a brief introduction to feedback control · a brief introduction to feedback control ......

61
A Brief Introduction to Feedback Control VO Embedded Systems Engineering Benedikt Huber WS 2010/11

Upload: truongnhan

Post on 05-Sep-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

A Brief Introduction to Feedback Control

VO Embedded Systems Engineering Benedikt Huber

WS 2010/11

Page 2: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Open and Closed Loop Systems

System 1  System 2 r u y

System 1  System 2 

r

u y

Page 3: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Example: Glucose Concentration

Pancreas 

Liver, Body Cells 

90 mg / dl

Glucose level too high

Glucose level too low

Beta cells emit more insulin

Alpha cells emit glucagon

Liver releases/produces glucose

Cells take glucose from blood

Glucose concentration influences pancreas cells

[Idea: AstromMurray08, Pictures: wikipedia.org]

Page 4: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Computer Controlled Systems

Actuators  System 

Controller  Filter 

Observed Output

Sensors Noise  Noise 

External Input

External disturbances

Clock 

r(t)

z(t)

u(t)

y(t)

Actuation Command

Page 5: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Engineered Control Systems

Server Admission

Control

Page 6: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Simple Feedback Control

•  Use control error e(t) -  e(t) = r(t) – y(t)

•  On/Off Control •  u = umax if e > 0 •  u = umin if e ≤ 0 •  Dead Zone •  Bang-Bang (Hysteresis)

e

u

u

e

Page 7: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Why Feedback Control?

Advantages of Feedback Control •  Control without exact system model •  Robustness: Less sensitive to disturbances •  Performance: Reach setpoint more quickly •  Feedback can be used to linearize system

Disadvantages •  Risk of instability (e.g.: Microphone Feedback) •  Additional components for providing the feedback signal

are required (measurement).

Page 8: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduction Modeling Dynamic Systems Designing PID Controllers Fuzzy Control

Page 9: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Simple Example Spring Mass System

–  d 

–  p ... posi?on –  m ... mass of the vehicle –  c ... fric?on coeffficient –  k ... spring constant –  u ... applied force 

System Dynamics: m p‘‘ + c p‘ + k p = u

Page 10: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Continous and Discrete Models

Continous •  Differential Equations •  Examples: Spring Mass, Cruise Control, DC Motor, ...

Discrete •  Difference Equations •  Example Email-Server: y[k+1] = a y[k] + b u[k] - y ... MaxUsers: deviation from operating point - u ... Remote Invocation Requests: deviation from op. Point

Page 11: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Linear Time-Invariant Systems

•  LTI Systems •  Time-Invariance: x(t-t0) → y(t-t0) •  Linearity: a·x1(t) +b·x2(t) → a·y1(t) +b·y2(t) •  Superposition principle: On piecewise constant input,

output is superposition of step responses •  Linearity

•  Most systems have non-linear behavior •  LTI Systems are often a good (local) approximation •  Feedback can be used to linearize systems •  Beware of finite actuator ranges (clipping)

Page 12: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Transfer Function (1) •  For Transfer Functions, the effect of a model component

is described in the Laplace Domain •  Laplace Transform L: f(t) F(s) •  Laplace Domain: Frequency domain (complex numbers) •  Step function: u(s) = 1/s

Time Domain Transforma-on 

f(t), g(t) is transformed to 

F(s),G(s) is transformed to 

Linear term  a f(t) + b g(t)  a F(t) + b G(t) 

Convolu?on  f(t) * g(t) =   F(s) G(s) 

Differenta?on  f‘(t)  s F(s) – f(0) 

Integra?on                   = (u*f) t  F(s) / s f (! )d!0

t

!

f (! )g(t !! )d!0

t

"

Page 13: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  13

The Transfer Function (2)

•  The transfer func?on G(s) is defined as the ra?o of the Laplace transformed output signal Y(s) to the input signal X(s):                         G(s) = Y(s) / X(s) 

•  In the ?me domain, the transfer func?on is a map                         x(t) → y(t) 

g(t) y(t) x(t) G(s) Y(s) X(s)

