a critical review of detection and classification of power quality events

11
A critical review of detection and classication of power quality events Om Prakash Mahela n , Abdul Gafoor Shaik, Neeraj Gupta Centre for ICT, Indian Institute of Technology, Jodhpur 342011, India article info Article history: Received 17 June 2014 Received in revised form 18 August 2014 Accepted 26 August 2014 Available online 16 September 2014 Keywords: Power system Feature extraction Power quality PQ disturbance PQ event classier Segmentation abstract Requirement of green supply with higher quality has been consumersdemand around the globe. The electrical power system is expected to deliver undistorted sinusoidal rated voltage and current continuously at rated frequency to the consumers. This paper presents a comprehensive review of signal processing and intelligent techniques for automatic classication of the power quality (PQ) events and an effect of noise on detection and classication of disturbances. It is intended to provide a wide spectrum on the status of detection and classication of PQ disturbances as well as an effect of noise on detection and classication of PQ events to the researchers, designers and engineers working on power quality. More than 150 research publications on detection and classication techniques of PQ disturbances have been critically examined, classied and listed for quick reference. & 2014 Elsevier Ltd. All rights reserved. Contents 1. Introduction ........................................................................................................ 496 2. Power quality....................................................................................................... 496 3. Automatic power quality eventsclassier ................................................................................ 496 4. Segmentation ....................................................................................................... 497 5. Feature extraction ................................................................................................... 497 5.1. Fourier transform based methods ................................................................................. 497 5.2. S-transform based methods ..................................................................................... 498 5.3. Hilbert Huang transform based methods ........................................................................... 498 5.4. Wavelet transform based methods ................................................................................ 498 5.5. Miscellaneous feature extraction techniques ........................................................................ 498 5.6. Comparative study of PQ eventsdetection techniques ................................................................ 499 6. Articial intelligence classication techniques ............................................................................. 499 6.1. Support vector machine based classication ........................................................................ 499 6.2. Neural network based classication ............................................................................... 499 6.3. Fuzzy expert system based classication ........................................................................... 500 6.4. Neuro-fuzzy system based classication ........................................................................... 500 6.5. Genetic algorithm based classication ............................................................................. 500 6.6. Miscellaneous classication systems............................................................................... 500 6.7. Comparative study of PQ events classication techniques ............................................................. 501 7. Effect of noise on PQ event classiers ................................................................................... 501 8. Future scope ....................................................................................................... 501 9. Conclusion ......................................................................................................... 501 References ............................................................................................................. 502 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/rser Renewable and Sustainable Energy Reviews http://dx.doi.org/10.1016/j.rser.2014.08.070 1364-0321/& 2014 Elsevier Ltd. All rights reserved. n Corresponding author. E-mail addresses: [email protected] (O.P. Mahela), [email protected] (A.G. Shaik), [email protected] (N. Gupta). Renewable and Sustainable Energy Reviews 41 (2015) 495505

Upload: semih-huermeydan

Post on 16-Aug-2015

232 views

Category:

Documents


9 download

DESCRIPTION

power quality

TRANSCRIPT

A critical review of detection and classication of power quality eventsOm Prakash Mahelan, Abdul Gafoor Shaik, Neeraj GuptaCentre for ICT, Indian Institute of Technology, Jodhpur 342011, Indiaa rti cle in foArticle history:Received 17 June 2014Received in revised form18 August 2014Accepted 26 August 2014Available online 16 September 2014Keywords:Power systemFeature extractionPower qualityPQ disturbancePQ event classierSegmentationabstractRequirement of greensupplywithhigher qualityhas beenconsumers demandaroundtheglobe.Theelectrical powersystemisexpectedtodeliverundistortedsinusoidal ratedvoltageandcurrentcontinuously at rated frequency to the consumers. This paper presents a comprehensive review of signalprocessing and intelligent techniques for automatic classication of the power quality (PQ) events andaneffect of noiseondetectionandclassicationof disturbances. It is intendedtoprovideawidespectrum on the status of detection and classication of PQ disturbances as well as an effect of noise ondetection and classication of PQ events to the researchers, designers and engineers working on powerquality. More than 150 research publications on detection and classication techniques of PQdisturbances have been critically examined, classied and listed for quick reference.& 2014 Elsevier Ltd. All rights reserved.Contents1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4962. Power quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4963. Automatic power quality events classier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4964. Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4975. Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4975.1. Fourier transform based methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4975.2. S-transform based methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4985.3. Hilbert Huang transform based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4985.4. Wavelet transform based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4985.5. Miscellaneous feature extraction techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4985.6. Comparative study of PQ events detection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4996. Articial intelligence classication techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4996.1. Support vector machine based classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4996.2. Neural network based classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4996.3. Fuzzy expert system based classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5006.4. Neuro-fuzzy system based classication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5006.5. Genetic algorithm based classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5006.6. Miscellaneous classication systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5006.7. Comparative study of PQ events classication techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5017. Effect of noise on PQ event classiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5018. Future scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5019. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502Contents lists available at ScienceDirectjournal homepage: www.elsevier.com/locate/rserRenewable and Sustainable Energy Reviewshttp://dx.doi.org/10.1016/j.rser.2014.08.0701364-0321/& 2014 Elsevier Ltd. All rights reserved.nCorresponding author.E-mail addresses: [email protected] (O.P. Mahela), [email protected] (A.G. Shaik), [email protected] (N. Gupta).Renewable and Sustainable Energy Reviews 41 (2015) 4955051. IntroductionConsiderablechangesinabusinessenvironmenthaveincreasedthe use of sensitive electronic components, computers, programmablelogic controllers, protectionandrelayingequipments whichhaveincreased the power consumptions [1]. Increasing consumer expecta-tions with the requirement of green supply around the globe, whereintegration of renewable energy sources to the distribution grid is thefocusareaof smart grid, electrical powersystemsareexpectedtodeliver power supply continuously at high quality to the consumers.Economyof anycountrysufferswithhugelosseswhentherearevoltage or currentabnormalities presentin the power delivery.Anydeviation/disturbance manifestedinthe voltage, current andfre-quencyfromthestandardratingistreatedasapowerquality(PQ)problemthat results in failure or malfunctioning of electrical/electronicequipments [2]. Power quality disturbances increase the risk of black-out;especiallybecauseofthefailureofinterdependenciesbetweensub-networks andassociateddynamical propagations. To