a build your own open source cnc lathe...

94
A Build- Your - Own Open Source CNC Lathe Machine Fabrication and User manual MHRD Teaching Learning Centre for Design and Manufacturing Indian Institute of Information Technology for Design and Manufacturing Kancheepuram, Chennai - 600127

Upload: phamkhanh

Post on 05-Jul-2018

246 views

Category:

Documents


5 download

TRANSCRIPT

A Build-Your-Own

Open Source CNC Lathe Machine

Fabrication and User manual

MHRD – Teaching Learning Centre for Design and Manufacturing

Indian Institute of Information Technology for Design and Manufacturing –

Kancheepuram, Chennai - 600127

A Build-Your-Own Open Source CNC Lathe Machine

August 14, 2017

Documentation Author

Rakesh Nair

Project Team

Raja Ganapathi S.

Rakesh Nair

Kamal Prasath Balaji

Guide

Dr. Shunmugham R. Pandian

For information:

Teaching Learning Center for Design and Manufacturing(TLC),

IIITDM Kancheepuram,

Melakottaiyur Village, Chennai 600127

E-mail: [email protected]

Website: www.tlc.iiitdm.ac.in

Table of Contents

1. Introduction …………………………………………………………………1

1.1 CNC…………………………………………………………………1

1.2 Lathe machine ………………………………………………………4

2. CNC Lathe fabrication……………………………………………………... 6

2.1 Design……………………………………………………………….6

2.1 Parts…………………………………………………………………6

2.2 Fabrication procedure……………………………………………….9

3. Associated software…………………………………………………...……17

3.1 CAD software……………………………………………………....17

3.3 Grbl GRU………………………………………………………......17

3.4 Universal G-Code sender……………………………………….….18

3.5 Grbl…………………………………………………………………18

4. Operating Procedure……….…………………………………………….…19

5. Sample Experiments……………………………………………..…………27

5.1 Simple Facing and Turning…………………………...……………27

5.2 Step Turning………………………………………………………..32

5.3 Taper Turning………………………………………………………39

5.4 Step and Taper Turning…………………………………………….46

6. Conclusion………………………………………………………………….53

Appendix I – Design Sheets

Appendix II – Product Datasheets

Appendix III – Bill of Materials and Part Suppliers

1

1. INTRODUCTION

Industrial revolution that had led to the emergence of modern era has its roots in the Lathe

machine. Widely known as the ‘Mother of machine tools’, Lathe works by removing materials

from a workpiece to give a desired shape and size. Various material removing operations such

as facing, turning, chamfering, knurling, grooving etc can be performed with it. In the past,

mechanized power generated by water wheels and steam engines was used to operate lathe,

imparting a certain degree of control to it. But it’s not until the 1950s that servomechanisms

were applied to the control, coupling with the computers to yield Computer Numerical Control

(CNC) lathe. Today CNC lathe machines are being used in almost all manufacturing industries.

1.1 Computer Numerical Control (CNC)

Computer Numerical Control or CNC refers to the automation of machine tools by using

computers executing pre-programmed sequence of machine control commands.

A simple CNC system

Taking digitized data fed into it by the user, a computer and CAD/CAM (Computer Aided

Design / Computer Aided Manufacturing) program is used to control, automate and monitor

the movement of the machine. The machine can be a lathe, milling machine, router, welder,

grinder, laser or waterjet cutter. CNC controller works with a series of motors and drive

components to move and control the machine axes, executing programmed motions.

1.1.1 Parts

1.1.1.1 Computer system and CAD/CAM

All modern CNC machines constitute a computer system with a CAD/CAM software into

which the user can feed in the CAD diagram or directly enter a set of commands called NC

code for the machine to understand.

2

1.1.1.2 Numerical Control or NC Code

Originally developed to program parts directly at the machine keyboard without any CAM

software, the Numerical Control (NC) codes tell the machine what moves to execute, one by

one, as well as controlling other machining functions like spindle speed, feed rate. The most

commonly used language is G-code or ISO code, a simple alphanumeric programming

language developed for early CNC machines. Instead, if a CAD diagram is fed, the

postprocessor in the program converts the diagram to the relevant NC code and pass it to the

Control Unit.

1.1.1.3 Control Unit

The control unit constitutes a controller, drives and circuitry for machine motion along multiple

axes, atleast two (X and Y), in the case of CNC lathe machine while a third axis (Z) can be

used to move the tool spindle as in the case of CNC milling machine. Stepper motors are used

for accurate control of the machining process resulting in high quality, accurate finishing.

1.1.2 Types of control

Open loop control, without any feedback can used for simple machining operations requiring

less accuracy and speed.

A simple open loop control

Closed loop control with feedback from sensors is used for increased accuracy, repeatability

and speed.

A simple closed loop control

1.1.2 G-Code and M-Code

G-Code and M-Code are the most widely used Numerical Control (NC) programming

languages for the automation of machine tools. The codes constitute instructions to the machine

controller that tells the drives where to move, performing machining operation on the mounted

workpiece.

G-Code instruction specifically deals with the type of motion control required for machining

operation.

Open loop

controller

Driver Motor

Closed loop

controller

Driver Motor

Feedback

3

M-Code deals with machine functions like coolant control, spindle control,

List of G-Code, M-Code instructions:

G00 - Positioning at rapid speed; Milling and Turning

G01 - Linear interpolation (machining a straight line); Milling and Turning

G02 - Circular interpolation clockwise (machining arcs); Milling and Turning

G03 - Circular interpolation, counter clockwise; Milling and Turning

G04 - Milling and Turning, Dwell

G09 - Milling and Turning, Exact stop

G10 - Setting offsets in the program; Milling and Turning

G12 - Circular pocket milling, clockwise; Milling

G13 - Circular pocket milling, counter clockwise; Milling

G17 - X-Y plane for arc machining; Milling and Turning with live tooling

G18 - Z-X plane for arc machining; Milling and Turning with live tooling

G19 - Z-Y plane for arc machining; Milling and Turning with live tooling

G20 - Inch units; Milling and Turning

G21 - Metric units; Milling and Turning

G27 - Reference return check; Milling and Turning

G28 - Automatic return through reference point; Milling and Turning

G29 - Move to location through reference point; Milling and Turning (slightly

different for each machine)

G31 - Skip function; Milling and Turning

G32 - Thread cutting; Turning

G33 - Thread cutting; Milling

G40 - Cancel diameter offset; Milling. Cancel tool nose offset; Turning

G41 - Cutter compensation left; Milling. Tool nose radius compensation left; Turning

G42 - Cutter compensation right; Milling. Tool nose radius compensation right;

Turning

G43 - Tool length compensation; Milling

G44 - Tool length compensation cancel; Milling (sometimes G49)

G50 - Set coordinate system and maximum RPM; Turning

G52 - Local coordinate system setting; Milling and Turning

G53 - Machine coordinate system setting; Milling and Turning

G54~G59 - Workpiece coordinate system settings #1 t0 #6; Milling and Turning

G61 - Exact stop check; Milling and Turning

G65 - Custom macro call; Milling and Turning

G70 - Finish cycle; Turning

G71 - Rough turning cycle; Turning

G72 - Rough facing cycle; Turning

G73 - Irregular rough turning cycle; Turning

G73 - Chip break drilling cycle; Milling

G74 - Left hand tapping; Milling

G74 - Face grooving or chip break drilling; Turning

G75 - OD groove pecking; Turning

G76 - Fine boring cycle; Milling

G76 - Threading cycle; Turning

G80 - Cancel cycles; Milling and Turning

G81 - Drill cycle; Milling and Turning

G82 - Drill cycle with dwell; Milling

G83 - Peck drilling cycle; Milling

G84 - Tapping cycle; Milling and Turning 6

4

G85 - Bore in, bore out; Milling and Turning

G86 - Bore in, rapid out; Milling and Turning G87 - Back boring cycle; Milling

G90 - Absolute programming

G91 - Incremental programming

G92 - Reposition origin point; Milling

G92 - Thread cutting cycle; Turning

G94 - Per minute feed; Milling

G95 - Per revolution feed; Milling

G96 - Constant surface speed control; Turning

G97 - Constant surface speed cancel

G98 - Per minute feed; Turning

G99 - Per revolution feed; Turning

M00 - Program stop; Milling and Turning

M01 - Optional program stop; Turning and Milling

M02 - Program end; Turning and Milling

M03 - Spindle on clockwise; Turning and Milling

M04 - Spindle on counter clockwise; Turning and Milling

M05 - Spindle off; Turning and Milling

M06 - Tool change; Milling

M08 - Coolant on; Turning and Milling

M09 - Coolant off; Turning and Milling

M10 - Chuck or rotary table clamp; Turning and Milling

M11 - Chuck or rotary table clamp off; Turning and Milling

M19 - Orient spindle; Turning and Milling

M30 - Program end, return to start; Turning and Milling

M97 - Local sub-routine call; Turning and Milling

M98 - Sub-program call; Turning and Milling

M99 - End of sub program; Turning and Milling

1.2 Lathe machine

Lathe is a machine tool that rotates the workpiece about an axis of rotation to perform various

operations like facing, turning, knurling, chamfering etc. using cutting tools to create objects

with symmetry about that axis.

Manual lathe machine

5

1.2.1 Parts of manual lathe machine

Main parts of manual lathe are as following;

1.2.1.1 Lathe Bed

The bed of the lathe machine is the base on which all other parts are mounted. It is horizontal,

massive and rigid single piece of casting made to support other active parts of the lathe.

Headstock and tailstock are located the two extremities of the bed. A guideway runs in between

holding the carriage for transverse axis. Generally, cast iron alloyed with nickel and chromium

material is used for manufacturing lathe bed.

1.2.1.2 Headstock

Head stock bears the horizontal axle parallel to the bed, called spindle. Spindles are often

hollow and have exterior threads for mounting work-holding accessories like chuck. Spindle is

driven by an electric motor via gearbox or belt to impart motion to the workpiece. In addition

to this, the headstock can also contain speed control methods for adjusting the spindle speed as

the machining requirement.

1.2.1.3 Carriage

The carriage runs on the guideway along the working length of the lathe. It carries the cross

slide, saddle, compound rest and tool post for the transverse movement and machining. It can

be adjusted to fit any angle for machining operation. The compound rest is actuated by a screw,

which rotates a nut fixed to the saddle. Tool post mounts the tool holder.

1.2.1.4 Tailstock

The tail stock is commonly used for the objective of primarily giving an outer bearing and

support the circular job being turned on centres. Tail stock can be easily set or adjusted for

alignment or non-alignment with respect to the spindle centre and carries a centre called dead

centre for supporting one end of the work. Both live and dead centres have 60° conical points

to fit centre holes in the circular job, the other end tapering to allow for good fitting into the

spindles. The dead centre can be mounted in ball bearing so that it rotates with the job avoiding

friction of the job with dead centre as it important to hold heavy jobs.

1.2.1.5. Feed Mechanism

Feed mechanism is the combination of different units through which motion of headstock

spindle is transmitted to the carriage of lathe machine.

The gearing at the end of bed transmits the rotary motion of headstock spindle to the feed

gear box. Through the feed gear box the motion is further transmitted either to the feed shaft

or lead screw, depending on whether the lathe machine is being used for plain turning or screw

cutting. The feed gear box contains a number of different sizes of gears. The feed gear box

provides a means to alter the rate of feed, and the ration between revolutions of the headstock

spindle and the movement of carriage for thread cutting by changing the speed of rotation of

the feed rod or lead screw. The apron is fitted to the saddle. It contains gears and clutches to

transmit motion from the feed rod to the carriage, and the half nut which engages with the lead

screw during cutting threads.

6

2. CNC LATHE FABRICATION

2.1 Design

The main design requirements of the CNC lathe include machining accuracy, rigidity and

compactness. Wood was chosen as the primary material for the CNC lathe for its sturdiness,

low weight, easy machinability and low cost. To attain compactness, easy usage and light

weight, the machine has been designed to be table top type.

CNC Lathe design

2.2 Parts of CNC Lathe

Hardware parts of the machine are combined with fabricated as well as few commercially

available products. Main frame of the machine is constructed using wood blocks of 1”and 3

“size, as per design. Design file of each component is attached in Appendix I. Following table

contains list of components required for CNC Lathe machine construction.