Page 14: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Transfer Function Building Blocks (1)

Name  Transfer Func-on  Modeling 

Gain (Propor+onal Elem.)  G(s) = k  y(t) = k x(t) 

Integra+ng Element  G(s) = s  y(t) = x‘(t) 

Differien+al Element  G(s) = 1/s  y‘(t) = x(t) 

First order delay (PT1)  G(s) = KP /(1 + T0∙s)  T0∙y’(t) + y(t) = KP∙x(t) 

Second order delay (PT2)  G(s) = KP /(a∙s2 + b∙s + 1)  

a∙y’’(t) + b∙y’(t) + y(t) = KP∙x(t) 

Page 15: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Transfer Function Building Blocks (2)

•  Serial Composition

•  Feedback

)()()( 21 sGsGsG ⋅=

01 2

1 2 0

G (s)G (s) G (s)G(s)

1 G (s) G (s) 1 G (s)⋅

= =+ ⋅ +

Page 16: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Spring Mass - System Model

Transfer Function •  Second order delay •  G(s)= Y(s) / U(s) = 1 / [m s^2 – k c s – m k]

[modeled using ScicosLab]

Page 17: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Step Response

[Image: wikipedia.org]

OVERSHOOT

Page 18: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  18

Step Response (2)

  Proportional element y(t) = KP · x(t)

  Integrating element y(t) = KI · ∫ x(t) dt

Pictures denote the response to the

standard step signal

y(t)

t

K p

y(t)

t

1

1/K I

Page 19: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  19

Step Response (3)

  Differential element y(t) = KD · dx(t)/dt

  First order delay T0·y’(t) + y(t) = KP·x(t)

Pictures denote the response to the

standard step signal

y(t)

t

inifinite amplitude not poss ible (clipping)

y(t)

t

K p

T 0

Page 20: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  20

Step Response (4)

  Second order delay

Output depends on internal parameters

[image from wikiepdia.org]

Page 21: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Step Response: Spring Mass System

Page 22: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

State Space Models

•  Matrix-oriented view on LTI models •  State dynamics: dx/dt = A x + B u

•  x ... State vector •  u ... Control vector •  A ... Dynamics matrix •  B ... Control matrix

•  Output dynamics: y = C x + D u •  y ... output vector •  C .,. Sensor matrix •  D ... Direct term (often 0)

Page 23: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

LTI State Space Models

•  Solve differential equation by matrix exponentiation •  Given x’(t) = A x(t), x(0) = x0 •  We have: y(t) = eAt x0

•  Discretization •  Fix sampling interval T •  Given x’(t) = A x(t), x(0) = x0 •  We have: x((k+1) T) = eAT x(k T) + ((eAT - I) B A -1) u(k T) •  With fixed T, very simple discrete simulation (but discretization can

be expensive)

•  Advantages •  State Space Model directly corresponds to differential equations •  Convenient to model MIMO (multiple input, multiple output) systems

(cf. SISO)

Page 24: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Simple Example: State Space Model Spring Mass System •  State Space Equations in (p,p‘)

•  For improved readbility: Variables (p,v) with v = p‘ •  First row states that p‘ = v •  Second row is differential equation modeling system

!x

!t=

p '

v '

"

#$$

%

&''=

0 1

(k

m(c

m

"

#

$$$

%

&

'''

p v( )+0

1

m

"

#

$$$

%

&

'''F

y =1

0

!

"#

$

%&( p v )+

0

0

!

"#

$

%&F

Page 25: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduction Modeling Dynamic Systems Designing PID Controllers Beyond PID Controllers

Page 26: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Goals of Effective Control

S-A-S-O •  Stability

•  High Accuracy (Small Steady State Error)

•  Short Settle Time

•  Minimize Overshoot

Page 27: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Proportional Control

•  Idea: Amplify the error •  u(t) = kp e(t) •  Design Parameter: Proportional gain kp

•  Steady State Error (SSE) indirect prop. to kp •  Gain too small: large SSE, large settle time •  Gain too high: Overshoot, oscillation