preventthese issues customers are willing to invest in the on-site equipmentsto ensure higher level of quality supply such as uninterrupted powersupply (UPS) and stabilizers even though these are very costly [3]. Itshows the importance of power quality towards economic distributionof the energy.Renewable energy integration and smart transmission systems,well equipped withmodern control equipments, increase theapplicationsof nonlinearandelectronicallyswitcheddevicesindistributionsystemswhichexaggerateproblemssuchasharmo-nics,icker, voltage sag/swell, voltage regulation, load unbalancinganddeviationsinphaseaswellasfrequency. Several solid-stateelectronic/power-electronic devices have been developed, studiedandproposed to theinternational scienticcommunitywith thegoal of improving supplied power quality in last two decades [4].This causes increased operational and planning complexity ofelectricitysupplynetworks whichrequires increasedattentionfor quality of power supply [5]. The transient oscillations are alsoseeninpower networks whenpower electronicallycontrolledcapacitors are switched across a node/bus.The harmonics and power sinusoids modulated by low frequencysignals are also observed in electrical networks due to sudden changesin the operating conditions such as load disturbances, networkcontingencies, and output of renewable energy sources [610]. Theseevents may impose penalties to the consumers in terms of supportingancillary services cost such as cost of reactive power, re-dispatch costandloadcurtailmentcosttoremovedisturbingload. Therefore, PQevents need to be monitored and mitigated to maintain standard ofsupplyandeconomic operatingconditions. Incomplexandlargepowersystems, duringoperations, ahugeamountofmeasuredPQeventsdatamakeanalysisdifcultformonitoringprograms. There-fore, asmarttool andmethodologyarerequiredfordetectionandclassicationof thisdataforclearandsmartunderstandingtotheutilities, regulators and customers about the operating requirementsunder suddenchangeof operatingconditions [11]. Inthis regard,feature extraction and classication are the most important part of thegeneralized PQ event classication system where PQ event detectionrequires the feature extraction fromthe disturbances. To make analysismore effective; a set of better features should be available to report thedisturbance signal efciently [4]. Thereafter, this set of extractedfeatures can be used for the classication process.This paper aims at presenting a comprehensive review on thetopic of power quality events detection and classication techni-ques/methodologies. Over150publications[1171]arecriticallyreviewed and classied into six major categories. Therst [117] ison general power quality and their economics as well as standards.Thesecondcategory[1823]isontheautomaticpowerqualityevents classierandgeneral ideasof segmentationandfeatureextraction of PQ disturbances. The third category [2487] includesfeature extractiontechniqueswhich issub-classiedinto Fouriertransformbasedmethods [2436], S-transformbasedmethods[3744], Hilbert Huang transform based methods [4554], wavelettransform based methods [5569], and miscellaneous techniques[7087]. Thefourthcategory[88164] isonarticial intelligentclassicationtechniqueswhichisfurtherclassiedintosupportvector machine based classication [89102], neural networkbased classication [103115], fuzzy-expert system based classi-cation[116129], neuro-fuzzysystembasedclassication[130136], geneticalgorithmbasedclassication[137145] andmis-cellaneous classication systems [146164].The fth and nalcategory [165171] is on the effect of noise on PQ events classica-tion. Howeversome publications includemorethan onecategoryand have been classied based on their dominanteld.This paper is divided into nine sections. Starting with anintroductioninSection1, Section2describespowerqualityandSection 3 covers the automatic power quality event classier. Thesegmentation of PQ disturbances, techniques for feature extractionfrom PQdisturbancesandarticial intelligentclassicationtech-niques are covered under Sections 46. The effect of noise on PQevent classication and future scope are presented in Sections 7 and 8.Finally the concluding remark is included in Section 9.2. Power qualityThetermpower quality(PQ) isgenerallyappliedtoawidevariety ofelectromagneticphenomenaoccurringwithinapowersystemnetwork[2]. Theabilityofthepowersystemstodeliverundistorted voltage, current and frequency signals is termedas quality of power supply [12]. Unexpected variation of thevoltage or current from normal characteristics can damage or shutdown the critical electrical equipments designed for specicpurpose. Suchvariations happeninelectrical networks withagreat frequency due to a competitive environment and continuouschange of power supply. In a highly evolved electrical system PQsensitive demands can be classied as (i) digital economy (such asbanking, share market and railways), (ii) continuous processmanufacturingindustries, and(iii)fabricationandessential ser-vices. Costincurredtooperateall theabovetypesofloadsvaryfrom3to120perkVAperevent[12]. Thisishugeandgreatlyaffectseconomicoperationof powerindustries. TomitigatePQissues; customersarealsoequippedwithsomeback-upinstru-mentsapart fromgridsupply[13]. AccordingtoIEEEstandard1159-1995[14], thePQdisturbancesincludeawiderangeofPQphenomenanamelytransient (impulsiveandoscillatory), shortduration variations (interruption, sag and swell), frequency varia-tions, long duration variations (sustained under voltages andsustainedovervoltages)andsteadystatevariations(harmonics,notchand icker) witha time scale whichranges fromtensof nanoseconds to steady state. Inigo Monedero et al. [15] denedPQ disturbances based on UNE standard in Spain as given in Table 1.IEEEStd. 1459-2010[16] includesdenitionsformeasurementofelectric power quantities under sinusoidal, non-sinusoidal, balanced,andunbalancedconditions. In[17], authorspresentedanIEEEStd.1459 power magnitude measurement system working as a part of aPQ improvement structure.3. Automatic power quality events classierBefore 1990s some manual congurations were used for monitor-ing and managing the quality of power supply due to lack of signalprocessing and intelligent techniques advancement. The decision wasbasedontheoperator/expert intuitiontomaintainqualitywithina certain range. As technology evolved, smart signal processingO.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 496techniques(suchaspattern-recognition, datamining, internet-net-working, and articial intelligence) with intelligent instruments (suchas computers, digital signal processors, mass storage, information andcommunications) are adopted time to time. A basic block diagram ofautomatic PQ event classier is given in Fig. 1 [18]. The disturbancesignal is passed through the pre-processing unit having two functionblocks; segmentation and feature extraction. The extracted features ofdisturbances arepassedthroughprocessingunit for classication.Finally, the post-processing unit gives an actual decision regarding thetype of disturbance.4. SegmentationSegmentation divides the data sequence into stationary and non-stationary parts [19]. Events are the segments in between transitionsegments. The feature is extracted from the event segments becausethe signal is stationary and normally contains the information that isunique enough to distinguish among different types of disturbances.To capture the disturbance waveform period, a triggering method isrequiredtogetstartandendtimeinstantofPQevent[20,21]. Thecurrent methodsusedfordetectingPQdisturbancesarebasedonapoint-to-point comparisonof adjacent cycleor apoint-to-pointcomparison of the RMS values of the distorted signal with itscorresponding pure signal and/or frequency domain transformed data.The recent methods proposed for this purpose are classied asparametric (or model based) and non-parametric (or transformbased).The parametric methods include techniques such as Kalman lter (KF)andauto-regressive(AR) models whilenon-parametrictechniquesincludeshort-termFouriertransform(STFT)andwavelettransform(WT) [22].5. Feature extractionFeature extraction fromPQdisturbances is also known asdetectionofdisturbances. ExtractedfeaturesareusedtoclassifythePQevents. Thereafter, theclassier'sinformationisusedtomakethenaldecisionthroughapost-processingunit[18]. Theselection of suitable features of PQ events is extremely importantfor classication. Features may directly be extractedfromtheoriginal measurementeitherfromsometransformeddomainorfrom the parameters of signal models [23]. In this context, recentdevelopments regarding feature extractiontechniques are dis-cussed in the subsections as detailed below.5.1. Fourier transform based methodsThebestknowntechniqueforfrequencydomainanalysisisthe Fourier transform (FT), where it represents a signal as sum ofsinusoidal termsofdifferentfrequencies[24]. FTissuitableforstationarysignalsandextractingspectrumat specicfrequen-cies; however it is unable to resolve any temporary informationassociatedwithuctuations[25]. Onevariant of FT; theshorttime Fourier transform(STFT) divides the signal into smallsegments where each segment can be assumedto be stationary[26]. In this regard, STFT determines the sinusoidal frequency andphasecontentsof local sectionsof signal astheychangeoverFig. 