Table 1. Parts List

Parts List

Wooden blocks – 1”, 3”

CAD Model – Base Wooden block

Headstock frame

CAD Model – Headstock Setup

7

4” Three Jaw chuck

24V 250W 2650 DC Motor

V- belt

(2x) 680mm x15mm Guideway & Sliders

CAD Model: Guideway 1

(2x) 180mm x15mm Guideway & Sliders

CAD Model: Guideway 2

(1x) 12mm, 580mm Ball lead screw rod & nut

CAD Model: Ballscrew 1

(1x) 12mm, 220mm Ball lead screw rod & nut

CAD Model: Ballscrew 2

(1x) NEMA 17 Stepper Motor

CAD Model: NEMA-17

8

(1x) NEMA 23 Stepper Motor

CAD Model: Stepper Motor N-23

(2x) 24V, 3.3A Micro Stepper Motor Drivers

(1x) 24V, 10A Switched Mode Power Supply

(1x) Arduino UNO Microcontroller board

1 x Emergency Stop switch

Miscellaneous Fasteners

(2x) Bearing block

CAD Model: Support Bearing

(2x) Motor clamp

CAD Model: MotorClamp - N17

`

9

2.3 Fabrication procedure

1. Lathe headstock frame is firmly fixed on the wooden base of dimension 500mm x

200mm x50mm. Spindle is connected to an electric motor via V belt. A 4” three jaw

chuck is mounted on the spindle to hold the workpiece.

2. 3” Wood block is cut into 700mm x 200mm x 50mm base for the lathe bed.

3. Two wood blocks of dimension 700mm x 40mm x 50mm are cut for the mounting the

linear guideway (X axis).

4. Two 15mm, 680mm guideway rails are mounted on top of the wooden blocks (X axis).

10

5. NEMA 23 stepper motor is fixed to the motor clamp.

6. The motor is fixed in between the guideways.

7. Rigid coupler is attached to the motor shaft.

11

8. Bearing blocks are fixed at both ends to mount the ball lead screw.

9. A protrusion block of dimension 80mm x 55mm x 20mm is attached to the base of the

carriage to be fixed to the ball lead screw nut.

10. A ball lead screw of diameter 12mm and length 580mm is fixed in between the guideway

blocks with a bearing block and NEMA 23 stepper motor.

12

11. 1” wooden block is used for making the carriage with dimension of 310mm x 150mm.

12. Two wood blocks of dimension mm 250mm x 30mm x 40mm are cut for mounting the

transverse guideway (Y axis).

13. Two HSAC 15mm, 180mm guideway rails are mounted on top of the wooden blocks (Y

axis).

14. Mount the carriage to the X axis guideway saddles.

15. A Motor clamp is fixed on the carriage at one end.

13

16. NEMA 17 motor is fixed to the clamp.

17. Bearing block are fixed in between the guideways.

18. A Tool post is made from 1” block with dimensions 165mm x 110mm and a support

block is attached to it.

14

19. A second ball lead screw of diameter 12mm and length 220mm is attached to the support

block of the tool post.

20. The assembly is then fixed in between the guideway blocks with a bearing block and

NEMA 17 stepper motor.

21. Tool post is mounted on saddle block slides on the transverse guideway and a protrusion

block from the tool holder base is connected to the ball lead screw nut. The ball lead

screw is then attached to the NEMA 17 motor with a rigid coupler.

15

22. Tool holder of dimension 110mm x 100mm is placed on the tool holder with screw.

23. A cutting tool is fixed to the holder with screws.

24. Stepper motors NEMA 23 (Y Axis) and NEMA 17 (X axis) are connected to the motor

drivers.

Arduino based control unit

16

25. Motor drivers are connected to the Arduino Uno, which is connected to the desktop PC.

Spindle motor is also connected to the Arduino through a potentiometer for rotary speed

control of the workpiece.

CNC Lathe assembly

17

2. ASSOCIATED SOFTWARE

3.1 CAD software - AutoCAD Student version

AutoCAD is a computer aided design and drafting software application with 2D, 3D design

and documentation, drawings.

AutoCAD Student version is a fully comprehensive 3D CAD application that you can

download and install for free.

You can download the student version of AutoCAD from the following link:-

https://www.autodesk.com/education/free-software/autocad

3.2 GrblGRU

GrblGRU is a free Computer aided manufacturing (CAM) and simulation software for

converting the CAD diagram to G-Code. GrblGRU works by importing a .dxf file of the CAD

diagram and converts it into G-Code to be post processed by a G-Code parser.

3.2.1 Download and Installation of GrblGRU v3.6

GrblGRU v3.6 is available in the page:

https://www.dropbox.com/s/ve7llxtbaeht0h7/GrblGru.7z?dl=0

Download the .7zip file and extract it with 7zip extractor.

Run the Grbl-GRU installer .exe file to start the installation.

After installation you can run the program.

GrblGRU window

On top, just below the title bar you can find the menu bar for the general tasks of loading,

saving, importing, settings and help index. Tool bar contains various options for clearing the

workplace, scale objects, scanning / probing, G Code creator, STL creator, measurements etc.

To the centre is the workplace window where the CAD diagram / simulation of the current

process can be viewed. To the left of workplace is the parameter section for 2D / 3D

configuration. Different properties and values like feed, spindle speed, port etc can be

configured as per the numerical control requirements. Jogging can also be performed with the

18

directional buttons provided. To the right is the preset diagrams for quick access and

simulation.

3.3 Universal G-Code sender

Universal G-Code sender is a Java based Grbl compatible cross platform G-Code sender used

to run Grbl controlled CNC machines. It is used to send the NC code generated into the Grbl

program in Arduino for CNC machining.

Universal G-Code sender also contains controls to directly jog the tool for accurate positioning

before CNC machining and visualizing window to see the real time machining in progress.

3.4 Grbl G-Code parser

Grbl is an open source, embedded, high performance, G-Code parser and CNC controller writer

in optimized C that will run on Arduino. It is a high performance, low cost alternative to parallel

port based motion control for CNC machines. Running primarily on Atmega 323

microcontroller, Grbl maintains upto 30kHz of stable, jitter free control pulses and can achieve

precise timing and asynchronous operation.

It accepts standards-compliant G-Code and has been tested with output of several CAM tool

with no problems. Grbl also includes full acceleration management with look ahead in which

the controller will look up to 18 motions into the future and plan its velocities ahead to deliver

smooth acceleration and jerk free cornering. Compiled version of GRBL software is available

in the form of hex file and is burned into the Arduino. Grbl CNC code will receive signals from

Arduino’s seriel buffer and parses it to decode the serial data into G code. Grbl settings in

Arduino will be stored in the EEPROM of Arduino and so when configured will not erased

during power off. Settings can also be viewed and modified anytime by sending corresponding

configuration characters. $$ symbol is used as configuration character from which we can view

different settings of the machine, such as axis feed rate, steps/mm, software limits, axis

acceleration values and resolution of movement.

3.2.1 Download and installation of Grbl

Grbl is available in the GitHub site: https://github.com/grbl/grbl

Download the zip format and extract the bundle. Inside you will find a list of build files, header

files and examples for Arduino.

19

4. OPERATING PROCEDURE

1. Draw one half of the symmetrical part to be machined in AutoCAD (Student version) CAD

software.

2. Export the CAD diagram in .dxf format.

20

3. Open GrblGRU and import the .dxf file.

4. Click on 2D on the tool bar to scale the imported part. Set Fx to appropriate value and

accordingly other scaling parameters will change automatically. Lathe parameters can be

altered in the properties section. Change the Y coordinate to half the size of the actual

workpiece. Also set X to move the tool and set the reference position.

21

5. Set offset distance of 1mm for both X & Y. Now set the origin by clicking on the ‘Set

Coordinate Origin’.

6. Click NC on the tool bar.

22

7. Now change the parameters as per the machining requirements.

8. Click Start to start the simulation.

23

9. Select File and Save NC with .nc extension to export the file.

10. Open Universal GCode Sender and set COM port for Arduino.

24

11. Use the virtual control panel to manually move the tool to 1mm in X & Y for origin

reference as per the NC code.

12. Click on ‘machine control’ and reset zero in X & Y.

25

13. Select file mode ad browse open the NC file previously saved.

14. Click ‘Send’ to transfer the code to Grbl in the Arduino that controls the CNC Lathe.

Visualize button on the right can be used for real-time machining simulation.

26

15. CNC Lathe will automatically machine the workpiece as per the CAD diagram input by the

user. You can see the machining visualization by clicking on the ‘Visualize’ button on top right

side.

16. Wood and wax workpiece can be machined to the required shape.

27

5. SAMPLE EXPERIMENTS

5.1 Experiment 1 – Simple Facing and Turning using CNC Lathe

Aim: To machine the given work piece according to the dimensions given in diagram using

CNC Lathe

Tools required:

Chuck key

Tool post spanner/ Hex key

Turning tool

Chamfering tool

Vernier Calliper

Steel rule

Power supply

Software required:

GrblGru V.3.7.0

Arduino 1.8.1

Universal G-Code sender

Procedure:

1. The work piece is held in the lathe chuck.

2. The cutting tool is held in the tool post and its cutting point is set to lathe axis using

reference from the open source software.

3. Import the drawing in. stl /.nc/.dxf into the software

4. Make sure the drawn piece is imported within the specific parameters. Otherwise

Resize the workpiece into appropriate dimensions.

5. Fix the feed cut parameters and tolerance level and fix the tool piece at the centre.

6. Once the outer diameter of the piece is set we can start simulating the feed cut

machining

7. Save the simulated piece by converting it into G-code using the G-code creator

button.

8. After the G code is generated, switch on the power source and start rotating the chuck

and spindle setup. (make sure that the tool post is set to pre-set origin before

commencement of running the code)

9. Commence the transmission of code into the universal G-code sender and start the

process by pressing the send button.

10. Automatically according to the code produced in the system, the carriage is moved on

the bed and is clamped at the required position.

11. By giving cross feed the tool is fed parallel to lathe axis.

12. The facing operation of the work piece is machined to required dimensions.

13. The system by repeating the same procedure, the next face of work piece is machined.

14. Then the tool is automatically fed parallel to lathe axis with suitable depth of cut. (can

be done manually)

15. The finished piece is retrieved.

28

Result:

The given work piece is machined according to required dimensions by the CNC lathe

according to the code given by the universal G-code Sender.