•  Correcting SSE with feed forward term •  u(t) = kp e(t) + uff •  How to choose uff? •  Requires precise system model

Page 28: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Proportional Control Spring Mass System

kp = 50

kp = 15

Input Amplifier

Page 29: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

PI Controller

•  Integral component eliminates SSE and attenuates disturbance

•  PI Controller: kp e(t) + ip ∫e (t) •  In a stable PI-controlled system, SSE becomes 0

eventually •  Integrating element (ip=kp) can be used to generate uff

•  Design tradeoffs for gain ip: •  Larger gain attenuates disturbances effectively •  Gain to large: oscillatory behavior, poor robustness,

possible instability

Page 30: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

PI Controller

kp = 10, ki=3 (Long settlement time)

kp = 10, ki=0 (SSE)

Input Amplifier

kp = 10, ki=1

PI Control - Spring Mass System

Page 31: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

PI Controller: Windup

•  Real-world actuators have limited operating range •  What happens if control point out of actuator limits? •  Integrator windup: Integral term and control point can get

very large

•  Solution: Anti-Windup Component •  Measure Difference: actuator output - controller ouput •  Feed back into integrator component

Page 32: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

PD Controller

•  Intuition: Error prediction using derivative •  u = kp e + kd (de/dt) = kp ( e + Td (de/dt) ) •  e + Td (de/dt): Prediction of error at time t + Td by linear

extrapolation, where Td = kd / kp

•  Design Tradeoffs for derivative gain •  Higher gain damps oscillations •  Performance decreases if gain is too high

Page 33: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

PID Controller

[Image: wikipedia.org]

Page 34: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

PID Control - Spring Mass System

Input Amplifier

Page 35: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

More PID Controller Improvements

•  Low-pass filter for derivative •  Problem: Derivative component sensitive to high-

frequency noise •  Solution: Low-pass filter input of derivative component

•  Setpoint weighting •  Problem: Step in reference input causes peak of output

due to derivative term •  Solution: Weight the reference input‘s influence on the PD

components

Page 36: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  36

Designing Control Systems using the Step Response

  Step response measurement for the control path •  test signal is the standard step signal: 

  Step response provides the characteris?c values        Tu, Ta and Ks  

1

t

x(t)

Page 37: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  37

Designing Control Systems using the Step Response (2)

y(t)

t

Ks

Tu Ta

  Tu …effec?ve delay ?me   Ta …effec?ve 

        compensa?on ?me   Ks …gain 

Page 38: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  38

Designing Control Systems using the Step Response (3)   Based on the values Tu, Ta and Ks the rules by [Chien, Hrones, and Reswick] can be used to find a first se]ng of the controller: •  supports P, PI, and PID controller types •  se]ngs for 0% and 20% allowed overshoo?ng •  depending on the control path, fine tuning may be required. 

Page 39: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

39

Rules from Chien, Hrones, and Reswick

Page 40: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  40

Boundary conditions of Designing a Control System by Rules using the Step Response

  Requires time invariance and linearity of control path.

  The described method is for analog controllers.   Method gives an approximate starting configuration   Possible optimizations either manually or using

sophisticated algorithms (e.g. genetic algorithm)

Page 41: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  41

Stability

•  Most important property of controlled system •  BIBO stability: Bounded Input only generates Bounded Output 

•  Several Methods •  Frequency Domain: Nyquist Criterion, Bode Plot •  State Space Model: Lyapunov Stability Theorem 

Page 42: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduction Modeling Dynamic Systems Designing PID Controllers Fuzzy Control

Page 43: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  43

Fuzzy Logic – Fuzzy Control

  Multi-valued logic   Instead of true or false: degree of membership to a “Fuzzy

Set”   Membership function:

]1,0[:)( →XxAµ

Page 44: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  44

Example: Fuzzy Variable “temp”

-  5 fuzzy sets (very cold, cold, …) -  µvery cold(x) = 0 -  µcold(x) = 0.14 -  µmoderate(x) = 0.33 -  µhot(x) = 0 -  µvery hot(x) = 0