1. Block diagram automatic power quality event classier.Table 1PQ disturbances classication [15].Type Disturbance type Time RangeMin. value Max. valueFrequency Slight deviation 10 s 49.5 Hz 50.5 HzSevere deviation 47.0 Hz 52.0 HzVoltage Average voltage 10 min 0.85 Un 1.1 UnFlicker 7%Sag Short 10 ms1 s 0.1 U 0.9 ULong 1 s1 minLong-time disturbance 41 minUnder voltage Short o3 min 0.99 ULong 43 minSwell Temporary short 10 ms1 s 1.1U 1.5 kVTemporary long 1 s1 minTemporary long-time 41 minOver voltage o10 ms 6 kVHarmonics and otherinformation signalsHarmonics THD48%Information signals Included in otherdisturbancesO.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 497time. Also, it extractsseveral framesof signalstobeanalyzedwithawindowthatmoveswithtime. Withamovingwindow,the relation between the variance of frequency and the time canbe identied [27,28]. It is difcult to analyze non-stationarysignals withSTFT[29]; however it has beenappliedtonon-stationarysignalswhenoperatinginaxedwindowsize[30].Discrete STFT is used for timefrequency analysis of non-stationarysignals. It decomposesthetime-varyingsignalsintotimefrequency domain components [31]. Discrete Fourier trans-form (DFT) represents the discrete signals that repeat themselvesinaperiodicfashionfromnegativetopositiveinnitywhereasfast Fourier transform (FFT) gives exactly the same result as theDFT in much less time [32].In[33], authorspresenteduniquefeaturesthat characterizePQevents and methodologies to extract them from recorded voltage and/orcurrentwaveformsusingFourierandWaveletTransforms(WT).In[34], authorsusedwindowedFFTforpowerqualityassessment.The windowed FFT is a time version ofthe discrete time FT. It wasexperimentally proved that WT is better than STFT [29]. The schemesbased on STFT, S-transform,and Kalmanlter have been developedefciently for detecting PQ events [35,36].5.2. S-transform based methodsThe S-transformis a timefrequency tool generated by thecombinationof WTandSTFT[37]. Itproducesatimefrequencyrepresentation of a time series. It uniquely combines a frequency-dependent resolution that simultaneously localizes the realandimaginaryspectra. ThebasicfunctionfortheS-transformisGaussian modulated co-sinusoids [38]. In the case of non-stationarydisturbanceswithnoisydata; theS-transformprovidespatternsthat closelyresemblethedisturbancetypeandthus requires asimple classication procedure [28].In[39], authorsproposedasimpleandeffectivemethodforclassication and quantication of ten typical kinds of powerqualitydisturbances using S-transform. In [40], authors presenteda real-time power quality disturbances classication by usingahybridmethodbasedonS-transformanddynamicswherethedynamics is used to reduce run time. In [41], a S-transform basedneural network structure is presented for automatic classication ofpower quality disturbances. The S-transform technique is integratedwithneural networkmodel withmulti-layerperceptiontocon-struct the classier. Power quality analysis using discrete orthogonalS-transformis presented in [42]. Multi-resolution S-transformbasedfuzzyrecognitionsystemforpowerqualityeventsispro-posedin[43]. Thisisbasedonavariablewidthanalysiswindowwhich changes with frequency according to user dened function.In [44], authors proposed more suitable fast variants of the discreteS-transform(FDST)algorithmtoaccuratelyextractthetimeloca-lized spectral characteristics of non-stationary signals.5.3. Hilbert Huang transform based methodsThe Hilbert Huang transform (HHT), a novel signal processingalgorithm wasproposedin1998byDr. Huangwhichconsistsoftwodistinctprocesses[45]. Thesignaltobeanalyzedisdecom-posedusingtheempirical modedecomposition(EMD) processinto intrinsic mode function (IMF) that have meaningful instanta-neous frequencies and amplitudes. The EMDdecomposes thesignal into IMFs in such a way that the IMFs are sorted from thehighest frequencytothe lowest frequency. Once the signal isdecomposed into IMFs, the Hilbert transform can then be appliedto each IMF giving the instantaneous amplitude and instantaneousfrequencyversustimecurve. Thiscombinationof EMDprocessandHilberttransformisknownastheHHT[46,47]. Inarowofdevelopment, multiple HHT variants are demonstrated in thecontext of PQ detection and classication.In [48], authors developed a method based on combination of EMDand Hilbert transform for assessment of power quality events. How-ever, an approach for power quality disturbances classication usingHHT and Relevance Vector Machine (RVM) is presented in [49]. In [50],authors presented the multi-disturbance complex power quality signalHHTdetectionmethodusingtheHHT algorithm. In[51], avoltageicker is analyzedusingtheorthogonal Hilbert HuangTransform(OHHT) instead of HHT which can be used in the analysis of nonlinearand non-stationary signals. In [52], authors proposed a novel methodbased on mathematical morphology and HHT which is used to detectand analyze power quality disturbances. In [53], authors presented theHilbert-Huang method with modications for timefrequency analysisof distorted power quality signals. In [54], authors presented a methodtoextract efcient features of the PQdisturbances using HilbertTransformandtoclassifythedisturbancesignal usingradial basisfunction (RBF) neural networks with more improved methodology.5.4. Wavelet transform based methodsThe wavelet transform (WT) is a mathematical tool, much like FT,that decomposes a signal into different scales with different levels ofresolution by dilating a signal prototype function. The WT is based ona square-integral function and group theory representation. The WTprovides a local representation (in both time and frequency) of a givensignal; thereforeit is suitablefor analyzingasignal wheretimefrequency resolution is needed such as disturbance transition eventsinpowerquality[55,56]. TheWTisclassiedintodiscretewavelettransform (DWT) and continuous wavelet transform (CWT) [57].In [58], authors introduced the use of WT and multi-resolutionsignal decompositionasapowerful analysistool forPQevents.A wavelet based method for detecting, localizing, quantifying andclassifyingshort durationPQdisturbancesispresentedin[59].In[60], authorsintroducedacompressiontechniqueforpowerdisturbancedataviaDWT andwaveletpackettransform(WPT).In[61], authorsproposedamodel of disturbancedetectionforharmonics and voltages using wavelet probabilistic network whichisatwo-layerarchitecturecontainingthewaveletlayerandtheprobabilistic network. Consequently, a novel approach for the PQdisturbances classicationbasedontheWT andself-organizinglearning array systemis proposed in [62]. In [63], authorsintroducedanewperspectivefortheIEEEstandard1459-2000denitions using the stationary wavelet transform(SWT) fordeningpowercomponents, powerfactors, andpollutionfactor.In[64], PQindicesthatwererecommendedin[65]and[66]areredenedinthetimefrequencydomainusingWPT. AwaveletnormentropybasedeffectivefeatureextractionmethodforPQdisturbanceclassicationis presentedin[67]. In[68], authorsproposeda WTandS-transformbasedapproachfor islandingdetection and disturbance due to load rejection in the distributedgeneration (DG) based hybrid system. In [69], authors introducedthe un-decimated wavelet transform to compute power quantitiesusing complex wavelet coefcients. The important issue related tothe useof wavelet methodis thechoice of suitable wavelet. Thecomputational cost increases withanincrease in lter length.Table 2 provides characteristics of four commonly used wavelets.5.5. Miscellaneous feature extraction techniquesApartfromtheabovetechniquesmentionedinSections5.15.4,some other techniques have played a signicant role in PQ detectionand classication. De-noising techniques with change point approachforwaveletbasedpowerqualitymonitoringareusedanddemon-strated in [70]. Parallel computing for timefrequency feature extrac-tion of PQ disturbances is presented in [71]. Hybrid wavelet and HTO.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 498with frequency shifting decomposition for PQ analysis are presented in[72]. Several other techniques such as GaborWigner transform (GT)[73], Kalmanlter[74,75], Fuzzy-ARTMAP-waveletnetwork[76], TTTransform[77], Curve tting [78], DWT Transformand waveletnetwork [79], Hybrid soft computing technique [80], parametricspectral estimation method [81], extended Kalman ltering [82], linearcombiners [83], higher order statistics and case based reasoning [84],Adaline [85], digitallters [86], short-time correlation transform [87]have played an important role in PQ event detection and classicationin recent years.5.6. Comparative study of PQ events detection techniquesComparative study of PQ events detection techniques is carried outbased on critical reviews of publications [2487]. The computationalefciency of major power quality disturbance detection techniques todetect PQ disturbances is given in Table 3. The comparison of main PQdisturbance analysis methods is detailed in Table 4.6. Articial intelligence classication techniquesAbroaddenitionof articial intelligence (AI) canbe theautomation of activities that are associated with human thinkingsuchasdecisionmaking, problemsolving, learning, perception,and reasoning [88]. In this regard recent developments in AI toolsof interest to the electric power community are detailed below.6.1. Support vector machine based classicationThe foundation of Support Vector Machine (SVM) has beendevelopedbyVapnik[89], wherestatistical learningtheorybeingthe basis provides a new pattern recognition approach. SVMs are a setof relatedsupervisedlearningmethodsusedforclassicationandregression. They belong