Diagram:

Part Diagram in modelling software

Simulation and generation of G-Code in GrblGRU

Materials supplied: Machinable Wax Ø23mm x 50mm

Tool material: High Speed Steel

29

Generated Code:

; Created by

GrblGru:GCodeCreator

; 25.03.2017 11:56:16

; Finfeed= 800

; F= 1500

; Fmax= 2000

; OffsetX = 0

; DeltaY = 1

; Smart clearance = True

; Free entry = False

; Both directions = True

; Finfeed Finish = 400

; F Finish = 600

; Fmax Finish= 2000

; DeltaY Finish = 2

G90 G1 F1000

; Rough 21

; Move to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; Finish

G90 G1 F600.00 x0.000 y-2.989

G90 G1 F600.00 x-0.500 y-2.663

G90 G1 F600.00 x-1.000 y-2.337

G90 G1 F600.00 x-1.500 y-2.012

G90 G1 F600.00 x-2.000 y-1.990

G90 G1 F600.00 x-2.500 y-1.990

G90 G1 F600.00 x-3.000 y-1.990

G90 G1 F600.00 x-3.500 y-1.990

G90 G1 F600.00 x-4.000 y-1.990

G90 G1 F600.00 x-4.500 y-1.990

G90 G1 F600.00 x-5.000 y-1.990

G90 G1 F600.00 x-5.500 y-1.990

G90 G1 F600.00 x-6.000 y-1.990

G90 G1 F600.00 x-6.500 y-1.990

G90 G1 F600.00 x-7.000 y-1.990

G90 G1 F600.00 x-7.500 y-1.990

G90 G1 F600.00 x-8.000 y-1.990

G90 G1 F600.00 x-8.500 y-1.990

G90 G1 F600.00 x-9.000 y-1.990

G90 G1 F600.00 x-9.500 y-1.990

G90 G1 F600.00 x-10.000 y-1.990

G90 G1 F600.00 x-10.500 y-1.990

G90 G1 F600.00 x-11.000 y-1.990

G90 G1 F600.00 x-11.500 y-1.990

G90 G1 F600.00 x-12.000 y-1.990

G90 G1 F600.00 x-12.500 y-1.990

G90 G1 F600.00 x-13.000 y-1.990

G90 G1 F600.00 x-13.500 y-1.990

G90 G1 F600.00 x-14.000 y-1.990

G90 G1 F600.00 x-14.500 y-1.990

G90 G1 F600.00 x-15.000 y-1.990

G90 G1 F600.00 x-15.500 y-1.990

G90 G1 F600.00 x-16.000 y-1.990

G90 G1 F600.00 x-16.500 y-1.990

G90 G1 F600.00 x-17.000 y-1.990

G90 G1 F600.00 x-17.500 y-1.990

G90 G1 F600.00 x-18.000 y-1.990

G90 G1 F600.00 x-18.500 y-1.990

G90 G1 F600.00 x-19.000 y-1.990

G90 G1 F600.00 x-19.500 y-1.990

30

G90 G1 F600.00 x-20.000 y-1.990

G90 G1 F600.00 x-20.500 y-1.990

G90 G1 F600.00 x-21.000 y-1.990

G90 G1 F600.00 x-21.500 y-1.990

G90 G1 F600.00 x-22.000 y-1.990

G90 G1 F600.00 x-22.500 y-1.990

G90 G1 F600.00 x-23.000 y-1.990

G90 G1 F600.00 x-23.500 y-1.990

G90 G1 F600.00 x-24.000 y-1.990

G90 G1 F600.00 x-24.500 y-1.990

G90 G1 F600.00 x-25.000 y-1.990

G90 G1 F600.00 x-25.500 y-1.990

G90 G1 F600.00 x-26.000 y-1.990

G90 G1 F600.00 x-26.500 y-1.990

G90 G1 F600.00 x-27.000 y-1.990

G90 G1 F600.00 x-27.500 y-1.990

G90 G1 F600.00 x-28.000 y-1.990

G90 G1 F600.00 x-28.500 y-1.990

G90 G1 F600.00 x-29.000 y-1.990

G90 G1 F600.00 x-29.500 y-1.990

G90 G1 F600.00 x-30.000 y-1.990

G90 G1 F600.00 x-30.500 y-1.990

G90 G1 F600.00 x-31.000 y-1.990

G90 G1 F600.00 x-31.500 y-1.990

G90 G1 F600.00 x-32.000 y-1.990

G90 G1 F600.00 x-32.500 y-1.990

G90 G1 F600.00 x-33.000 y-1.990

G90 G1 F600.00 x-33.500 y-1.990

G90 G1 F600.00 x-34.000 y-1.990

G90 G1 F600.00 x-34.500 y-1.990

G90 G1 F600.00 x-35.000 y-1.990

G90 G1 F600.00 x-35.500 y-1.990

G90 G1 F600.00 x-36.000 y-1.990

G90 G1 F600.00 x-36.500 y-1.990

G90 G1 F600.00 x-37.000 y-1.990

G90 G1 F600.00 x-37.500 y-1.990

G90 G1 F600.00 x-38.000 y-1.990

G90 G1 F600.00 x-38.500 y-1.990

G90 G1 F600.00 x-39.000 y-1.990

G90 G1 F600.00 x-39.500 y-1.990

G90 G1 F600.00 x-40.000 y-1.990

G90 G1 F600.00 x-40.500 y-1.990

G90 G1 F600.00 x-41.000 y-1.990

G90 G1 F600.00 x-41.500 y-1.990

G90 G1 F600.00 x-42.000 y-1.990

G90 G1 F600.00 x-42.500 y-1.990

G90 G1 F600.00 x-43.000 y-1.990

G90 G1 F600.00 x-43.500 y-1.990

G90 G1 F600.00 x-44.000 y-1.990

G90 G1 F600.00 x-44.500 y-1.990

G90 G1 F600.00 x-45.000 y-1.990

G90 G1 F600.00 x-45.500 y-1.990

G90 G1 F600.00 x-46.000 y-1.990

G90 G1 F600.00 x-46.500 y-1.990

G90 G1 F600.00 x-47.000 y-1.990

G90 G1 F600.00 x-47.500 y-1.990

G90 G1 F600.00 x-48.000 y-1.990

G90 G1 F600.00 x-48.500 y-1.990

G90 G1 F600.00 x-49.000 y-1.990

G90 G1 F600.00 x-49.500 y-1.990

G90 G1 F600.00 x-50.000 y-1.990

G90 G1 F600.00 x-50.500 y-1.990

G90 G1 F600.00 x-51.000 y-1.990

G90 G1 F600.00 x-51.500 y-1.990

G90 G1 F600.00 x-52.000 y-1.990

G90 G1 F600.00 x-52.500 y-1.990

G90 G1 F600.00 x-53.000 y-1.990

G90 G1 F600.00 x-53.500 y-1.990

31

G90 G1 F600.00 x-54.000 y-1.990

G90 G1 F600.00 x-54.500 y-1.990

G90 G1 F600.00 x-55.000 y-1.990

G90 G1 F600.00 x-55.500 y-1.990

G90 G1 F600.00 x-56.000 y-1.990

G90 G1 F600.00 x-56.500 y-1.990

G90 G1 F600.00 x-57.000 y-1.990

G90 G1 F600.00 x-57.500 y-1.990

G90 G1 F600.00 x-58.000 y-1.990

G90 G1 F600.00 x-58.500 y-1.990

G90 G1 F600.00 x-59.000 y-1.990

G90 G1 F600.00 x-59.500 y-1.990

G90 G1 F600.00 x-60.000 y-1.990

G90 G1 F600.00 x-60.500 y-1.990

G90 G1 F600.00 x-61.000 y-1.990

G90 G1 F600.00 x-61.500 y-1.990

G90 G1 F600.00 x-62.000 y-1.990

G90 G1 F600.00 x-62.500 y-1.990

G90 G1 F600.00 x-63.000 y-1.990

G90 G1 F600.00 x-63.500 y-1.990

G90 G1 F600.00 x-64.000 y-1.990

G90 G1 F600.00 x-64.500 y-1.990

G90 G1 F600.00 x-65.000 y-1.990

G90 G1 F600.00 x-65.500 y-1.990

G90 G1 F600.00 x-66.000 y-1.990

G90 G1 F600.00 x-66.500 y-1.990

G90 G1 F600.00 x-67.000 y-1.990

G90 G1 F600.00 x-67.500 y-1.990

G90 G1 F600.00 x-68.000 y-1.990

G90 G1 F600.00 x-68.500 y-1.990

G90 G1 F600.00 x-69.000 y-1.990

G90 G1 F600.00 x-69.500 y-1.990

G90 G1 F600.00 x-70.000 y-1.990

G90 G1 F600.00 x-70.500 y-1.990

G90 G1 F600.00 x-71.000 y-1.990

G90 G1 F600.00 x-71.500 y-1.990

G90 G1 F600.00 x-72.000 y-1.990

G90 G1 F600.00 x-72.500 y-1.990

G90 G1 F600.00 x-73.000 y-1.990

G90 G1 F600.00 x-73.500 y-1.990

G90 G1 F600.00 x-74.000 y-1.990

G90 G1 F600.00 x-74.500 y-1.990

G90 G1 F600.00 x-75.000 y-1.990

G90 G1 F600.00 x-75.500 y-1.990

G90 G1 F600.00 x-76.000 y-1.990

G90 G1 F600.00 x-76.500 y-1.990

G90 G1 F600.00 x-77.000 y-1.990

G90 G1 F600.00 x-77.500 y-1.990

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

32

5.2 Experiment 2 – Step Turning using CNC Lathe

Aim: To machine the given work piece according to the dimensions given in diagram using

CNC Lathe

Tools required:

Chuck key

Tool post spanner/ Hex key

Turning tool

Chamfering tool

Vernier Calliper

Steel rule

Power supply

Software required:

GrblGru V.3.7.0

Arduino 1.8.1

Universal G-Code sender

Procedure:

1. The work piece is held in the lathe chuck.

2. The cutting tool is held in the tool post and its cutting point is set to lathe axis using

reference from the open source software.

3. Import the drawing in. stl /.nc/.dxf into the software

4. Make sure the drawn piece is imported within the specific parameters. Otherwise

resize the work piece into appropriate dimensions.

5. Fix the feed cut parameters and tolerance level and fix the tool piece at the centre.

6. Once the outer diameter of the piece is set we can start simulating the feed cut

machining

7. Save the simulated piece by converting it into G-code using the G-code creator

button.

8. After the G code is generated, switch on the power source and start rotating the chuck

and spindle setup. (make sure that the tool post is set to pre-set origin before

commencement of running the code)

9. Commence the transmission of code into the universal G-code sender and start the

process by pressing the send button.

10. Automatically the facing and plain turning operation are carried out as per the given

dimensions.

11. After the plain turning operation is completed the tool is fed parallel to the lathe axis

to the particular length assigned by the code.

12. Two or more cuts are given accordingly to retrieve the required diameter.

13. Now the first step of machining is completed and by repeating the same process the

CNC lathe comenses its operation with the specified diameter.

14. By this time the work piece would be completed.

33

Result:

The given work piece is machined according to required dimensions by the CNC lathe

according to the code given by the universal G-code Sender

Diagram:

Part Diagram in modelling software

Simulation and generation of G-Code in GrblGRU

Materials supplied: Machinable Wax Ø23mm x 50mm

Tool material: High Speed Steel

Code Generated:

; Created by

GrblGru:GCodeCreator

; 25.03.2017 11:41:14

34

; Finfeed= 800

; F= 1500

; Fmax= 2000

; OffsetX = 0

; DeltaY = 1

; Smart clearance = True

; Free entry = False

; Both directions = True

; Finfeed Finish = 400

; F Finish = 600

; Fmax Finish= 2000

; DeltaY Finish = 2

G90 G1 F1000

; Rough 161

; Move to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; #Line 1:

F2000.00 x0.000 y0.000

F800.00 x0.000 y-1.000

F1500.00 x-58.000

; section: 108 <- 0

F2000.00 y-1.000

F2000.00 x-58.000

; #Line 2:

F2000.00 x-58.000 y-1.000

F800.00 x-58.000 y-2.000

F1500.00 x0.000

; section: 0 <- 107

F2000.00 y-2.000

F2000.00 x0.000

; #Line 3:

F2000.00 x0.000 y-2.000

F800.00 x0.000 y-3.000

F1500.00 x-39.937

; section: 105 <- 0

F2000.00 y-3.000

F2000.00 x-38.241

; #Line 4:

F2000.00 x-38.241 y-3.000

F800.00 x-38.241 y-4.000

F1500.00 x0.000

; section: 0 <- 72

F2000.00 y-4.000

F2000.00 x0.000

; #Line 5:

F2000.00 x0.000 y-4.000

F800.00 x0.000 y-5.000

F1500.00 x-38.000

; section: 55 <- 0

F2000.00 y-5.000

35

F2000.00 x-19.937

; #Line 6:

F2000.00 x-19.937 y-5.000

F800.00 x-19.937 y-6.000

F1500.00 x0.000

; section: 0 <- 53

F2000.00 y-6.000

F2000.00 x0.000

; #Line 7:

F2000.00 x0.000 y-6.000

F800.00 x0.000 y-7.000

F1500.00 x-18.241

; section: 20 <- 0

F2000.00 y-7.000

F2000.00 x-18.000

; #Line 8:

F2000.00 x-18.000 y-7.000

F800.00 x-18.000 y-8.000

F1500.00 x0.000

; section: 0 <- 3

F2000.00 y-8.000

F2000.00 x0.000

; #Line 9:

F2000.00 x0.000 y-8.000

F800.00 x0.000 y-9.000

F1500.00 x-18.000

; section: 2 <- 0

F2000.00 y-9.000

F2000.00 x-18.000

; #Line 10:

F2000.00 x-18.000 y-9.000

F800.00 x-18.000 y-10.000

F1500.00 x0.000

; section: 0 <- 1

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; Finish

G90 G1 F600.00 x-0.500 y-12.990

G90 G1 F600.00 x-1.000 y-12.990

G90 G1 F600.00 x-1.500 y-12.990

G90 G1 F600.00 x-2.000 y-12.990

G90 G1 F600.00 x-2.500 y-12.990

G90 G1 F600.00 x-3.000 y-12.990

G90 G1 F600.00 x-3.500 y-12.990

G90 G1 F600.00 x-4.000 y-12.990

G90 G1 F600.00 x-4.500 y-12.990

G90 G1 F600.00 x-5.000 y-12.990

G90 G1 F600.00 x-5.500 y-12.990

G90 G1 F600.00 x-6.000 y-12.990

36

G90 G1 F600.00 x-6.500 y-12.990

G90 G1 F600.00 x-7.000 y-12.990

G90 G1 F600.00 x-7.500 y-12.990

G90 G1 F600.00 x-8.000 y-12.990

G90 G1 F600.00 x-8.500 y-12.990

G90 G1 F600.00 x-9.000 y-12.990

G90 G1 F600.00 x-9.500 y-12.990

G90 G1 F600.00 x-10.000 y-

12.990

G90 G1 F600.00 x-10.500 y-

12.990

G90 G1 F600.00 x-11.000 y-

12.990

G90 G1 F600.00 x-11.500 y-

12.990

G90 G1 F600.00 x-12.000 y-

12.990

G90 G1 F600.00 x-12.500 y-

12.990

G90 G1 F600.00 x-13.000 y-

12.990

G90 G1 F600.00 x-13.500 y-

12.990

G90 G1 F600.00 x-14.000 y-

12.990

G90 G1 F600.00 x-14.500 y-

12.990

G90 G1 F600.00 x-15.000 y-

12.990

G90 G1 F600.00 x-15.500 y-

12.990

G90 G1 F600.00 x-16.000 y-

12.990

G90 G1 F600.00 x-16.500 y-

12.990

G90 G1 F600.00 x-17.000 y-

12.990

G90 G1 F600.00 x-17.500 y-

12.990

G90 G1 F600.00 x-18.000 y-

12.990

G90 G1 F600.00 x-18.500 y-

12.990

G90 G1 F600.00 x-19.000 y-

12.990

G90 G1 F600.00 x-19.500 y-

12.990

G90 G1 F600.00 x-20.000 y-7.990

G90 G1 F600.00 x-20.500 y-7.990

G90 G1 F600.00 x-21.000 y-7.990

G90 G1 F600.00 x-21.500 y-7.990

G90 G1 F600.00 x-22.000 y-7.990

G90 G1 F600.00 x-22.500 y-7.990

G90 G1 F600.00 x-23.000 y-7.990

G90 G1 F600.00 x-23.500 y-7.990

G90 G1 F600.00 x-24.000 y-7.990

G90 G1 F600.00 x-24.500 y-7.990

G90 G1 F600.00 x-25.000 y-7.990

G90 G1 F600.00 x-25.500 y-7.990

G90 G1 F600.00 x-26.000 y-7.990

G90 G1 F600.00 x-26.500 y-7.990

G90 G1 F600.00 x-27.000 y-7.990

G90 G1 F600.00 x-27.500 y-7.990

G90 G1 F600.00 x-28.000 y-7.990

G90 G1 F600.00 x-28.500 y-7.990

G90 G1 F600.00 x-29.000 y-7.990

G90 G1 F600.00 x-29.500 y-7.990

G90 G1 F600.00 x-30.000 y-7.990

G90 G1 F600.00 x-30.500 y-7.990

G90 G1 F600.00 x-31.000 y-7.990

G90 G1 F600.00 x-31.500 y-7.990

37

G90 G1 F600.00 x-32.000 y-7.990

G90 G1 F600.00 x-32.500 y-7.990

G90 G1 F600.00 x-33.000 y-7.990

G90 G1 F600.00 x-33.500 y-7.990

G90 G1 F600.00 x-34.000 y-7.990

G90 G1 F600.00 x-34.500 y-7.990

G90 G1 F600.00 x-35.000 y-7.990

G90 G1 F600.00 x-35.500 y-7.990

G90 G1 F600.00 x-36.000 y-7.990

G90 G1 F600.00 x-36.500 y-7.990

G90 G1 F600.00 x-37.000 y-7.990

G90 G1 F600.00 x-37.500 y-7.990

G90 G1 F600.00 x-38.000 y-7.990

G90 G1 F600.00 x-38.500 y-7.990

G90 G1 F600.00 x-39.000 y-7.990

G90 G1 F600.00 x-39.500 y-7.990

G90 G1 F600.00 x-40.000 y-4.990

G90 G1 F600.00 x-40.500 y-4.990

G90 G1 F600.00 x-41.000 y-4.990

G90 G1 F600.00 x-41.500 y-4.990

G90 G1 F600.00 x-42.000 y-4.990

G90 G1 F600.00 x-42.500 y-4.990

G90 G1 F600.00 x-43.000 y-4.990

G90 G1 F600.00 x-43.500 y-4.990

G90 G1 F600.00 x-44.000 y-4.990

G90 G1 F600.00 x-44.500 y-4.990

G90 G1 F600.00 x-45.000 y-4.990

G90 G1 F600.00 x-45.500 y-4.990

G90 G1 F600.00 x-46.000 y-4.990

G90 G1 F600.00 x-46.500 y-4.990

G90 G1 F600.00 x-47.000 y-4.990

G90 G1 F600.00 x-47.500 y-4.990

G90 G1 F600.00 x-48.000 y-4.990

G90 G1 F600.00 x-48.500 y-4.990

G90 G1 F600.00 x-49.000 y-4.990

G90 G1 F600.00 x-49.500 y-4.990

G90 G1 F600.00 x-50.000 y-4.990

G90 G1 F600.00 x-50.500 y-4.990

G90 G1 F600.00 x-51.000 y-4.990

G90 G1 F600.00 x-51.500 y-4.990

G90 G1 F600.00 x-52.000 y-4.990

G90 G1 F600.00 x-52.500 y-4.990

G90 G1 F600.00 x-53.000 y-4.990

G90 G1 F600.00 x-53.500 y-4.990

G90 G1 F600.00 x-54.000 y-4.990

G90 G1 F600.00 x-54.500 y-4.990

G90 G1 F600.00 x-55.000 y-4.990

G90 G1 F600.00 x-55.500 y-4.990

G90 G1 F600.00 x-56.000 y-4.990

G90 G1 F600.00 x-56.500 y-4.990

G90 G1 F600.00 x-57.000 y-4.990

G90 G1 F600.00 x-57.500 y-4.990

G90 G1 F600.00 x-58.000 y-4.990

G90 G1 F600.00 x-58.500 y-4.990

G90 G1 F600.00 x-59.000 y-4.990

G90 G1 F600.00 x-59.500 y-4.990

G90 G1 F600.00 x-60.000 y-0.990

G90 G1 F600.00 x-60.500 y-0.990

G90 G1 F600.00 x-61.000 y-0.990

G90 G1 F600.00 x-61.500 y-0.990

G90 G1 F600.00 x-62.000 y-0.990

G90 G1 F600.00 x-62.500 y-0.990

G90 G1 F600.00 x-63.000 y-0.990 G90 G1 F600.00 x-63.500 y-0.990

38

G90 G1 F600.00 x-64.000 y-0.990

G90 G1 F600.00 x-64.500 y-0.990

G90 G1 F600.00 x-65.000 y-0.990

G90 G1 F600.00 x-65.500 y-0.990

G90 G1 F600.00 x-66.000 y-0.990

G90 G1 F600.00 x-66.500 y-0.990

G90 G1 F600.00 x-67.000 y-0.990

G90 G1 F600.00 x-67.500 y-0.990

G90 G1 F600.00 x-68.000 y-0.990

G90 G1 F600.00 x-68.500 y-0.990

G90 G1 F600.00 x-69.000 y-0.990

G90 G1 F600.00 x-69.500 y-0.990

G90 G1 F600.00 x-70.000 y-0.990

G90 G1 F600.00 x-70.500 y-0.990

G90 G1 F600.00 x-71.000 y-0.990

G90 G1 F600.00 x-71.500 y-0.990

G90 G1 F600.00 x-72.000 y-0.990

G90 G1 F600.00 x-72.500 y-0.990

G90 G1 F600.00 x-73.000 y-0.990

G90 G1 F600.00 x-73.500 y-0.990

G90 G1 F600.00 x-74.000 y-0.990

G90 G1 F600.00 x-74.500 y-0.990

G90 G1 F600.00 x-75.000 y-0.990

G90 G1 F600.00 x-75.500 y-0.990

G90 G1 F600.00 x-76.000 y-0.990

G90 G1 F600.00 x-76.500 y-0.990

G90 G1 F600.00 x-77.000 y-0.990

G90 G1 F600.00 x-77.500 y-0.990

G90 G1 F600.00 x-78.000 y-0.990

G90 G1 F600.00 x-78.500 y-0.990

G90 G1 F600.00 x-79.000 y-0.990

G90 G1 F600.00 x-79.500 y-0.990

G90 G1 F600.00 x-80.000 y-0.990

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

39

5.3 Experiment 3 – Taper Turning using CNC Lathe

Aim: To machine the given work piece according to the dimensions given in diagram using

CNC Lathe

Tools required:

Chuck key

Tool post spanner/ Hex key

Turning tool

Chamfering tool

Vernier Calliper

Steel rule

Power supply

Software required:

GrblGru V.3.7.0

Arduino 1.8.1

Universal G-Code sender

Procedure:

1. The work piece is held in the lathe chuck.

2. The cutting tool is held in the tool post and its cutting point is set to lathe axis using

reference from the open source software.

3. Calculate the taper angle using the formula

4. Prepare drawing using drawing tools and import the drawing in. stl /.nc/.dxf into the

software.

5. Make sure the drawn piece is imported within the specific parameters. Otherwise

resize the work piece into appropriate dimensions.

6. Fix the feed cut parameters and tolerance level and fix the tool piece at the centre.

7. Once the outer diameter of the piece is set we can start simulating the feed cut

machining

8. Save the simulated piece by converting it into G-code using the G-code creator

button.

9. After the G code is generated, switch on the power source and start rotating the chuck

and spindle setup. (make sure that the tool post is set to pre-set origin before

commencement of running the code)

10. Commence the transmission of code into the universal G-code sender and start the

process by pressing the send button.

11. The step and plain turning process operation are carried out according to the

prescribed dimensions.

