐾 𝜉 𝑄 𝑧 = 𝐵(𝑥), where

𝑂𝑝 𝐾 𝜉 = ℱ𝜉→𝑥−1 𝐾 𝜉 ℱ𝑧→𝜉 ,

𝐾 𝜉 =ℱ𝑠→𝜉 𝐾(𝑠)

𝐾 𝜉 - is a symbol of pseudodifferential operator

2 𝐾 𝜉 𝑄 𝜉 = 𝐵 𝜉 , 𝜉 = (𝜉1, 𝜉2)

Page 11: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Lemma 2

11

Equation form Basis Details

𝑲 𝝃 𝑸 𝝃 = 𝑩 𝝃𝑒1 = 1,0,0 ,𝑒2 = 0,1,0𝑒3 = 0,0,1

𝑄 𝜉 =( 𝑄1, 𝑄2, 𝑄3) 𝐵 𝜉 =( 𝐵1, 𝐵2, 𝐵3)

𝝈 𝝃 𝒖 𝝃 = 𝒈 𝝃

𝝈 𝝃 =0 1 00 0 10 0 0

𝑒1′=(−

ⅈ𝜉1

𝜉, −

ⅈ𝜉2

𝜉, 1)

𝑒2′=(

ⅈ𝜉2

𝜉, −

ⅈ𝜉1

𝜉, 0)

𝑒3′=(

ⅈ𝜉1

𝜉,ⅈ𝜉2

𝜉, 0)

𝑢 = ( 𝑢1, 𝑢2, 𝑢3) 𝑔 = ( 𝑔1, 𝑔2, 0)

σ = (𝑆𝑡)−1 𝐾(𝜉)𝑆𝑡 ,where 𝑆 -amplication

matrix

Page 12: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Lemma 3

12

𝜎(𝜉) 𝑢 𝜉 = 𝑔 𝜉

𝑢2 𝜉 = 𝑔1(𝜉)𝑒

2𝜋 𝜉

2𝜋

𝑢3 𝜉 = 𝑔2(𝜉)𝑒

2𝜋 𝜉

2𝜋

Page 13: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

The algorithm of obtaining 𝒖𝟏

2nd step

Making the inverse Fourier transform

𝑄 𝑧, 𝑢1 = ℱ𝜉→𝑧−1 𝑄 𝜉

1st step

Transition from the basis 𝒆′ to 𝒆 𝑒′ = 𝑆𝑒; 𝛽𝑒= 𝑆𝑡𝛼𝑒′; 𝑢 𝜉 → 𝑄 𝜉

13

Page 14: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

The algorithm of obtaining 𝒖𝟏

14

3rd step

According to Biot–Savart law, calculate all

components of the magnetic field

𝑚=1

3

𝐾𝑙𝑚 𝑥 − 𝑦 𝑄𝑚 𝑦 𝑑𝑦 = 𝐵𝑙 𝑥 , 𝑙 = 1,2,3

Page 15: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

The algorithm of obtaining 𝒖𝟏

4th step

Finding the magnitude of the vector B 𝐵 2 = 𝐵12 + 𝐵2

2 + 𝐵32

15

Page 16: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

The algorithm of obtaining 𝒖𝟏

16

5th step

Getting the final integral equation for 𝒖𝟏

𝐵 2 =

𝑙=1

3

𝑚=1

3

𝐾𝑙𝑚 𝑥 − 𝑦 (𝐺𝑚 𝑦 + 𝑂𝑝 −𝑖𝜉𝑚𝜉

𝑢1(𝑦))𝑑𝑦

2

Y

Page 17: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Lemma 4

17

Suppose that 𝑦1 = 𝑟 cos 2𝜋Θ , 𝑦2 = 𝑟 sin 2𝜋Θ .

𝐺 𝑟, Θ = 𝑔 𝑦1, 𝑦2 = 𝑚∈ℤ𝐺𝑚(𝑟)𝑒ⅈ2𝜋𝑚Θ,

where 𝐺𝑚 𝑟 ∈ ℂ. 𝐓𝐡𝐞𝐧

𝐺 𝜉 , 𝜔 =

𝑛∈ℤ

𝑒ⅈ2𝜋 𝜔−

14𝑛

0

𝑟𝐺𝑛 𝑟 𝐽𝑛 2𝜋 𝜉 𝑟 𝑑𝑟 ,

where 𝐺 𝜉 , 𝜔 = ℱ 𝑦→𝜉𝑔 𝑦 ,

𝜉1 = 𝜉 cos 2𝜋𝜔 , 𝜉2 = 𝜉 sin 2𝜋𝜔

Page 18: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Subsequent goals

1. To get the computational solution of our equation for 𝒖𝟏

2. To make the model suitable for the human brain topology

3. To true up our calculations corresponding to MEG data

18

Page 19: A flat approximation of inverse MEG-problemsnovikov/miptip16/slides/galchenkova.pdf · A flat approximation of inverse MEG-problems Authors: Galchenkova Marina, Demidov Alexander,

Thank You for Your attention!

19