to family of generalized linear combiners [90].In[91], authors presentedanidenticationmethodfor PQevents based on N-1 SVMs classier which is particularly effectiveintheautomaticclassicationofvoltagedisturbances[92]. Con-sequently, Whei-Lin et al. [93] presented one-versus-one approachbasedSVMwhichcanprocessthemultipleclassicationsof PQdisturbances. The SVMmethod is better than optimal timefrequencyrepresentation(OTFR) andisalowcomplexityeventclassier [94]. Anintegratedmodel for recognizingPQdistur-bances using wavelet multi-class SVM is presented in [95]. A SVMclassier combinedwithDWTtorecognizethetypeof powersystemPQis presentedin[96]. The direct acyclic graphSVMcorrectly classies the PQ events with high degree of accuracy andless training as well as testing times incomparisonto otherkernel-basedlearningtechniquesandANNbasedmethods[97].Theclassicationof PQeventsbasedonwavelettransformandSVMis presented in [98100]. The number of SVMand thecompactness of different clusters areenhancedusingmodiedimmune optimization algorithm in classication of non-stationarypower signals usingmodiedTT-transformandSVM[101]. In[102], authors presented classication of PQ events using SVM andhigher order statistical features.6.2. Neural network based classicationNeural networks (NN) represent the promising new generationof information processing systems. They are good at tasks such aspatternmatching, classication, functionapproximation, optimi-zationanddataclustering[103]. Theclassicationandfunctionapproximation capabilities of articial neural networks (ANN)Table 4Comparison of main methods of PQ disturbances analysis.Sr.no.Method Advantages Disadvantages1 STFT Successfully used for stationary signals where properties ofsignals do not evolve in time. Simple in implementationNot suitable for non-stationary signal as it does not track signal dynamics properly dueto limitation ofxed window width2 HHT Useful in feature extraction of distorted waveform, generatesquadrature signal by which instantaneous amplitude and phasecan be easily evaluatedLimited only for narrow band conditions3 ST Fully convertible from time domain to 2-D frequency translationdomain and then to Fourier frequency domainBased on block processing manner and does not satisfy real-time requirement,incorrect measurement of harmonics due to dependency of frequency window widthon central frequency4 WT Provide local representation in both time and frequency.Therefore, suitable where good timefrequency resolution isrequired.Strongly inuenced by noise present in the signal, suffering from spectral leakage andpicket fence effects5 GT It has high signal to noise ratio and good timefrequencyresolutionUse limited at high frequencies, computational complexity is directly associated withsampling frequencyTable 3Computational efciency of PQ detection techniques.Sr.no.PQdisturbancePercentage efciency of PQ detection techniquesHilbert Huangtransform [48]S-transform[48]Discrete wavelettransform [79]Fast Fouriertransform[156]1 Sag 100 100 98.67 952 Swell 100 100 99.33 983 Harmonic 95 100 99.33 1004 Flicker 100 100 98.67 895 Notch 100 83 97.33 6 Spike 95 77 7 Transient 98 100 98.67 1008 (13) 98 100 98.18 9 (23) 89 100 98.18 10 (17) 96.36 11 (27) 98.18 Table 2Wavelet characteristics.WaveletnameOrthogonalpropertyCompactsupportSupportwidthFilterslengthSymmetryHaar 1 2 Symlets 2N-1 2N Near tosymmetryDaubechies 2N-1 2N Near tosymmetryCoiets 6N-1 6N NoN-Sample points for entire observation time.O.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 499have been employed in power quality studies, fault, and harmonicssource classication.In [104], authors proposedandimplemented aNN approach tothe classication of power systemdisturbance waveforms. Twodifferent NN paradigms, the common feed-forward neural network(FFNN) andtime delay neural network (TDNN) are investigated.In[105], a method for automatically detecting, localizing and classifyingvarioustypesof disturbancewave-shapefaultispresented. ANNbasedapproachtonon-intrusiveharmonicsourceidenticationisproposed in [106]. In [107], authors proposed a novel method basedonwavelet and ANNfor transmission line fault detection andclassication using oscillo-graphic data. In [108], some patterns basedonDWTarestudiedfordetectionandidenticationof bothlowfrequencydisturbanceslikeicker, harmonics, andhighfrequencydisturbances like transient and sags. A wavelet based articial neuralnetwork classier for recognizing power quality disturbances isimplemented andtestedin[109]. In[110], a feature extractionmethod based on centre clustering is obtained which is used as aninput toANNforPQevent classication. PQevents classicationbasedonS-transformandprobabilisticNNis presentedin[111].Classication of PQ events using a balanced neural tree is presentedin[112]. AdualneuralnetworkbasedmethodologytodetectandclassifysingleandcombinedPQdisturbancesisproposedin[113].Theradialbasis function(RBF)neuralnetworkforrecognitionandclassication of PQ events is presented in [114,115].6.3. Fuzzy expert system based classicationFuzzy classication system is based on Mamdani type rules toevaluate the information provided by the linguistic variable inputs[116,117]. Fuzzy logic refers to a logic system that generalizes theclassical two-valued logic for reasoning under uncertainty. Itis motivated by observing that human reasoning can utilizeconceptsandknowledgethatdonothave welldenedorsharpboundaries [118]. A fuzzy expert-system is an expert system thatuses a collection of fuzzy sets and rules instead of Boolean sets forreasoning about data [119].In[120], authorsproposedthedesignof atool toquantifyPQparameters using wavelets and fuzzy sets theory. A hybrid techniquefor characterizing PQ events using a linear Kalmanlter and a fuzzy-expert system is presented in [121]. An approach for the detection andclassication of single and combined PQ disturbances using fuzzy logicand a particle swarm optimization algorithm is proposed in [122]. In[123], authors presented an approach for the classication of PQ datausing decision tree and chemo-tactic differential evolution based fuzzyclustering. Anapproachfor PQtimeseries dataminingusingS-transform based fuzzy expert system is presented in [124]. In [125],authorspresentedanapproachforthevisuallocalization, detectionandclassicationof various non-stationarypower signals usingavariety of windowing techniques. In [126],a hybrid scheme using aFourier linear combiner and a fuzzy expert systemfor the classicationof transient disturbance waveforms in a power system is presented. In[127], authorsproposedawavelet-basedextendedfuzzyreasoningapproach to PQdisturbance recognition and identication. An adaptivefuzzy self-learning technique for detection of abnormal operation ofelectrical systems is presented in [128]. A data compression techniquefor power waveform using adaptive fuzzy logic is presented in [129].6.4. Neuro-fuzzy system based classicationNeuro-fuzzybasedmethodshaveadvantagesofhandlinganykind of information, manage imprecise, partial, and vague orimperfect information. Thesemethods alsohaveadvantages toresolveconictsbycollaborationandaggregation, self-learning,self-organizingandself-tuningcapabilities. Further, thereis noneedof priorknowledgeof relationshipof data, mimichumandecision making process, and fast computation using fuzzy num-ber operations [130,131].In [132], authors described a cork stopper quality classicationsystemusingmorphological lteringandcontourextractionbyfollowing a feature extraction method and a fuzzy-neural networkas a classier. In [133], an approach based on a four step algorithmcombining 3-D space referential representation, principal compo-nent analysis andneuro-fuzzybasedautomaticclassicationispresented. Adaptive-neuro-fuzzy-inferencesystemapproachfortransmissionlinefaultclassicationandlocationispresentedin[134,135]. Amethodfor mitigationof voltagesags withphasejumps byUPQCwithparticle-swarmoptimization(PSO) basedadaptive neuro-fuzzy system is presented in [136].6.5. Genetic algorithm based classicationGenetic Algorithm(GA) is asearchalgorithmbasedonthemechanicsofnaturalselectionandnaturalgenetics. Itcombinessurvival of thettest among string structures with a structured yetrandomized information exchange to form a search algorithmwithsomeof theinnovative air of humansearch[137]. TheGAisconsidered to be an excellent intelligent paradigm for optimizationusing a multipoint, probabilistic, randomand guided searchmechanism [138].In [139], authors described an innovative and fuzzy-based adaptiveapproachtothemeteringof powerandRMSvoltageandcurrentemployingGA. Power systemmodel validationfor PQassessmentapplications using GA is presented in [140]. The GA is introduced asa powerful tool for monitoring and supervising power systemdisturbancesgeneratedduetodynamicperformanceofpowersys-temsin[141]. In[142], a jumpinggenesparadigmintheformat ofhierarchical GA is proposed for optimizing the power voltage controlsystems. AnewmethodusingenhancedGAfor placement of PQmonitors is proposed in [143]. An analytic method of power qualityusingextensionGAandwavelet transformis presentedin[144].In[145], authorsdescribedthedesignof aGAthatoptimizestheS-transformfor analysis andclassicationof theperturbations inelectrical signals.6.6. Miscellaneous classication systemsDetection and classication of PQevents in real-time areimportant considerations to electric utilities. The design anddevelopmentofarulebasedsystemforintelligentclassicationof PQdisturbancesusingS-transformfeaturesarepresentedin[146,147]. Rule-basedandwavelet-multi-resolutiondecomposi-tionforPQeventsclassicationispresentedin[148]. AnexpertTable 5Strength and weakness of AI techniques.Sr. No. Attributes AI techniquesNN ANN SVM FL GA ES1 Uncertainty tolerance 2 Imprecision tolerance 3 Knowledge representation 4 Adaptability 5 Maintainability 6 Learning ability 7 Explanation ability 8 Data mining 9 Generalized Performance NNNeural network, ANNArticial neural network, SVMSupport vectormachine, FL Fuzzy logic, GA Genetic algorithm, ES Expert system; AITechnique with higher number of is more preferred for specic purpose.O.