12. Then the taper angle cut operation is done and the work piece is finished.

Result:

40

The given work piece is machined according to required dimensions by the CNC lathe

according to the code given by the universal G-code Sender

Diagram:

Part Diagram in modelling software

Simulation and generation of G-Code in GrblGRU

Materials supplied: Machinable Wax Ø23mm x 50mm

Tool material: High Speed Steel

41

Code Generated:

; Created by

GrblGru:GCodeCreator

; 25.03.2017 11:52:14

; Finfeed= 800

; F= 1500

; Fmax= 2000

; OffsetX = 0

; DeltaY = 1

; Smart clearance = True

; Free entry = False

; Both directions = True

; Finfeed Finish = 400

; F Finish = 600

; Fmax Finish= 2000

; DeltaY Finish = 2

G90 G1 F1000

; Rough 44

; Move to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; #Line 1:

F2000.00 x0.000 y0.000

F800.00 x0.000 y-1.000

F1500.00 x-35.737

; section: 21 <- 0

F2000.00 y-1.000

F2000.00 x-34.022

; #Line 2:

F2000.00 x-34.022 y-1.000

F800.00 x-34.022 y-2.000

F1500.00 x0.000

; section: 0 <- 19

F2000.00 y-2.000

F2000.00 x0.000

; #Line 3:

F2000.00 x0.000 y-2.000

F800.00 x0.000 y-3.000

F1500.00 x-32.307

42

; section: 17 <- 0

F2000.00 y-3.000

F2000.00 x-30.592

; #Line 4:

F2000.00 x-30.592 y-3.000

F800.00 x-30.592 y-4.000

F1500.00 x0.000

; section: 0 <- 15

F2000.00 y-4.000

F2000.00 x0.000

; #Line 5:

F2000.00 x0.000 y-4.000

F800.00 x0.000 y-5.000

F1500.00 x-28.877

; section: 13 <- 0

F2000.00 y-5.000

F2000.00 x-27.162

; #Line 6:

F2000.00 x-27.162 y-5.000

F800.00 x-27.162 y-6.000

F1500.00 x0.000

; section: 0 <- 11

F2000.00 y-6.000

F2000.00 x0.000

; #Line 7:

F2000.00 x0.000 y-6.000

F800.00 x0.000 y-7.000

F1500.00 x-25.447

; section: 9 <- 0

F2000.00 y-7.000

F2000.00 x-23.732

; #Line 8:

F2000.00 x-23.732 y-7.000

F800.00 x-23.732 y-8.000

F1500.00 x0.000

; section: 0 <- 7

F2000.00 y-8.000

F2000.00 x0.000

; #Line 9:

F2000.00 x0.000 y-8.000

F800.00 x0.000 y-9.000

F1500.00 x-22.017

; section: 5 <- 0

F2000.00 y-9.000

F2000.00 x-20.302

; #Line 10:

F2000.00 x-20.302 y-9.000

F800.00 x-20.302 y-10.000

F1500.00 x0.000

; section: 0 <- 3

F2000.00 y-10.000

F2000.00 x0.000

43

; #Line 11:

F2000.00 x0.000 y-10.000

F800.00 x0.000 y-11.000

F1500.00 x-19.445

; section: 2 <- 0

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; Finish

G90 G1 F600.00 x0.000 y-12.991

G90 G1 F600.00 x-0.500 y-12.991

G90 G1 F600.00 x-1.000 y-12.991

G90 G1 F600.00 x-1.500 y-12.991

G90 G1 F600.00 x-2.000 y-12.991

G90 G1 F600.00 x-2.500 y-12.991

G90 G1 F600.00 x-3.000 y-12.991

G90 G1 F600.00 x-3.500 y-12.991

G90 G1 F600.00 x-4.000 y-12.991

G90 G1 F600.00 x-4.500 y-12.991

G90 G1 F600.00 x-5.000 y-12.991

G90 G1 F600.00 x-5.500 y-12.991

G90 G1 F600.00 x-6.000 y-12.991

G90 G1 F600.00 x-6.500 y-12.991

G90 G1 F600.00 x-7.000 y-12.991

G90 G1 F600.00 x-7.500 y-12.991

G90 G1 F600.00 x-8.000 y-12.991

G90 G1 F600.00 x-8.500 y-12.991

G90 G1 F600.00 x-9.000 y-12.991

G90 G1 F600.00 x-9.500 y-12.991

G90 G1 F600.00 x-10.000 y-

12.991

G90 G1 F600.00 x-10.500 y-

12.991

G90 G1 F600.00 x-11.000 y-

12.991

G90 G1 F600.00 x-11.500 y-

12.991

G90 G1 F600.00 x-12.000 y-

12.991

G90 G1 F600.00 x-12.500 y-

12.991

G90 G1 F600.00 x-13.000 y-

12.991

G90 G1 F600.00 x-13.500 y-

12.991

G90 G1 F600.00 x-14.000 y-

12.991

G90 G1 F600.00 x-14.500 y-

12.991

G90 G1 F600.00 x-15.000 y-

12.991

G90 G1 F600.00 x-15.500 y-

12.991

G90 G1 F600.00 x-16.000 y-

12.991

G90 G1 F600.00 x-16.500 y-

12.991

G90 G1 F600.00 x-17.000 y-

12.991

G90 G1 F600.00 x-17.500 y-

12.991

G90 G1 F600.00 x-18.000 y-

12.991

G90 G1 F600.00 x-18.500 y-

12.991

G90 G1 F600.00 x-19.000 y-

12.991

G90 G1 F600.00 x-19.500 y-

12.991

G90 G1 F600.00 x-20.000 y-

12.989

G90 G1 F600.00 x-20.500 y-

12.689

44

G90 G1 F600.00 x-21.000 y-

12.389

G90 G1 F600.00 x-21.500 y-

12.089

G90 G1 F600.00 x-22.000 y-

11.789

G90 G1 F600.00 x-22.500 y-

11.489

G90 G1 F600.00 x-23.000 y-

11.189

G90 G1 F600.00 x-23.500 y-

10.889

G90 G1 F600.00 x-24.000 y-

10.589

G90 G1 F600.00 x-24.500 y-

10.289

G90 G1 F600.00 x-25.000 y-9.989

G90 G1 F600.00 x-25.500 y-9.689

G90 G1 F600.00 x-26.000 y-9.389

G90 G1 F600.00 x-26.500 y-9.089

G90 G1 F600.00 x-27.000 y-8.789

G90 G1 F600.00 x-27.500 y-8.489

G90 G1 F600.00 x-28.000 y-8.189

G90 G1 F600.00 x-28.500 y-7.889

G90 G1 F600.00 x-29.000 y-7.589

G90 G1 F600.00 x-29.500 y-7.289

G90 G1 F600.00 x-30.000 y-6.988

G90 G1 F600.00 x-30.500 y-6.688

G90 G1 F600.00 x-31.000 y-6.388

G90 G1 F600.00 x-31.500 y-6.088

G90 G1 F600.00 x-32.000 y-5.788

G90 G1 F600.00 x-32.500 y-5.488

G90 G1 F600.00 x-33.000 y-5.188

G90 G1 F600.00 x-33.500 y-4.888

G90 G1 F600.00 x-34.000 y-4.588

G90 G1 F600.00 x-34.500 y-4.288

G90 G1 F600.00 x-35.000 y-3.988

G90 G1 F600.00 x-35.500 y-3.688

G90 G1 F600.00 x-36.000 y-3.388

G90 G1 F600.00 x-36.500 y-3.088

G90 G1 F600.00 x-37.000 y-2.788

G90 G1 F600.00 x-37.500 y-2.488

G90 G1 F600.00 x-38.000 y-2.188

G90 G1 F600.00 x-38.500 y-1.888

G90 G1 F600.00 x-39.000 y-1.588

G90 G1 F600.00 x-39.500 y-1.288

G90 G1 F600.00 x-40.000 y-0.991

G90 G1 F600.00 x-40.500 y-0.991

G90 G1 F600.00 x-41.000 y-0.991

G90 G1 F600.00 x-41.500 y-0.991

G90 G1 F600.00 x-42.000 y-0.991

G90 G1 F600.00 x-42.500 y-0.991

G90 G1 F600.00 x-43.000 y-0.991

G90 G1 F600.00 x-43.500 y-0.991

G90 G1 F600.00 x-44.000 y-0.991

G90 G1 F600.00 x-44.500 y-0.991

G90 G1 F600.00 x-45.000 y-0.991

G90 G1 F600.00 x-45.500 y-0.991

G90 G1 F600.00 x-46.000 y-0.991

G90 G1 F600.00 x-46.500 y-0.991

G90 G1 F600.00 x-47.000 y-0.991

G90 G1 F600.00 x-47.500 y-0.991

G90 G1 F600.00 x-48.000 y-0.991

G90 G1 F600.00 x-48.500 y-0.991

G90 G1 F600.00 x-49.000 y-0.991

G90 G1 F600.00 x-49.500 y-0.991

G90 G1 F600.00 x-50.000 y-0.991

G90 G1 F600.00 x-50.500 y-0.991

G90 G1 F600.00 x-51.000 y-0.991

G90 G1 F600.00 x-51.500 y-0.991

G90 G1 F600.00 x-52.000 y-0.991

45

G90 G1 F600.00 x-52.500 y-0.991

G90 G1 F600.00 x-53.000 y-0.991

G90 G1 F600.00 x-53.500 y-0.991

G90 G1 F600.00 x-54.000 y-0.991

G90 G1 F600.00 x-54.500 y-0.991

G90 G1 F600.00 x-55.000 y-0.991

G90 G1 F600.00 x-55.500 y-0.991

G90 G1 F600.00 x-56.000 y-0.991

G90 G1 F600.00 x-56.500 y-0.991

G90 G1 F600.00 x-57.000 y-0.991

G90 G1 F600.00 x-57.500 y-0.991

G90 G1 F600.00 x-58.000 y-0.991

G90 G1 F600.00 x-58.500 y-0.991

G90 G1 F600.00 x-59.000 y-0.991

G90 G1 F600.00 x-59.500 y-0.991

G90 G1 F600.00 x-60.000 y-0.991

G90 G1 F600.00 x-60.500 y-0.991

G90 G1 F600.00 x-61.000 y-0.991

G90 G1 F600.00 x-61.500 y-0.991

G90 G1 F600.00 x-62.000 y-0.991

G90 G1 F600.00 x-62.500 y-0.991

G90 G1 F600.00 x-63.000 y-0.991

G90 G1 F600.00 x-63.500 y-0.991

G90 G1 F600.00 x-64.000 y-0.991

G90 G1 F600.00 x-64.500 y-0.991

G90 G1 F600.00 x-65.000 y-0.991

G90 G1 F600.00 x-65.500 y-0.991

G90 G1 F600.00 x-66.000 y-0.991

G90 G1 F600.00 x-66.500 y-0.991

G90 G1 F600.00 x-67.000 y-0.991

G90 G1 F600.00 x-67.500 y-0.991

G90 G1 F600.00 x-68.000 y-0.991

G90 G1 F600.00 x-68.500 y-0.991

G90 G1 F600.00 x-69.000 y-0.991

G90 G1 F600.00 x-69.500 y-0.991

G90 G1 F600.00 x-70.000 y-0.991

G90 G1 F600.00 x-70.500 y-0.991

G90 G1 F600.00 x-71.000 y-0.991

G90 G1 F600.00 x-71.500 y-0.991

G90 G1 F600.00 x-72.000 y-0.991

G90 G1 F600.00 x-72.500 y-0.991

G90 G1 F600.00 x-73.000 y-0.991

G90 G1 F600.00 x-73.500 y-0.991

G90 G1 F600.00 x-74.000 y-0.991

G90 G1 F600.00 x-74.500 y-0.991

G90 G1 F600.00 x-75.000 y-0.991

G90 G1 F600.00 x-75.500 y-0.991

G90 G1 F600.00 x-76.000 y-0.991

G90 G1 F600.00 x-76.500 y-0.991

G90 G1 F600.00 x-77.000 y-0.991

G90 G1 F600.00 x-77.500 y-0.991

G90 G1 F600.00 x-78.000 y-0.991

G90 G1 F600.00 x-78.500 y-0.991

G90 G1 F600.00 x-79.000 y-0.991

G90 G1 F600.00 x-79.500 y-0.991

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

46

5.4 Experiment 4 – Stepper and Taper Turning using CNC Lathe

Aim: To machine the given work piece according to the dimensions given in diagram using

CNC Lathe

Tools required:

Chuck key

Tool post spanner/ Hex key

Turning tool

Chamfering tool

Vernier Calliper

Steel rule

Power supply

Software required:

GrblGru V.3.7.0

Arduino 1.8.1

Universal G-Code sender

Procedure:

1. This experiment comprises of both step and taper turning process.

2. The procedure is same as both experiment 2&3.

3. Produce work piece drawing and import it in.stl/.dxf/.nc file into the CNC lathe

software.

4. Convert the following diagram into G-Code and import it into the universal G Code

sender.

5. By clicking the send button the code is transferred and the turning, facing and taper

turning process is completed.