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 500system for PQ classication is presented in [149,150]. Several otherPQclassication techniques such as Warping Classier [151],Digital lteringandmathematical morphology[152], Hardwareand software architecture [153155], Hidden Markov models andvector quantization [156], recurrence quantication analysis [157],Phasor data records andsequence of events [158], Multi-wayprincipal componentanalysis[159], nearestneighborrule[160],Transient-meter [161], Easy VI program [162], inductive inferenceapproach [163], and fault current limiting high-temperaturesuperconductorcable[164]haveplayedanimportantroleinPQevent classication in past years.6.7. Comparative study of PQ events classication techniquesComparativestudyof PQevents classicationtechniques iscarried out based on critical reviews of publications [88164]. Thestrength and weakness of different AI techniques for power qualitydisturbanceclassicationareanalyzedandpresentedinTable5.The comparison of different power quality disturbances classica-tion methods is provided in Table 6.7. Effect of noise on PQ event classiersThesignalscapturedbymonitoringdevicesareoftenaccom-paniedwithnoisetherebyaffectingtheextractionof importantfeatures fromthe signal. Noise has an adverse effect on theperformanceof waveletbasedeventdetection, timelocalizationand classication schemes due to the difculty of separating noiseanddisturbances[165]. Thedisturbedcomponentsofthewave-formcarry the most important informationfor detectionandclassication. When PQ data is decomposed using wavelet trans-form most of the disturbance components are reected at higherfrequency bands which are also occupied by noise. Therefore, evenif the magnitude of noise level present is not very high comparedtofundamental componentformanyPQdisturbancesitiscom-parable to disturbance energy at these bands. Hence, the presenceof noisedegradesthedetectioncapabilityof wavelet basedPQmonitoring system [166].In this regard, a de-noising technique with a change-pointapproachforwavelet-basedpower-qualitymonitoringispresentedin[167]. Consequently, performanceimprovementofpowerqualitydisturbances classicationbasedonanewde-noisingtechniqueispresented in [168]. Also recognizing noise inuenced PQ events withintegrated feature extraction and neuro-fuzzy network is presented in[169]. In[170], authorsproposedasimpleyet effectivede-noisingtechnique using inter- and intra-scale dependencies of waveletcoefcientstode-noisePQwaveformdataforenhanceddetectionandtimelocalizationof PQdisturbances. Thede-noisingtechniquewith a spatial noise-suppression method for wavelet-based PQ mon-itoring is presented in [171].Abrief comparative study of error introduced due to thepresenceofnoiseinclassicationofPQdisturbancesusingANNand SVM is presented in Table 7.8. Future scopeThe present thrust inPQresearchis of real-time analysis;therefore many researchers have given so many enhancements inreal-time detection and mitigation. However, the PQanalysistechnologystill has awaytogrowespeciallyfor real-timePQevents. Therefore, there is a need to work on real-time PQ eventsto develop new techniques for classication and mitigation. Thereis also a need to develop a generalized approach for detection andclassication of single and multiple PQ events. On this basis, it ispossible to improve the study of blackout conditions.9. ConclusionAcritical andcomprehensiveliteraturereviewonthedetectionand classication of PQ events in the electrical power systemis carriedout. This paper presents a literature survey on detection/feature extraction techniques such as wavelet transform, S-transform,Fourier transform, Hilbert-Huang transform and articial intelligencetechniques for PQ classication such as SVM, ANN, Fuzzy logic, and GA.The effect of noise on PQ event classication is also outlined. Finally, atthe end of paper future scope for research in the eld of power qualitydetection and classication techniques has been presented.According to developed review, it can be concluded that commonlyused techniques for detection of PQ disturbances are WT, ST, FT andHHT. The comparative study of these techniques will help in selectingthe particular technique for specic application. Regarding eventclassication, trendhasbeentheuseof algorithmbasedonANN,Table 6Comparison of PQ events classication methods.Sr.No.Method Advantages Disadvantages1 NN High classication accuracy for mixed PQ disturbances Less efcient under noisy conditions2 ANN High accuracy for real time applications and provides mathematicalexibilityConvergence speed and accuracy depends on the network architecture aswell as noise in the signal3 SVM Potential to handle large features, provide stable solution to quadraticoptimization, high learning processesPoor classication accuracy when training samples are minimum4 FL Accurate in modeling and analyzing complex systems Training set for every case isxed, hence not suitable for new disturbances5 GA Accurately classify PQ disturbances generated due to dynamic performanceof power system and damped sub-harmonic signalsHigh computational time6 ES Can be used with or without limited data Expensive system, slow in execution, it is difcult to draw conclusion ifassumptions and actual situations do not match exactlyTable 7Effect of noise on PQ classication.Sr. no. PQ disturbance Percentage error due to noiseANN SVM1 Sinusoidal waveform 10.86 9.672 Voltage sag 8.69 5.433 Voltage swell 8.69 6.454 Notch 4.44 4.545 Transient 6.67 5.49O.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 501SVM, GA, ES, and FS. The major advantages and disadvantages as wellas effectiveness of the particular methods are outlined.References[1] ThaparA, SahaTK, DongZY. Investigationofpowerqualitycategorizationandsimulatingitsimpact onsensitiveelectronicequipment. IEEEPowerEnergy Soc Gen Meet 2004;1:52833.[2] DuganRC, McGranaghanMF, BeatyHW. Electrical powersystemsquality.New York: McGraw-Hill; 1996; 138.[3] FloreRA. Stateof theartintheclassicationof powerqualityevents, anoverview. In: 10thinternational conferenceonharmonics andqualityofpower, vol. 1; 2002. p. 1720.[4] BrennaMorris, FarandaRoberto, Tironi Enrico. Anewproposal forpowerquality and custom power improvement: open UPQC. IEEE Trans Power Deliv2009;24(October (4)):210716.[5] Teke Ahmet, Saribulut Litfu, Tumay Mehmet. A novel reference signalgeneration method for power quality improvement of unied power qualityconditioner. IEEE Trans Power Deliv 2011;26(October (4)):220514.[6] Dalai Sovan, Chatterjee Biswendu, Dey Debangshu, Chakravorti Sivaji, Bhat-tacharya Kesab. Rough-set-based feature selection and classication forpower quality sensing device employing correlation techniques. IEEE Sens J2013;13(February (2)).[7] Sharon Daniel, Montano Juan-Carlos, Lopez Antonio, Castilla Manuel, BorrasDolores, Gutierrez Jaime. Power quality factor for networks supplyingunbalanced nonlinear loads. IEEE Trans Instrum Meas 2008;57(June(6)):126874.[8] Biswal B, Dash PK, Mishra S. A hybrid ant colony optimization technique forpower signal pattern classication. Expert Syst Appl 2011;38:636875.[9] Kwan Kian Hoong, So Ping Lam, Chu Yun Chung. An output regulation basedunied power quality conditioner with Kalman lters. IEEE Trans IndElectron 2012;59(November (11)):424862.[10] Wang Xiaoyu, Yong Jing, Xu Wilsun, Freitas Walmir. Practical power qualitycharts for motor starting assessment. IEEE Trans Power Deliv 2011;26(April(2)):799808.[11] ZhangMing, LiKaicheng, HuYisheng. Areal-timeclassicationmethodofpower quality disturbances. Electr Power Syst Res 2011;81:6606.[12] DarrowK, HedmanB, BourgeoisT, RosenblumD. Theroleof distributedgeneration in power quality and reliability. Final Report, Prepared for: NewYork State Energy Research and Development Authority; 2005.[13] Kezunovic Mladen, Liao Yuan. A novel software implementation concept forpower quality study. IEEE Trans Power Deliv 2002;17(April (2)):5449.[14] IEEE recommendedpractice for monitoring electric power quality. IEEEStandards Board, IEEE Std. 1159-1995, New York: IEEE, Inc.; June 1995.[15] MonederoInigo, LeonCarlos, RoperoJorge, GarciaAntonio, Manuel Jose,MontanoJuanC. Classicationofelectricaldisturbancesinrealtimeusingneural networks. IEEE Trans Power Deliv 2007;22(7):128896.[16] Standard denitions for the measurement of electric power quantities undersinusoidal, non-sinusoidal, balanced, orunbalancedconditions. RevisionofIEEE Std. 1459-2000, IEEE Standard 1459-2010; March 2010.[17] Alfonso-Gil JoseCarlos, Orts-Grau Salvador, Munoz-Galeano Nicolas, Gimeno-SalesFranciscoJ, Segui-ChiletSalvador. Measurementsystemforapowerquality improvement structure based on IEEE Std. 1459. IEEE Trans InstrumMeas 2013;62(August (12)):317788.[18] Saxena D, Verma KS, Singh SN. Power quality event classication: anoverview and key issues. Int J Eng Sci Technol 2010;2(3):18699.