6. The taper angle is calculated using the formula as done in experiment 3.

7. The work piece is completed as per the diagram.

Result:

The given work piece is machined according to required dimensions by the CNC lathe

according to the code given by the universal G-code Sender

47

Diagram:

Part Diagram in modelling software

Simulation and generation of G-Code in GrblGRU

Code Generated:

; Created by

GrblGru:GCodeCreator

; 25.03.2017 11:44:41

; Finfeed= 800

; F= 1500

; Fmax= 2000

; OffsetX = 0

; DeltaY = 1

; Smart clearance = True

; Free entry = False

; Both directions = True

; Finfeed Finish = 400

; F Finish = 600

; Fmax Finish= 2000

; DeltaY Finish = 2

G90 G1 F1000

48

; Rough 156

; Move to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; #Line 1:

F2000.00 x0.010 y0.000

F800.00 x0.010 y-1.000

F1500.00 x-57.989

; section: 103 <- 0

F2000.00 y-1.000

F2000.00 x-57.989

; #Line 2:

F2000.00 x-57.989 y-1.000

F800.00 x-57.989 y-2.000

F1500.00 x0.010

; section: 0 <- 102

F2000.00 y-2.000

F2000.00 x0.010

; #Line 3:

F2000.00 x0.010 y-2.000

F800.00 x0.010 y-3.000

F1500.00 x-39.863

; section: 99 <- 0

F2000.00 y-3.000

F2000.00 x-38.230

; #Line 4:

F2000.00 x-38.230 y-3.000

F800.00 x-38.230 y-4.000

F1500.00 x0.010

; section: 0 <- 67

F2000.00 y-4.000

F2000.00 x0.010

; #Line 5:

F2000.00 x0.010 y-4.000

F800.00 x0.010 y-5.000

F1500.00 x-37.989

; section: 51 <- 0

F2000.00 y-5.000

F2000.00 x-37.989

; #Line 6:

F2000.00 x-37.989 y-5.000

F800.00 x-37.989 y-6.000

F1500.00 x0.010

; section: 0 <- 50

F2000.00 y-6.000

F2000.00 x0.010

; #Line 7:

F2000.00 x0.010 y-6.000

F800.00 x0.010 y-7.000

F1500.00 x-35.266

; section: 47 <- 0

F2000.00 y-7.000

49

F2000.00 x-31.386

; #Line 8:

F2000.00 x-31.386 y-7.000

F800.00 x-31.386 y-8.000

F1500.00 x0.010

; section: 0 <- 43

F2000.00 y-8.000

F2000.00 x0.010

; #Line 9:

F2000.00 x0.010 y-8.000

F800.00 x0.010 y-9.000

F1500.00 x-27.505

; section: 39 <- 0

F2000.00 y-9.000

F2000.00 x-23.625

; #Line 10:

F2000.00 x-23.625 y-9.000

F800.00 x-23.625 y-10.000

F1500.00 x0.010

; section: 0 <- 35

F2000.00 y-10.000

F2000.00 x0.010

; #Line 11:

F2000.00 x0.010 y-10.000

F800.00 x0.010 y-11.000

F1500.00 x-3.863

; section: 28 <- 0

F2000.00 y-11.000

F2000.00 x-0.699

; #Line 12:

F2000.00 x-0.699 y-11.000

F800.00 x-0.699 y-12.000

F1500.00 x0.010

; section: 0 <- 11

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

; Finish

G90 G1 F600.00 x0.000 y-16.865

G90 G1 F600.00 x-0.500 y-15.122

G90 G1 F600.00 x-1.000 y-14.390

G90 G1 F600.00 x-1.500 y-13.882

G90 G1 F600.00 x-2.000 y-13.568

G90 G1 F600.00 x-2.500 y-13.310

G90 G1 F600.00 x-3.000 y-13.185

G90 G1 F600.00 x-3.500 y-13.179

G90 G1 F600.00 x-4.000 y-13.173

G90 G1 F600.00 x-4.500 y-13.168

G90 G1 F600.00 x-5.000 y-13.162

G90 G1 F600.00 x-5.500 y-13.156

G90 G1 F600.00 x-6.000 y-13.150

G90 G1 F600.00 x-6.500 y-13.144

G90 G1 F600.00 x-7.000 y-13.139

G90 G1 F600.00 x-7.500 y-13.133

50

G90 G1 F600.00 x-8.000 y-13.127

G90 G1 F600.00 x-8.500 y-13.121

G90 G1 F600.00 x-9.000 y-13.115

G90 G1 F600.00 x-9.500 y-13.110

G90 G1 F600.00 x-10.000 y-

13.104

G90 G1 F600.00 x-10.500 y-

13.098

G90 G1 F600.00 x-11.000 y-

13.092

G90 G1 F600.00 x-11.500 y-

13.086

G90 G1 F600.00 x-12.000 y-

13.081

G90 G1 F600.00 x-12.500 y-

13.075

G90 G1 F600.00 x-13.000 y-

13.069

G90 G1 F600.00 x-13.500 y-

13.063

G90 G1 F600.00 x-14.000 y-

13.057

G90 G1 F600.00 x-14.500 y-

13.052

G90 G1 F600.00 x-15.000 y-

13.046

G90 G1 F600.00 x-15.500 y-

13.040

G90 G1 F600.00 x-16.000 y-

13.034

G90 G1 F600.00 x-16.500 y-

13.028

G90 G1 F600.00 x-17.000 y-

13.023

G90 G1 F600.00 x-17.500 y-

13.017

G90 G1 F600.00 x-18.000 y-

13.011

G90 G1 F600.00 x-18.500 y-

13.005

G90 G1 F600.00 x-19.000 y-

12.999

G90 G1 F600.00 x-19.500 y-

12.994

G90 G1 F600.00 x-20.000 y-

12.985

G90 G1 F600.00 x-20.500 y-

12.860

G90 G1 F600.00 x-21.000 y-

12.735

G90 G1 F600.00 x-21.500 y-

12.610

G90 G1 F600.00 x-22.000 y-

12.485

G90 G1 F600.00 x-22.500 y-

12.360

G90 G1 F600.00 x-23.000 y-

12.235

G90 G1 F600.00 x-23.500 y-

12.110

G90 G1 F600.00 x-24.000 y-

11.985

G90 G1 F600.00 x-24.500 y-

11.860

G90 G1 F600.00 x-25.000 y-

11.735

G90 G1 F600.00 x-25.500 y-

11.610

G90 G1 F600.00 x-26.000 y-

11.485

G90 G1 F600.00 x-26.500 y-

11.360

G90 G1 F600.00 x-27.000 y-

11.235

G90 G1 F600.00 x-27.500 y-

11.110

G90 G1 F600.00 x-28.000 y-

10.985

G90 G1 F600.00 x-28.500 y-

10.860

G90 G1 F600.00 x-29.000 y-

10.735

51

G90 G1 F600.00 x-29.500 y-

10.610

G90 G1 F600.00 x-30.000 y-

10.485

G90 G1 F600.00 x-30.500 y-

10.360

G90 G1 F600.00 x-31.000 y-

10.235

G90 G1 F600.00 x-31.500 y-

10.110

G90 G1 F600.00 x-32.000 y-9.985

G90 G1 F600.00 x-32.500 y-9.860

G90 G1 F600.00 x-33.000 y-9.735

G90 G1 F600.00 x-33.500 y-9.610

G90 G1 F600.00 x-34.000 y-9.485

G90 G1 F600.00 x-34.500 y-9.360

G90 G1 F600.00 x-35.000 y-9.235

G90 G1 F600.00 x-35.500 y-9.110

G90 G1 F600.00 x-36.000 y-8.985

G90 G1 F600.00 x-36.500 y-8.860

G90 G1 F600.00 x-37.000 y-8.735

G90 G1 F600.00 x-37.500 y-8.610

G90 G1 F600.00 x-38.000 y-8.485

G90 G1 F600.00 x-38.500 y-8.360

G90 G1 F600.00 x-39.000 y-8.235

G90 G1 F600.00 x-39.500 y-8.110

G90 G1 F600.00 x-40.000 y-4.988

G90 G1 F600.00 x-40.500 y-4.988

G90 G1 F600.00 x-41.000 y-4.988

G90 G1 F600.00 x-41.500 y-4.988

G90 G1 F600.00 x-42.000 y-4.988

G90 G1 F600.00 x-42.500 y-4.988

G90 G1 F600.00 x-43.000 y-4.988

G90 G1 F600.00 x-43.500 y-4.988

G90 G1 F600.00 x-44.000 y-4.988

G90 G1 F600.00 x-44.500 y-4.988

G90 G1 F600.00 x-45.000 y-4.988

G90 G1 F600.00 x-45.500 y-4.988

G90 G1 F600.00 x-46.000 y-4.988

G90 G1 F600.00 x-46.500 y-4.988

G90 G1 F600.00 x-47.000 y-4.988

G90 G1 F600.00 x-47.500 y-4.988

G90 G1 F600.00 x-48.000 y-4.988

G90 G1 F600.00 x-48.500 y-4.988

G90 G1 F600.00 x-49.000 y-4.988

G90 G1 F600.00 x-49.500 y-4.988

G90 G1 F600.00 x-50.000 y-4.988

G90 G1 F600.00 x-50.500 y-4.988

G90 G1 F600.00 x-51.000 y-4.988

G90 G1 F600.00 x-51.500 y-4.988

G90 G1 F600.00 x-52.000 y-4.988

G90 G1 F600.00 x-52.500 y-4.988

G90 G1 F600.00 x-53.000 y-4.988

G90 G1 F600.00 x-53.500 y-4.988

G90 G1 F600.00 x-54.000 y-4.988

G90 G1 F600.00 x-54.500 y-4.988

G90 G1 F600.00 x-55.000 y-4.988

G90 G1 F600.00 x-55.500 y-4.988

G90 G1 F600.00 x-56.000 y-4.988

G90 G1 F600.00 x-56.500 y-4.988

G90 G1 F600.00 x-57.000 y-4.988

G90 G1 F600.00 x-57.500 y-4.988

G90 G1 F600.00 x-58.000 y-4.988

G90 G1 F600.00 x-58.500 y-4.988

G90 G1 F600.00 x-59.000 y-4.988

G90 G1 F600.00 x-59.500 y-4.988

G90 G1 F600.00 x-60.000 y-0.988

G90 G1 F600.00 x-60.500 y-0.988

G90 G1 F600.00 x-61.000 y-0.988

G90 G1 F600.00 x-61.500 y-0.988

52

G90 G1 F600.00 x-62.000 y-0.988

G90 G1 F600.00 x-62.500 y-0.988

G90 G1 F600.00 x-63.000 y-0.988

G90 G1 F600.00 x-63.500 y-0.988

G90 G1 F600.00 x-64.000 y-0.988

G90 G1 F600.00 x-64.500 y-0.988

G90 G1 F600.00 x-65.000 y-0.988

G90 G1 F600.00 x-65.500 y-0.988

G90 G1 F600.00 x-66.000 y-0.988

G90 G1 F600.00 x-66.500 y-0.988

G90 G1 F600.00 x-67.000 y-0.988

G90 G1 F600.00 x-67.500 y-0.988

G90 G1 F600.00 x-68.000 y-0.988

G90 G1 F600.00 x-68.500 y-0.988

G90 G1 F600.00 x-69.000 y-0.988

G90 G1 F600.00 x-69.500 y-0.988

G90 G1 F600.00 x-70.000 y-0.988

G90 G1 F600.00 x-70.500 y-0.988

G90 G1 F600.00 x-71.000 y-0.988

G90 G1 F600.00 x-71.500 y-0.988

G90 G1 F600.00 x-72.000 y-0.988

G90 G1 F600.00 x-72.500 y-0.988

G90 G1 F600.00 x-73.000 y-0.988

G90 G1 F600.00 x-73.500 y-0.988

G90 G1 F600.00 x-74.000 y-0.988

G90 G1 F600.00 x-74.500 y-0.988

G90 G1 F600.00 x-75.000 y-0.988

G90 G1 F600.00 x-75.500 y-0.988

G90 G1 F600.00 x-76.000 y-0.988

G90 G1 F600.00 x-76.500 y-0.988

G90 G1 F600.00 x-77.000 y-0.988

G90 G1 F600.00 x-77.500 y-0.988

G90 G1 F600.00 x-78.000 y-0.988

G90 G1 F600.00 x-78.500 y-0.988

G90 G1 F600.00 x-79.000 y-0.988

G90 G1 F600.00 x-79.500 y-0.988

; Back to startpoint

G90 G1 F2000.00 y0.000

F2000.00 x0.000

53

6. CONCLUSION

A low cost DIY CNC Lathe machine has been designed and developed using conventional

off the shelf components of open source hardware and software, and sample sets of

experiments have been performed.