[19] Barros Julio, Diego Ramon I, De Apraiz Matilde. Applications of wavelets inelectric power quality: voltage events. Electr Power Syst Res 2012;88:1306.[20] BollenMHJ, GuIYH. Signalprocessing ofpower qualitydisturbances. NewYork, USA: IEEE Press; 2006.[21] Gunal Serkan, GerekOmer Nezik, EceDoganGokhan, EdizkanRifat. Thesearchforoptimalfeaturesetinpowerqualityeventclassication. ExpertSyst Appl 2009;36:1026673.[22] Ribeiro Moises V, Romano Joao MT, Duque Carlos A. An improved method forsignalprocessing and compression in power quality evaluation.IEEE TransPower Deliv 2004;19(April (2)):46471.[23] Ji TY, Wu QH, Jiang L, Tang WH. Disturbance detection, location andclassication in phase space. IET Gener Transm Distrib 2011;5(2):25765.[24] Karimi M, Mokhtari H, Iravani MR. Wavelet based on-line disturbancedetectionfor power qualityapplication. IEEETransPower Deliv2000;15(October (4)):121220.[25] Axelberg Peter GV, Gu IYH, Bollen MHJ. Support vector machine forclassicationofvoltage disturbances. IEEETransPowerDeliv2007;22(July(3)):1297303.[26] Granados-Lieberman D, Romero-Troncoso RJ, Osornio-Rios RA, Garcia-PerezA, Cabal-Yepez E. Techniques and methodologies for power quality analysisand disturbances classication in power system: a review. IET Gener TransmDistrib 2011;5(4):51929.[27] Dash PK, Panigrahi BK, Sahoo DK, Panda G. Power quality disturbance datacompression, detectionandclassicationusingintegratedsplinewaveletand S-transform. IEEE Trans Power Deliv 2003;18(April (2)):595600.[28] Lee IWC, Dash PK. S-transform based intelligent system for classication ofpower quality disturbance signals.IEEE Trans Ind Electron 2003;50(August(4)):8005.[29] GuYH, BollenMHJ. Timefrequencyandtime-scale domainanalysis ofvoltage disturbances. IEEE Trans Power Deliv 2000;15(October (4)):127984.[30] Wright PS. Short-timefourier transforms andWignerVilledistributionsapplied to the calibration of power frequency harmonic analyzers. IEEE TransInstrum Meas 1999;48(April (2)):4758.[31] Jurado Francisco, Saenz Jose R. Comparison betweendiscrete STFTandwaveletsfor theanalysisof power qualityevents. Electr Power Syst Res2002;62:18390.[32] Huang Shyh-Jier, Hsieh Cheng-Tao, Huang Ching-Lien. Application of Morletwaveletstosupervisepowersystemdisturbances. IEEETransPowerDeliv1999;14(January (1)):23543.[33] Santoso Surya, Grady W Mack, Powers Edward J, Lamoree Jeff, Bhatt SiddarthC. Characterizationof distributionpowerqualityeventswithfourierandwavelet transforms. IEEE Trans Power Deliv 2000;15(January (1)):24754.[34] Heydt GT, FjeldPS, LiuCC, PierceD, TuL, HensleyG. Applicationof thewindowed FFT to electric power quality assessment. IEEE Trans Power Deliv1999;14(October (4)):14116.[35] Barros J, PerezE. Automatic detectionandanalysis of voltageevents inpower systems. IEEE Trans Instrum Meas 2006;55(October (5)):148793.[36] MishraS, BhendeCN, Panigrahi BK. Detectionandclassicationof powerqualitydisturbances usingS-transformandprobabilisticneural network.IEEE Trans Power Deliv 2008;23(January (1)):2807.[37] Rodriguez A, Ruiz JE, Aguado J, Lopez JJ, Martin FI, Munoz F. Classication ofpower quality disturbances using S-transform and articial neural networks.In:IEEEinternational conferenceonpowerengineering, energyandelec-trical drives, Torremolinos, Spain; May 2011.[38] DashPK, PanigrahiBK, PandaG. Power quality analysisusingS-transform.IEEE Trans Power Deliv 2003;18(April (2)):40611.[39] Zhao Fengzhan, Yang Rengang. Power-quality disturbance recognition usingS-transform. IEEE Trans Power Deliv 2007;22(April (2)):94450.[40] HeShunfan, Li Kaicheng, ZhangMing. Areal-timepower qualitydistur-bances classication using hybrid method based on S-transformanddynamics. IEEE Trans Instrum Meas 2013;62(September (9)):246575.[41] Uyar Murat, YildirimSelcuk, GencogluMuhsinTunay. Anexpert systembasedonS-transformandneural networkfor automaticclassicationofpower quality disturbances. Expert Syst Appl 2009;36:596375.[42] Reddy M Jaya Bharata, Raghupathy Rama Krishnan, Venkatesh KP, MohantaDK. Power quality analysis using discrete orthogonal S-transform. DigitSignal Process 2013;23:61626.[43] Chilukuri MV, DashPK. Multi-resolutionS-transformbasedfuzzyrecogni-tionsystemfor power quality events. IEEETrans Power Deliv 2004;19(January (1)):32330.[44] Biswal Milan, DashPK. Detectionandcharacterizationof multiplepowerquality disturbances with a fast S-transformand decision tree basedclassier. Digit Signal Process 2013;23:107183.[45] YangLiang, YuJianming, Lai Yongbin. Disturbancesourceidenticationofvoltage sags based on Hilbert Huang transform. In: IEEE power and energyconference, Chengdu, Asia-Pacic; 2010.[46] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and itsalgorithm. In:IEEE-EURASIPworkshoponnonlinearsignal imageprocess,NSIP-03, Grado, Italy; June 2013.[47] Afroni Mohmmad Jasa, Sutanto Danny, Stirling David. Analysis of non-stationary power-quality waveforms using iterative Hilbert Huang transformand SAX algorithm. IEEE Trans Power Deliv 2013;28(October (4)):213444.[48] ShuklaStuti, MishraS, SinghBhim. Empirical-modedecompositionwithHilbert transformfor power qualityassessment. IEEETrans Power Deliv2009;24(October (4)):215965.[49] HazFaeza, ChowdhuryAHasib. Anapproachforclassicationof powerquality disturbances based on Hilbert Huang Transform and relevance vectormachine. In:7thIEEEinternationalconferenceonelectricalandcomputerengineering, Dhaka, Bangladesh; December 2012.[50] ZhanWang, XiangjunZeng, XiaoxiHu, JingyingHu. Themulti-disturbancecomplex power quality signal HHT detection technique. In: IEEE PESconference on innovative smart grid technologies, Tianjin; May 2012.[51] Onal Yasemin, Turhal UCigdem. Theorthogonal HilbertHuangtransformapplication in voltageicker analysis. In: 4th IEEE international conferenceonpowerengineering, energyandelectrical drives, Istanbul, Turkey;May2013.[52] Huang Yong, Liu Yongqiang, Hong Zhiping. Detection and location of powerquality disturbances based on mathematical morphology and Hilbert-Huangtransform. In: 9th IEEE international conference on electronic measurementand instruments, Beijing, China; August 2009.[53] Senoroy Nilanjan, Suryanarayanan Siddharth, Ribeiro Paulo F. An improvedHilbert-Huangmethodfor analysis of time-varyingwaveforms inpowerquality. IEEE Trans Power Syst 2007;22(November (4)).[54] JayasreeT, Devraj D, SukaneshR. Powerqualitydisturbanceclassicationusing Hilbert transformand RBF networks. Neurocomputing 2010;73:14516.[55] SantosoSurya, PowersEdwardJ, MackGradyW, HofmannPeter. Powerquality assessmentvia wavelettransformanalysis. IEEETransPowerDeliv1996;11(April (2)):92430.[56] Santoso S, Powers EJ, Grady WM. Power quality disturbance data compres-sion using wavelet transform methods. IEEE Trans Power Deliv 1997;12(July(3)):12507.O.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 502[57] Angrisani L, Daponte P, Apuzzo MD, Testa A. A measurement method basedon the wavelet transform for power quality analysis. IEEE Trans Power Deliv1998;13(October (4)):9908.[58] Gaouda AM, Salama MMA, Sultan MR, Chikhani AY. Power quality detectionand classication using wavelet multi-resolution signal decomposition. IEEETrans Power Deliv 1999;14(October (4)):146975.[59] XiangxunChen. Wavelet baseddetection, localization, quanticationandclassication of short duration power quality disturbances. IEEE Power EngSoc Winter Meet 2002;2:9316.[60] Hamid Effrina Yanti, Kawasaki Zen-Ichiro. Wavelet based data compressionof power systemdisturbances using the minimumdescription lengthcriterion. IEEE Trans Power Deliv 2002;17(April (2)):4626.[61] LinCH, TsaoMC. Powerqualitydetectionwithclassicationenhanceablewaveletprobabilisticnetworkinapowersystem. IEEProcGenerTransmDistrib 2005;152(November (6)):96976.[62] He Haibo, Starzyk Janusz A. A self organizing learning array system for powerqualityclassicationbasedonwavelettransform. IEEETransPowerDeliv2006;21(January (1)):28695.[63] Morsi WalidG, El-HawaryME. Anewperspectivefor theIEEEstandard14592000 via stationary wavelet transformin the presence of nonstationary power quality disturbance. IEEE Trans Power Deliv 2008;23(October (4)):235665.[64] Morsi Walid G, El-Hawary ME. Wavelet packet transformbasedpowerqualityindices for balancedandunbalancedthreephasesystems understationaryornon-stationaryoperatingconditions. IEEETransPowerDeliv2009;24(October (4)):230010.[65] IEEE recommended practice and requirement for harmonic control inelectric power systems. IEEE Std. 519-1992; April 1993.[66] Denitions for the measurement of electric quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions. IEEE Std. 1459-2000; January2000.[67] Uyar Murat, YildirimSelcuk,Gencoglu Muhsin Tunay. An effective waveletbasedfeatureextractionmethodforclassicationofpowerqualitydistur-bance signals. Electr Power Syst Res 2008;78:174755.[68] RayPrakashK, MohantySoumyaR, Kishor Nand. Disturbancedetectionin grid connected distributed generation system using wavelet andS-transform. Electr Power Syst Res 2011;81:80519.[69] Zafar T, Morsi WG. Power quality and the un-decimated wavelet transform:ananalyticapproachfortimevaryingdisturbances. ElectrPowerSystRes2013;96:20110.[70] Dwivedi UD, SinghSN. Denoisingtechniqueswithchange-pointapproachfor wavelet based power quality monitoring. IEEE Trans Power Deliv 2009;24(July (3)):171927.[71] Krishna BrahmadesamV, BaskaranKaliaperumal. Parallel computing forefcient time frequency feature extraction of power quality disturbances. IETSignal Process 2013;7(4):31226.