Current design uses wooden frame and will be replaced with mild steel for improved

strength, rigidity and durability. The next version will also aim at machining non-ferrous

metal workpiece with a higher degree of accuracy by incorporating sensors to it.

Addition of limit switches and associated sensors will provide feedback for optimum control

during machining operation and good accuracy.

APPENDIX I

Design Sheets

700

6x

3

0

60

67.

50

132

.50

140

200

50 30

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:5SH

EET 1

OF

1

A4

Woo

den

bloc

kW

EIG

HT:

Base

woo

den

bloc

k

Size

50x

200x

700m

m

Part-

1

Qty

-1

10 60

60

25

12x

3

50

700

40

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:5SH

EET 1

OF

1

A4

WEI

GHT

:

Gui

de w

ay w

oode

n b

lock

Woo

den

bloc

kPa

rt-2

Size

- 40x

50x7

00Q

ty-2

680

12.50

15

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MO

del

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:5SH

EET 1

OF

1

A4

HIW

IN G

EH 1

5SA

WEI

GHT

:

Qty

-2UN

LESS

OTH

ERW

ISE

SPEC

IFIE

D:

DIM

ENSI

ON

S A

RE IN

MILL

IMET

ERS

SURF

AC

E FI

NIS

H:TO

LERA

NC

ES:

LIN

EAR:

A

NG

ULA

R:Si

ze-1

2x15

x680

mm

Gui

dew

ay 1

34

19.50

55

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MO

DEL

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

HIW

IN G

EH 1

5SA

WEI

GHT

:

Size

-19.

50x3

4x55

mm

Gui

de w

ay s

lider

Part-

4

Qty

-4

45

R17

.25

6x

8

6x

4

12

10

30

24

8 2.30

12

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MO

DEL

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

SFU

1204

-3W

EIG

HT:

Part-

5

Leng

th- 4

0mm

Ball

Scre

w F

lang

e Nu

t

Qty

-2

580

R6

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MO

DEL

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:10

SHEE

T 1 O

F 1

A4

WEI

GHT

:

Part-

6SF

U 12

04-3

Leng

th-5

80m

mQty

-1

Ball

Scre

w 1

17x

3

0 10

50

101.48 113.19 131.49

161.81

221.81

251.48

281.49 302.50

0

42.

50

52.

50

61.

96

75

87.

84

97.

50

107

.50

150

25

310

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:5SH

EET 1

OF

1

A4

WEI

GHT

:

Woo

den

Bloc

k

Carr

iage

Bas

e

Part-

8

Size

-25x

150x

310m

mQ

ty-1

180

12.50

15

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:2SH

EET 1

OF

1

A4

WEI

GHT

:

Gui

de w

ay-2

Part-

9

Size

-12.

50x1

5x18

0mm

HIW

IN G

EH 1

5SA

Qty

-2

24

.30

28

.30

R20

80

10

32.50

52.50

28.30

24.30

20

2x

4.2

0

8.20 11.80

32.

50

32.

50

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Bear

ing

Bloc

k-1

Part-

103D

-Prin

ting

Size

-20x

55x8

0mm

Qty

-2

3x

3

0

20.40

80.40

140.40

250

40

30

40

250

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:2SH

EET 1

OF

1

A4

WEI

GHT

:

Part-

11

Gui

dew

ay w

oode

n B

lock

-2

Size

-30x

40x2

50m

mQ

ty-2

Woo

den

bloc

k

220

R6

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MO

DEL

:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:5SH

EET 1

OF

1

A4

WEI

GHT

:

Ball

Scre

w-2

Part-

12

Size

- 12

mm

X 2

20m

mQ

ty-1

SFU

1204

-3

30 22

4x

3.5

0

0

24.50

55.50

80

0

9

40

57

57

68

8

10

5

22

30 4

x 4

0

17.50

62.50

80 0

1

0

50

68

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:2SH

EET 1

OF

1

A4

WEI

GHT

:

Mot

or C

lam

p-N1

7Pa

rt-13

3D P

rintin

g

Size

-57x

68x8

0mm

Qty

-1

5

12

30

R12.05

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MO

DEL

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:2

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Part-

14

Solid

Cou

pler

Size

-30

x20m

mQty

-2

coup

ler-

5mm

x12m

m

31

31

42

.30

5

64

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Part-15

Nema-17

Qty-1

6x

3

24

27.70

PC

D 3

4.50

2

0

60

2X

3

80

10

60

10

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Botto

m A

ttach

men

t

Qty

-2

Part-

16W

oode

n Bl

ock

Size

-20x

60x8

0mm

28.10

24.10

80

32.50

10

15

52.50

28.10

24.10

8

7.5

0 6

5

2x

4.2

0

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Part-

17

Bear

ing

Bloc

k-2

Size

-15x

53x8

0mm

3D P

rintin

g

Qty

-2

10x

3

12

.50

0 7.50

37.51 52.82

82.50

112.82 127.50

157.51 165

0

10

110

41.

96

67.

84

55

20

110

165

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:2SH

EET 1

OF

1

A4

WEI

GHT

:

Tool

Pos

t Bas

e

Part-

18

Size

- 20x

110x

165m

mQ

ty-1

Woo

den

bloc

k

52.50

52.

50

12

.50

10

105 1

05

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Part-

19To

p Po

st-1

Size

-10x

105x

105m

mQ

ty-1

Woo

den

bloc

k

12

.50

8x

M10

0

15

52.50

90

105

0

15

52.

50

90

105

20

105 1

05

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:2SH

EET 1

OF

1

A4

WEI

GHT

:

Part-

20

Tool

Pos

t-2

Size

-20x

105x

105m

mQty

-1

Woo

den

Bloc

k

20.

70

M12

12

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:2

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Part-

22

M12

Nut

Size

-M12

x12Q

ty-3

Mild

ste

el

16

M10

50

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Tool

Cla

mp

Bolt

Part-

23

Size

-M10

x50m

mQty

-6

Mild

ste

el

340

180

230

515

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

GRE

VISI

ON

TITLE

:

DW

G N

O.

SCA

LE:1

:10

SHEE

T 1 O

F 1

A4

WEI

GHT

:

Head

stoc

k Se

tup

Part-

24

56

.30

47

47

5

78.

70

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:2SH

EET 1

OF

1

A4

WEI

GHT

:

Step

per m

otor

-N23

Qty

-1

Part-

26

4x

4

38

0

24

47.50

71

95

0

9

32.

50

56

62

18

7.5

0 8

0

2x

3

AA

BB

CC

DD

66

55

44

33

22

11

DRAW

N

CHK

'D

APP

V'D

MFG

Q.A

UNLE

SS O

THER

WIS

E SP

ECIF

IED

:D

IMEN

SIO

NS

ARE

IN M

ILLIM

ETER

SSU

RFA

CE

FIN

ISH:

TOLE

RAN

CES

:

LINEA

R:

AN

GUL

AR:

FINIS

H:D

EBUR

R A

ND

BR

EAK

SHA

RP

EDG

ES

NA

ME

SIG

NA

TURE

DA

TE

MA

TERI

AL:

DO

NO

T SC

ALE

DRA

WIN

G

TITLE

:

DW

G N

O.

SCA

LE:1

:1SH

EET 1

OF

1

A4

WEI

GHT

:

Part-

27

N23

Mot

or C

lam

p

Size

-18x

62x9

5mm

Qty

-1

Woo

den

bloc

k

APPENDIX II

Product Datasheets

Typewritten text
Little Machine Shop www.littlemachineshop.com

RE 83 301/2002-09 30

Rexroth – Precision Ball Screw AssembliesSingle Nut with Flange FEM-E-C

Mounting dimensions toDIN 69 051, Part 5

Flange type CWith standard seals

Reinforced seals, see Page 106

With backlash, reduced backlash,preload 2% or 5% C

For precision-rolled screws SN-R oftolerance grade T5, T7, T9 and ground-thread screws SN-F of tolerance grade P1,P3, P5, (T7)

d0 = nominal diameter

P = lead

(R = right-hand, L = left-hand)

DW = ball diameter

i = number of ball track turns

Size Part number Load ratings Speed*dyn. stat.

d0 x P x Dw - i C C0 vmax

(N) (N) [m/min]

16 x 5R x 3 - 4 1502-0-1065 12300 16100 3016 x 10R x 3 - 3 1502-0-4085 9600 12300 6016 x 16R x 3 - 3 1502-0-6065 9300 12000 9620 x 5R x 3 - 4 1502-1-1085 14300 21500 3020 x 20R x 3.5 - 3 1502-1-7065 13300 18800 12025 x 5R x 3 - 4 1502-2-1085 15900 27200 3025 x 10R x 3 - 4 1502-2-4085 15700 27000 6025 x 25R x 3.5 - 3 1502-2-8065 14700 23300 15032 x 5R x 3.5 - 4 1502-3-1085 21600 40000 2332 x 10R x 3.969 - 5 1502-3-4086 31700 58300 4732 x 20R x 3.969 - 3 1502-3-7065 19700 33700 9432 x 32R x 3.969 - 3 1502-3-9065 19500 34000 15040 x 5R x 3.5 - 5 1502-4-1086 29100 64100 1940 x 10R x 6 - 4 1502-4-4085 50000 86400 3840 x 12R x 6 - 4 1502-4-5065 49900 86200 4540 x 16R x 6 - 4 1502-4-6065 49700 85900 6040 x 20R x 6 - 3 1502-4-7085 37900 62800 7540 x 40R x 6 - 3 1502-4-9065 37000 62300 15050 x 5R x 3.5 - 5 1502-5-1086 32000 81300 1550 x 10R x 6 - 6 1502-5-4086 79700 166500 3050 x 12R x 6 - 6 1502-5-5066 79600 166400 3650 x 16R x 6 - 6 1502-5-6066 79400 166000 4850 x 20R x 6.5 - 5 1502-5-7086 75700 149700 6050 x 40R x 6.5 - 3 1502-5-9065 46500 85900 12063 x 10R x 6 - 6 1502-6-4086 88800 214300 2463 x 20R x 6.5 - 5 1502-6-7086 83900 190300 4863 x 40R x 6.5 - 3 1502-6-9065 53400 114100 9580 x 10R x 6.5 - 6 1502-7-4086 108400 291700 1980 x 20R x 12.7 - 6 1502-7-7096 262700 534200 30100 x 10R x 6.5 - 6 1502-8-4066 119500 371900 10100 x 20R x 12.7 - 6 1502-8-7066 295100 686400 20125 x 10R x 6.5 - 6 1502-9-4066 130600 468700 8125 x 20R x 12.7 - 6 1502-9-7066 326500 870400 16

FEM-E-C 20 x 5R x 3-4 1 2 T7 R 82Z120 41Z120 1250 1 0Order code:

Standard series

* See P. 95 Characteristic speed d0 . n and P. 116 Critical speed nk

31 RE 83 301/2002-09

90°

L 4

L

L 3

22.5°

90°

30°

30°

D7

D7

SS

D6

D6

D 1D5

L 9L 9

Dw

d 0d 1

d 2

L 10

-0.0

5-0

.1D

1

d0 ≤ 32

d0 ≥ 40

N.B.: On a ground-thread screw SN-F the corediameter d2 can be smaller by max. 0.3 mmdue to the manufacture.