[72] Tse Norman CF,Chan John YC,Lau Wing-Hong,LaiLoi Lei. Hybrid waveletandHilbert transformwithfrequency-shifting decompositionfor powerquality analysis. IEEE Trans Instrum Meas 2012;61(December (12)):322533.[73] ChoSoo-Hwan, JangGilsoo, KwonSae-Hyuk. Timefrequencyanalysisofpower quality disturbances via GaborWigner transform. IEEE Trans PowerDeliv 2010;25(January (1)):4949.[74] Styvaktakis E, BollenMHJ, GuIYH. Expert systemfor classicationandanalysis of power systemevents. IEEETrans Power Deliv2002;17(April(2)):4238.[75] MaciasJAR, ExpositoAGomez. Self-tuningofKalmanltersforharmoniccomputation. IEEE Trans Power Deliv 2006;21(January (1)):5013.[76] Decanini JoseGMS, Tonelli-NetoMauroS, MalangeFernandoCV, MinussiCarlos R. Detection and classication of voltage disturbances using a fuzzy-ARTMAP-wavelet network. Electr Power Syst Res 2011;81:205765.[77] SujaS, JeromeJovitha. Patternrecognitionof power signal disturbancesusing S-transform and TT transform. Electr Power Energy Syst2010;32:3753.[78] SantosoS, GradyWM, PowersEJ, LamoreeJ, BhattSC. Characterizationofdistribution power quality events with Fourier and wavelet transforms. IEEETrans Power Deliv 2000;15(January (1)):24754.[79] MasoumMAS, Jamali S, GhaffarzadehN. Detectionandclassicationofpowerqualitydisturbancesusingdiscretewavelettransformandwaveletnetworks. IET Sci Meas Technol 2010;4(4):193205.[80] Manimala K, Selvi K, Ahila R. Hybrid soft computing techniques for featureselectionandparameteroptimizationinpowerqualitydatamining. ApplSoft Comput 2011;11:548597.[81] YilmazAhmetS, AlkanAhmet, Asyali MusaH. Applicationsofparametricspectral estimation methods on detection of power system harmonics. ElectrPower Syst Res 2008;78:68393.[82] Perez E, Barros J. An extended Kalmanltering approach for detection andanalysis of voltage dips in power systems. Electr Power Syst Res2008;78:61825.[83] DashPK, LiewAC, SalamaMMA, MishraBR, JenaRK. Anewapproachtoidenticationof transient powerqualityproblemsusinglinercombiners.Electr Power Syst Res 1999;51:111.[84] De La Rosa Juan Jose Gonzalez, Aguera-Perez Agustin, Palomares-Salas JoseCarlos, Sierra-Fernandez Jose Maria, Moreno-Munoz Antonio. A novel virtualinstrumentforpowerqualitysurveillancebasedinhigher-orderstatisticsand case-based reasoning, measurement, vol. 45; 2012. p. 182435.[85] Abdel-Galil TK, El-Saadany EF, Salama MMA. Power quality event detectionusing adaline. Electr Power Syst Res 2003;64:13744.[86] ChenZ, UrwinP. Power qualitydetectionandclassicationusingdigitallters. In: IEEE porto power technical conference, Porto, Portugal; September2001.[87] ZhangH, LiuP, MalikOP. Detectionandclassicationof power qualitydisturbancesinnoisyconditions. IEEProcGenerTransmDistrib2003;150(September (5)):56772.[88] Anis Ibrahim Wael R, Morcos Medhat M. Articial intelligence and advancedmathematical tools for power qualityapplications: a survey. IEEETransPower Deliv 2002;17(April (2)):66873.[89] VapnikV. Thenatureof statistical learningtheory. NewYork: Springer-Verlag; 1995.[90] Khasnobish Anwesh, Bhattacharya Saugat, Konar Amit, Tibarewala DN, NagarAtulyaK. Atwo-foldclassicationforcompositedecisionabout localizedarm movement from EEG by SVM and QDA techniques. In: IEEE internationaljoint conference on neural networks, San Jose, California, USA; 2011.[91] GanyunLv, WangXiaodong, ZhangHaoran, ZhangChangjiang. PQdistur-bances identication based on SVMs classier. In: Proceedings of IEEEinternational conferenceonneural networks andbrain, vol. 1; 2005. p.2226.[92] Janik Przemyslaw, Lobos Tadeusz. Automated classication of power qualitydisturbances using SVM and RBF networks. IEEE Trans Power Deliv 2006;21(July (3)):16639.[93] Whei-Lin, Wu Chien-Hsien, Lin Chia-Hung, Cheng Fu-Sheng. Classication ofmultiple power quality disturbances using support vector machine and one-versus-oneapproach. In: IEEEinternational conferenceonpower systemtechnology, Chongqing; 2006.[94] CerqueiraAugustoSantiago, FerreiraDantonDiego, RibeiroMoisesVidal,Duque Carlos Augusto. Power quality events recognition using a SVM basedmethod. Electr Power Syst Res 2008;78:154652.[95] Whei-Lin, Wu Chien-Hsien,Lin Chia-Hung, Cheng Fu-Sheng. Detection andclassication of multiple power quality disturbances with wavelet multiclassSVM. IEEE Trans Power Deliv October 2008;23(4):257582.[96] Ekici Sami. Classication of power system disturbances using support vectormachines. Expert Syst Appl 2009;36:985968.[97] Panigrahi BK, DashPK, ReddyJBV. Hybridsignal processingandmachineintelligence techniques for detection, quanticationandclassicationofpower quality disturbances. Eng Appl Artif Intell 2009;22:44254.[98] Eristi Huseyin, Demir Yakup. A new algorithm for automatic classication ofpower quality events based on wavelet transform and SVM. Expert Syst Appl2010;37:4094102.[99] Eristi Huseyin, Ucar Aysegul, Demir Yakup. Wavelet based feature extractionand selection for classication of power system disturbances using supportvector machines. Electr Power Syst Res 2010;80:74352.[100] Moravej Z, Abdoos AA, Pazoki M. Detectionandclassicationof powerqualitydisturbancesusingwavelettransformandsupportvectormachine.Electr Power Compon Syst 2010;38:18296.[101] Biswal B, Biswal MK, Dash PK, Mishra S. Power quality event characterizationusingsupport vector machineandoptimizationusingadvancedimmunealgorithm. Neurocomputing 2013;103:7586.[102] Palomares-Salas JC, Aguera-Perez A, De La Rosa JJG. Support vector machinefor power quality disturbances classication using higher statistical features.In: Proceedings of IEEE 7th international conference workshop on compat-ibility and power electronics, vol. 1; 2011. p. 610.[103] Saini Manish Kumar, Kapoor Rajiv. Classication of power quality eventsareview. Electr Power Syst Res 2012;43:119.[104] Ghosh Atish K, Lubkeman David L. The classication of power systemdisturbance waveforms using a neural network approach. IEEE Trans PowerDeliv 1995;10(January (1)):10915.[105] Dilokratanatrakool Choosak, Na Ayudhya Piyasawat Navaratana, ChayavanichTasanee, PrapanavaratCherdchai. Automaticdetection-localizationofpointonwaveformandclassicationof power qualitydisturbancewave-shapefault using wavelet and neural network. In: Proceedings of 2003 IEEEinternational conference on robotics, intelligent systems and signal proces-sing, vol. 1; 2003. p. 1427.[106] Srinivasan D, Ng WS, Liew AC. Neural network based signature recognitionfor harmonic source identication. IEEE Trans Power Deliv 2006;21(January(1)):398405.[107] Silva KM, Souza BA, Brito NSD. Fault detection and classication in transmis-sionlinesbasedonwavelet transformandANN. IEEETransPower Deliv2006;21(October (4)):205863.[108] Cesar DuarteG, ValdomiroVegaG, Gabriel OrdonezP. Automaticpowerqualitydisturbancesdetectionandclassicationbasedondiscretewavelettransformandarticial intelligence. In:IEEEtransmissionanddistributionconference and exposition, Caracas, Latin America; 2006.[109] Chandel AK, Guleria G, Chandel R. Classication of power quality problemsusingwavelet basedarticial neural networks. In: IEEEtransmissionanddistribution conference and exposition, Chicago; April 2008.[110] TalaatNermeen, IlicMarija. ANNsbasedonsubtractiveclusterfeatureforclassifying power quality. In: IEEE 40th North American power symposium,Calgary; September 2008.[111] HuangNantian, XuDianguo, LiuXiaosheng, LinLin. Powerqualitydistur-bances classication based on S-transform and probabilistic neural network.Neurocomputing 2012;98:1223.O.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 503[112] Biswal B, Biswal M, MishraS, JalajaR. Automaticclassicationof powerqualityeventsusingbalancedneuraltree. IEEETransIndElectron2014;61(January (1)):52130.[113] Valtierra-RodriguezMartin, deJesus Romero-TroncosoRene, Osornio-RiosRoque Alfredo, Garcia-Perez Arturo. Detection and classication of single andcombined power quality disturbances using neural networks. IEEE Trans IndElectron 2014;61(May (5)):247382.[114] Liao Chiung-Chou. Enhanced RBF network for recognizing noise-riding powerquality events. IEEE Trans Instrum Meas 2010;59(June (6)):155061.[115] JayasreeT, Devaraj D, SukanesR. Powerqualitydisturbanceclassicationusing S-transform and radial basis network. Appl Artif Intell 2009;23:68093.[116] Chacon MI, Duran JL, Santiesteban LA. A wavelet-Fuzzy logic based system todetect and identify electric power disturbances. In: Proceedings of 2007 IEEEsymposiumoncomputational intelligenceinimageandsignal processing.p. 527.[117] Bizjak Boris, Planinsic Peter. Classication of power disturbances using fuzzylogic. In: Proceedings of 2006 IEEE international conference on powerelectronics and motion control, 2006. p. 135660.[118] YenJ, Langari R. Fuzzylogic:intelligence, control, andinformation. Engle-wood Cliffs, NJ: Prentice-Hall; 1987.[119] Liao Yuan, Lee Jong-Beom. Afuzzy-expert systemfor classifying powerquality disturbances. Electr Power Energy Syst 2004;26:199205.[120] Meher Saroj K, Pradhan Ashok K. Fuzzy classiers for power quality eventsanalysis. Electr Power Syst Res 2010;80:716.[121] Abdelsalam Abdelazeem A, Eldesouky Azza A, Sallam Abdelhay A. Character-ization of power quality disturbances using hybrid technique of linearKalmanlter and fuzzy-expert system. Electr Power Syst Res 2012;83:4150.[122] HooshmandR, EnshaeeA. Detectionandclassicationof singleandcom-binedpowerqualitydisturbancesusingfuzzysystemsorientedbyparticleswarm optimization algorithm. Electr Power Syst Res 2010;80:155261.