Lube port at flange center

BB2

BB1

Dimensions (mm) Weight

d1 d2 D1 D5 Hole D6 D7 L L3 L4 L9 L10 S mg6 pattern (kg)

15.0 12.9 28 48 BB2 38 5.5 38 12 10 44.0 26 M6 0.1915.0 12.9 28 48 BB2 38 5.5 45 12 16 44.0 33 M6 0.2115.0 12.9 28 48 BB2 38 5.5 61 12 20 44.0 49 M6 0.2619.0 16.9 36 58 BB2 47 6.6 40 12 10 51.0 28 M6 0.3119.3 16.7 36 58 BB2 47 6.6 77 12 25 51.0 65 M6 0.4924.0 21.9 40 62 BB2 51 6.6 45 12 10 55.0 33 M6 0.3624.0 21.9 40 62 BB2 51 6.6 64 12 20 55.0 52 M6 0.4724.0 21.4 40 62 BB2 51 6.6 95 12 30 55.0 83 M6 0.6331.0 28.4 50 80 BB2 65 9.0 48 13 10 71.0 35 M6 0.6231.0 27.9 50 80 BB2 65 9.0 77 13 16 71.0 64 M6 0.8431.0 27.9 50 80 BB2 65 9.0 84 13 25 71.0 71 M6 0.9031.0 27.9 50 80 BB2 65 9.0 120 13 40 71.0 107 M6 1.2139.0 36.4 63 93 BB1 78 9.0 54 15 10 81.5 39 M8x1 1.0338.0 33.8 63 93 BB1 78 9.0 70 15 16 81.5 55 M8x1 1.1938.0 33.8 63 93 BB1 78 9.0 75 15 25 81.5 60 M8x1 1.2738.0 33.8 63 93 BB1 78 9.0 90 15 25 81.5 75 M8x1 1.5138.0 33.8 63 93 BB1 78 9.0 88 15 25 81.5 73 M8x1 1.4438.0 33.8 63 93 BB1 78 9.0 142 15 45 81.5 127 M8x1 2.1649.0 46.4 75 110 BB1 93 11.0 54 15 10 97.5 39 M8x1 1.3948.0 43.8 75 110 BB1 93 11.0 90 18 16 97.5 72 M8x1 2.1448.0 43.8 75 110 BB1 93 11.0 105 18 25 97.5 87 M8x1 2.3848.0 43.8 75 110 BB1 93 11.0 128 18 25 97.5 110 M8x1 2.7548.0 43.4 75 110 BB1 93 11.0 132 18 25 97.5 114 M8x1 2.7348.0 43.4 75 110 BB1 93 11.0 149 18 45 97.5 131 M8x1 3.0461.0 56.8 90 125 BB1 108 11.0 90 22 16 110.0 68 M8x1 2.5661.0 56.4 95 135 BB1 115 13.5 132 22 25 117.5 110 M8x1 4.5161.0 56.4 95 135 BB1 115 13.5 149 22 45 117.5 127 M8x1 5.0478.0 73.3 105 145 BB1 125 13.5 95 22 16 127.5 73 M8x1 3.4076.0 67.0 125 165 BB1 145 13.5 170 25 25 147.5 145 M8x1 10.2098.0 93.4 125 165 BB1 145 13.5 95 25 16 147.5 70 M8x1 4.4096.0 87.1 150 202 BB1 176 17.5 170 30 25 178.5 140 M8x1 14.30

123.0 118.0 150 202 BB1 176 17.5 95 25 16 178.5 70 M8x1 5.65121.0 112.0 170 222 BB1 196 17.5 170 40 25 198.5 130 M8x1 16.10

Input voltage: 6-24V nominal, 30V absolute max.

Output current: Up to 12A continuous per channel. Peak loads may be up to 25A per

channel for a few seconds. These ratings are for input voltages up to 18v in still air without

additional heatsinking.

5V switching BEC: Up to 1A continuous and 1.5A peaks across the entire range of input

voltages.

Recommended power sources are:

• 5 to 18 cells NiMH or NiCd

• 2s to 6s lithium ion or lithium polymer. Sabertooth motor drivers have a lithium

battery mode to prevent cell damage due to over-discharge of lithium battery

packs.

• 6v to 24v lead acid

• 6v to 24v power supply (when in parallel with a suitable battery).

Dimensions:

Sabertooth 2x12 User’s Guide

Size: 2.5” x 2.95” x .6” 64 x 75 x 16mm

Weight: 2.2oz

• Switch settings: See the manufacturers instructions for operating mode, sample .

settings etc. (www.dimensionengineering.com/datasheets/Sabertooth2x12.pdf)

L INEAR MOTION SOLUTIONS I www.pbclinear.com

Dimensions: mm (in)

(CONSULT FACTORY)

Stepper Motor NEMA 17

Phases 2Steps/Revolution 200Step Accuracy ±5%Shaft Load 20,000 Hours at 1000 RPM Axial 25 N (5.6 lbs.) Push 65 N (15 lbs.) Pull Radial 29 N (6.5 lbs.) At Flat CenterIP Rating 40Approvals RoHSOperating Temp -20° C to +40° CInsulation Class B, 130° CInsulation Resistance 100 MegOhms

Dimensions: mm (in)4 Lead Connector, PBC Part#6200490(Consult factory for optional motor connectors)

Description LengthMounted

Rated Current

Mounted Holding Torque

Winding Ohms mH

Detent Torque

Rotor Inertia

Motor Weight

(Stack) “L” Max Amps Nm oz-inTyp. Typ.

±10%@ 20°C Typ. mNm oz-in g cm2 oz-in2 kg lbs

Single 39.8 mm (1.57 in) 2 0.48 68 1.04 2.2 15 2.1 57 0.31 0.28 0.62

Double 48.3 mm (1.90 in) 2 0.63 89 1.3 2.9 25 3.5 82 0.45 0.36 0.79

Triple 62.8 mm (2.47 in) 2 0.83 120 1.49 3.8 30 4.2 123 0.67 0.6 1.3

*All standard motors have plug connector. Consult factory for other options.

Standard shaft motor shown.

Standard shaft dimensions shown. All other dimensions apply to hollow and extended shaft options.

This document describes mechanical and electrical specifications for PBC Linear stepper motors; including standard, hollow, and extended shaft variations.

www.pbclinear.com I L INEAR MOTION SOLUTIONS

NEMA 17 Stepper Motor

0 300 600 900 1200 1500 1800

0

14

28

42

57

71

85

99

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 1,000 2,000 3,000 4,000 5,000 6,000Steps/SecRPM

Torq

ue (o

z-in

)

Torq

ue (N

m)

Speed

48 Vdc, 2 A rms 36 Vdc, 2 A rms 24 Vdc, 2 A rms 12 Vdc, 2 A rms

Bipolar Drive

Triple Stack

0 300 600 900 1200 1500 1800

071421283542505764

0.000.050.100.150.200.250.300.350.400.45

0 1,000 2,000 3,000 4,000 5,000 6,000Steps/SecRPM

Torq

ue (o

z-in

)

Torq

ue (N

m)

Speed

36 Vdc, 2 A rms

24 Vdc, 2 A rms

12 Vdc, 2 A rms

Bipolar Drive

Single Stack

0 300 600 900 1200 1500 1800

0

14

28

42

57

71

85

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 1,000 2,000 3,000 4,000 5,000 6,000Steps/SecRPM

Torq

ue (o

z-in

)

Torq

ue (N

m)

Speed

48 Vdc, 1.7 A rms 36 Vdc, 2 A rms 24 Vdc, 2 A rms 12 Vdc, 2 A rms

Bipolar Drive

Double Stack

*Performance curves apply to continuous duty cycles. Consult factory for intermittent cycles or other voltages.

L INEAR MOTION SOLUTIONS I www.pbclinear.com

Stepper Motor NEMA 23

Description LengthMounted

Rated Current

Mounted Holding Torque

Winding Ohms mH

Detent Torque

Rotor Inertia

Motor Weight

(Stack) “L” Max Amps Nm oz-inTyp. Typ.

±10%@ 20°C Typ. mNm oz-in g cm2 oz-in2 kg lbs

Single 55.0 mm (2.17 in) 2.2 1.50 210 1.6 6.9 45 6.4 220 1.2 0.6 1.3

Double 77.0 mm (3.03 in) 3 2.30 330 1.1 4.5 75 11 390 2.1 1 2.2

Power Plus (Triple) 77.0 mm (3.03 in) 3 3.30 470 1.1 3.7 150 21 390 2.1 1.1 2.4

*All standard motors have plug connector. Consult factory for other options.

Dimensions: mm (in)4 Lead Connector, PBC Part#6200491(Consult factory for optional motor connectors)

Phases 2Steps/Revolution 200Step Accuracy ±5%Shaft Load 20,000 Hours at 1000 RPM Axial 40 N (9 lbs.) Push 130 N (30 lbs.) Pull Radial 70 N (15.5 lbs.) At Flat CenterIP Rating 40Approvals RoHSOperating Temp -20° C to +40° CInsulation Class B, 130° CInsulation Resistance 100 MegOhms

Standard shaft motor shown.

Dimensions: mm (in)

Motor with leads: Lead wire is 22 AWG UL3266, 300 ±10 (12 ±.5) long

(CONSULT FACTORY)

Standard shaft dimensions shown. All other dimensions apply to hollow and extended shaft options.

This document describes mechanical and electrical specifications for PBC Linear stepper motors; including standard, hollow, and extended shaft variations.

www.pbclinear.com I L INEAR MOTION SOLUTIONS

NEMA 23 Stepper Motor

0 300 600 900 1200 1500 1800

0

28

57

85

113

142

170

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1,000 2,000 3,000 4,000 5,000 6,000Steps/SecRPM

Torq

ue (o

z-in

)

Torq

ue (N

m)

Speed

72 Vdc, 2 A rms 48 Vdc, 2 A rms 36 Vdc, 2 A rms 24 Vdc, 2 A rms

Bipolar Drive

Single Stack

0 300 600 900 1200 1500 1800

0285785113142170198227255283

0.000.200.400.600.801.001.201.401.601.802.00

0 1,000 2,000 3,000 5,000 6,000Steps/SecRPM

Torq

ue (o

z-in

)

Torq

ue (N

m)

Speed

24 Vdc, 3 A rms 12 Vdc, 3 A rms Bipolar Drive

Double Stack

Power Plus (Triple Stack)

*Performance curves apply to continuous duty cycles. Consult factory for intermittent cycles or other voltages.

APPENDIX III

Bill of Materials and Part Suppliers

Component SPECIFICATION QTY

UNIT

PRICE

Total

price PURCHASING DETAILS

Wood 1”, 3” blocks 4500 Local hardware Store

Guideway (X axis) W-15mm, L- 180mm 2 450 900 VM Traders, Coimbatore

Guideway (Y axis) W-15mm, L- 680mm 2 1420 2840 VM Traders, Coimbatore

Slider Block W- 15mm 4 735 2940 VM Traders, Coimbatore

Ball Lead Screw (X axis) D – 12mm, L – 220mm 1 800 800 Paramount bearings, Chennai

Ball Lead Screw (Y axis) D – 12mm, L – 580mm 1 1600 1600 Paramount bearings, Chennai

Ball Screw Nut ID=12mm 2 3200 6400 Paramount bearings, Chennai

Rigid Coupler ID=12mm – 6mm 2 145 290 Local hardware Store

Stepper Motor (Y axis) NEMA 17, 24V 1.2A 1 400 400 Magna Flock

Stepper Motor (X Axis) NEMA 23, 24V 2.8A 1 800 800 Magna Flock

Arduino board UNO 1 500 500 Local electronics store

Chuck 4''- 3 JAW -CHUCK 1 6800 6800

LittleMachineShop or Local

hardware store

Spindle Motor

Ebike MY1016 250W

24V 2650RPM DC

motor 1 3150 3150

http://www.ebay.in/itm/Ebike-

MY1016-250W-24V-2650RPM-

DC-motor-

/172244339903?hash=item281a

900cbf:g:y9kAAOSwWxNYnpv6

Belt V belt 1 50 50 Local hardware Store

Motor Drivers M542T MICRO 2 910 1820

http://www.amazon.in/TB6560-

Driver-Router-Controller-

Stepper/dp/B01EM10WA0/ref=s

r_1_5?ie=UTF8&qid=148654076

9&sr=8-

5&keywords=stepper+driver

SMPS 24V,10A 1 1000 1000 Local electronics store

Emergency Switch AC 660V 10A 1 250 250

http://www.amazon.in/Generic-

Emergency-Switch-Button-

Mushroom/dp/B01AUT8MUU?_

encoding=UTF8&psc=1&redirect

=true&ref_=oh_aui_search_detai

lpage

Shaft Bearings SKF- 628 4 150 600 Nu-tech bearings, Tambaram

Headstock Frame 1 10000 10000 Local hardware Store

Fasteners

M4X3”, M3x1”, Hex

head M3x1” with

washers and nuts 20 no's each132 132 Local hardware Store

TOTAL 45772

BILL OF MATERIAL FOR WOODEN CNC LATHE