[123] Biswal B, BeheraHS, Bisoi R, DashPK. Classicationofpowerqualitydatausing decision tree and chemo-tactic differential evolution based fuzzyclustering. Swarm Evol Comput 2012;4:1224.[124] Behera HS, Dash PK, Biswal B. Power quality time series data mining using S-transform and fuzzy expert system. Appl Soft Comput 2010;10:94555.[125] Biswal Birendra, Dash PK, Panigrahi BK. Power quality disturbance classica-tion using fuzzy C-means algorithm and adaptive particle swarm optimiza-tion. IEEE Trans Ind Electron 2009;56(January (1)):21220.[126] DashPK, MishraS, SalamMMA, LiewAC. Classicationof powersystemdisturbances using a fuzzy expert system and a Fourier linear combiner. IEEETrans Power Deliv 2000;15(April (2)):4727.[127] ZhuTX, TsoSK, LoKL. Wavelet-basedfuzzyreasoningapproachtopower-qualitydisturbancerecognition. IEEETrans Power Deliv2004;19(October(4)):192835.[128] Anis Wael R, Morcos Medhat M. Anadaptiveself-learningtechniqueforpredictionof abnormal operationof electrical systems. IEEETransPowerDeliv 2006;21(October (4)):17707.[129] Anis Wael R, Morcos Medhat M. Novel data compression technique for powerwaveforms using adaptive fuzzy logic. IEEE Trans Power Deliv 2005;20(October (3)):213643.[130] AjilKottayilS, ThapliyalPradipKumar, ShuklaMunnV, Pal PradipK, JoshiPrakashC, NavalgundRanganathR. Anewtechniquefortemperatureandhumidity prole retrieval frominfrared-sounder observations using theadaptive neuro-fuzzy inference system. IEEE Trans Geosci Remote Sens2010;48(April (4)):16509.[131] Mizutani Eiji, NishioKenichi. Multi-illuminantcolorreproductionforelec-troniccamerasviaCANFISneuro-fuzzymodularnetworkdevicecharacter-ization. IEEE Trans Neural Netw 2002;13(July (4)):100922.[132] Chang Joongho, Han Gunhee, Valverde Jose M, Griswold Norman C, FranciscoDuque-CarriloJ, Sanchez-SinencioEdgar. Corkqualityclassicationsystemusingauniedimageprocessingandfuzzy-neural networkmethodology.IEEE Trans Neural Netw 1997;8(July (4)):96473.[133] Frenao Pires V, Amaral Tito G, Martins JF. Power quality disturbancesclassicationusingthe 3-Dspace representationandPCAbasedneuro-fuzzy approach. Expert Syst Appl 2011;38:119117.[134] Reddy MJ, Mohanta DK. Adaptive-neuro-fuzzy inference system approach fortransmissionlinefault classicationandlocationincorporatingeffects ofpower swings. IET Gener Transm Distrib 2008;2(2):23544.[135] Reddy M Jaya Bharata, Mohanta Dusmanta Kumar. Performance evaluation ofan adaptive-network-based fuzzy inference system approach for location offaults on transmission lines using Monte Carlo simulation. IEEE Trans FuzzySyst 2008;16(August (4)).[136] Siva Kumar G, Kalyan Kumar B, Mishra Mahesh K. Mitigation of voltage sagswith phase jumps by UPQC with PSO-based ANFIS. IEEE Trans Power Deliv2011;26(October (4)):276172.[137] Goldberg DE. Genetic algorithm in search, optimization and machine learn-ing. Reading, MA: Addisson-Wesley; 1989.[138] Levitin G, Kalyuzhny A, Shenkman A, Chertkov M. Optimal capacitor alloca-tionindistributionsystemsusinggeneticalgorithmandafastenergy losscomputation technique. IEEE Trans Power Deliv 2000;15(October (2)):6238.[139] Kung Chih-Hsein, Devaney Michael J, Huang Chung-Ming, Kung Chih-Ming.Fuzzy-based adaptive digital power metering using a genetic algorithm. IEEETrans Instrum Meas 1998;47(February (1)):1838.[140] El-Zonkoly AM. Power system model validation for power quality assessmentapplications using genetic algorithm. Power Syst Appl 2005;29:9414.[141] EL-Naggar Khaled M, AL-Hasawi Wael M. A genetic based algorithmfor measurement of power systemdisturbances. Electr Power Syst Res2006;76:80814.[142] MaHM, NgKai-Tat, ManKimF. Multiobjectivecoordinatedpowervoltagecontrol usingjumpinggenes paradigm. IEEETrans IndElectron2008;55(November (11)):407584.[143] HongYY, ChenYY. Placementof powerqualitymonitorsusingenhancedgenetic algorithmandwavelettransform.IETGenerTransmDistrib2011;5(4):4616.[144] WangMeng-Hui, TsengYi-Feng. Anovel methodof power qualityusingextension genetic algorithmand wavelet transform. Expert Syst Appl2011;38:124916.[145] Sanchez Pedro, Montoya Francisco G, Manzano-Agugliaro Francisco, GilConsolacion. Genetic algorithm for S-transform optimization in the analysisand classication of electrical signal perturbations. Expert Syst Appl2013;40:676677.[146] RodriguezA, AguadoJA, MartinF, LopezJJ, MunozF, RuizJE. Rulebasedclassication of power quality disturbances using S-transform. Electr PowerSyst Res 2012;86:11321.[147] Salen Mohammad E, Mohamed Azah, Samad Salina Abdul. Rule based systemforpowerqualitydisturbanceclassicationincorporatingS-transformfea-tures. Expert Syst Appl 2010;37:322935.[148] Zheng Gang, Shi Mei-Xiang, Liu Ding, Yao Jian, Miao Zhu-Mei. Power qualitydisturbance classication based on rule-based and wavelet-multi-resolutiondecomposition. In: Proceedingsof 2002IEEEinternational conferenceonmachine learning and cybernetics, Beijing. p. 213741.[149] Ibne Reaz Mamum Bin, Choong Florence, Shahiman Sulaiman Mohd, Mohd-YasinFaisal, KamadaMasaru. Expertsystemforpowerqualitydisturbanceclassier. IEEE Trans Power Deliv 2007;22(October (3)):197988.[150] Yu Jianming, Wang Leilei, Zhou Bo, Tian Wenbo. An expert system based onS-transformforclassicationofvoltagedips. In:Proceedingsof2011IEEEinternational conference on articial intelligence,management science andelectronic commerce, Deng Leng, 2011. p. 372235.[151] Youssef AM, Abdel-Galil TK, El-Saadany EF, Salama MMA. Disturbanceclassicationutilizingdynamictimewarpingclassier. IEEETransPowerDeliv 2004;19(January (1)):2728.[152] Radil Tomas, Ramos Pedro M, Janeiro Fernando M, Cruz Serra A. PQmonitoring system for real-time detection and classication of disturbancesinasingle-phasepowersystem. IEEETransInstrumMeas2008;57(August(8)):172533.[153] DeYongD, Reineri C, MagnagoF. Educational softwareforpowerqualityanalysis. IEEE Latin Am Trans 2013;11(February (1)).[154] LimaRicardo, QuirogaDamian, Reineri Claudio, MagnagoFernando. Hard-ware and software architecture for power quality analysis. Comput Electr Eng2008;34:52030.[155] SalemMohammedE., MohmedAzah, SamadSalinaAbdul, YahyaIskandar.Software tool for real time power quality disturbance analysis and classica-tion. In: 5th IEEE student conference on research and development, Selangor,Malaysia; December 2007.[156] Abdel-Galil TK, El-Saadany EF, Youssef AM, Salama MMA. DisturbanceclassicationusingHiddenMarkovmodels andvector quantization. IEEETrans Power Deliv 2005;20(July (3)):212935.[157] WangXi, BiGui-hong, ChenShi-long, ZuZhe. Amethodtoanalyzepowersystem quality disturbing signal based on recurrence quantication analysis.Proc Eng 2011;15:411521.[158] Moreto Miguel, Rolim Jacqueline G. Using phasor data records and sequenceof events to automate the classication of disturbances of power generatingunits. Electr Power Syst Res 2011;81:126673.[159] Khoisravi Abbas, Melendez Joaquim, Colomer Joan. Classicationof sagsgathered in distribution substations based on multiway principal componentanalysis. Electr Power Syst Res 2009;79:14451.[160] GaoudaAM, KanounSH, SalamaMMA. On-linedisturbanceclassicationusing nearest neighbor rule. Electr Power Syst Res 2001;57:18.[161] Daponte P, Di Penta M, Mercurio G. Transientmeter: a distributed measure-ment system for power quality monitoring. IEEE Trans Power Deliv 2004;19(April (2)):212935.[162] Ferrero Alessandro, Salicone Simona. An easy VI program to detect transientdisturbancesinsupplyvoltage. IEEETransInstrumMeas2005;54(August(4)):172533.[163] Abdel-GalilTK, KamelM, YoussefAM, El-SaadanyEF, SalamaMMA. Powerqualitydisturbanceclassicationusingtheinductiveinferenceapproach.IEEE Trans Power Deliv 2004;19(October (4)):18128.[164] KimHee Jin, ShimJae Woong, SimKideok, Hur Kyeon. Assessment ofimproved power quality due to fault current limiting HTS cable. IEEE TransAppl Superconduct 2013;23(June (3)).[165] Hua Liu, Baoqun Zhao, Guangjian Wang. Application of wavelet network forautomatic power quality disturbance recognition in distribution powersystem. In: Proceedings of IEEE 26th chinese control conference, Zhangjiajie,Hunan, China; 2007. p. 2548.[166] Panigrahi BK, Sinha SK. Detection and classication of non-stationary powerdisturbances in noisy conditions. In: IEEE international conference on powerelectronics, drives and energy systems, New Delhi, India; 2006.[167] Dwivedi UD, Singh SN. Denoising techniques with change-point approach forwavelet-basedpower-qualitymonitoring. IEEETransPowerDeliv2009;24(July (3)):171927.O.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 504[168] HuWei Bing, Li Kai Cheng, ZhaoDangJun, XieBingRuo. Performanceimprovement of power quality disturbance classication based on a new de-noising technique. In: Proceedings of IEEE international conference onelectrical machines and systems; October 2007. p. 180610.[169] Liao Chiung-Chou, Yang Hong-Tzer. Recognizing noise-inuenced powerquality events with integrated feature extraction and neuro-fuzzy network.IEEE Trans Power Deliv 2009;24(October (40)):213241.[170] Dwivedi UD, SinghSN. Enhanceddetectionof power-qualityeventsusingintra and inter-scale dependencies of wavelet coefcients. IEEE Trans PowerDeliv 2010;24(OctoberJanuary (1)):35866.[171] Liao Chiung-Chou, Yang Hong-Tzer, Chang Hsuesh-Hsien. Denoisingtechnique with a spatial noise-suppression method for wavelet-based powerquality monitoring. IEEE Trans Power Deliv 2011;60(July (6)):198696.O.P. Mahela et al. / Renewable and Sustainable Energy Reviews 41 (2015) 495505 505