0

1

T0 T 7 T 8 T 9T 6T 5T 4T 3T 2T 1

verycold cold moderate hot very 

hot

0.140.33

x

Page 45: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  45

Operators on Fuzzy Sets

(x)]µ (x),min[µ (x)µ BABA =∩

(x)µ1(x)µ AA −=¬

(x)]µ (x),max[µ (x)µ BABA =∪

Page 46: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  46

Process flow of fuzzy systems

F uzzyficationR ule 

E valuation(n R ules )

Aggregation Defuzzyfication

Input Variable(s )

Output Variable(s )

controller

Control Path

Page 47: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  47

Example: Steam Turbine

0

1

T0 T 7 T 8 T 9T 6T 5T 4T 3T 2T 1

verycold cold moderate hot very 

hot

0

1

P 0 P 7 P 8 P 9P 6P 5P 4P 3P 2P 1

weak low OK strong high

Input Variables: temperature and pressure

Output Variable: throttle setting

0

1

min max0

negative zero pos itive

Page 48: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  48

Example: Fuzzyfication

0

1

T0 T 7 T 8 T 9T 6T 5T 4T 3T 2T 1

verycold cold moderate hot very 

hot

0.6

x

1)  Temperature Input x: µcold(x) = 0.6 µvery cold(x) = 0 … µvery_hot(x) = 0

2)  Pressure Input y: µlow(y) = 0.37 µok(y) = 0.13 µweak(y) = 0 … µhigh(y) = 0 0

1

P 0 P 7 P 8 P 9P 6P 5P 4P 3P 2P 1

weak low OK strong high

0.13

0.37

Page 49: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  49

Example: Rule Base

1)  IF temperature IS cold AND pressure IS low THEN

throttle IS positive

2)  IF temperature IS cold AND pressure IS ok THEN throttle IS zero

3)  IF temperature IS cold AND pressure IS strong THEN

throttle IS negative

4)  …

Page 50: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  50

1)  IF temperature IS cold AND pressure IS low THEN throttle IS positive

2)  IF temperature IS cold AND pressure IS ok THEN throttle IS zero

3)  IF temperature IS cold AND pressure IS strong THEN throttle IS negative

Example: Rule Evaluation (Max/Min)

0

1

min max0

pos itive

0.37

µcold(x) = 0.6 µlow(y) = 0.37

µcold(x) = 0.6 µok(y) = 0.13

0

1

min max0

zero

0.13

Page 51: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  51

Example: Aggregation (Max/Min)

0

1

min max0

pos itive

0.37

0

1

min max0

zero

0.13

0

1

min max0

zero pos itive

Page 52: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  52

Example: Defuzzyfication

0

1

min max0 z

•  Generation of crisp output value by use of “center of gravity” method

center of gravity

Page 53: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

References / Materials

•  Exploring Classical Control (Online Material) http://www.facstaff.bucknell.edu/mastascu/eControlHTML/CourseIndex.html

•  Feedback Systems: An Introduction for Scientists and Engineers.. Karl J. Åström and Richard M. Murray (2008).

•  Modeling a DC motor using MATLAB/Simulink http://www.mathworks.com/help/toolbox/control/getstart/f1-1010549.html

•  http://www.scicoslab.org/ •  www.gnu.org/software/octave/

Page 54: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

ENDE

Danke für die Aufmerksamkeit!

Page 55: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Additional / Unused Material

Laplace Transformation Designing a Digital Controller Stability criteria

Page 56: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  56

Laplace Transformation

Calculation in the Laplace domain (s).

∫∞+

∞−

∞−

⋅⋅⋅

==

⋅==

+=

j

j

st

st

dsesXj

sXLtx

dtetxtxLsX

js

σ

σπ

ωσ

)(21)}({)(

)()}({)(

1

0

Page 57: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  57

Laplace Transformation (2)

Important Laplace Transformations

x(t) X(t) = L{x(t)}

δ(t) 1

1 or σ(t) 1 / s

t 1 / s2

sin(b t) b / (s2 + b2)

ea· t

1 / (s – a)

Page 58: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  58

Designing a Digital Controller (PID)

  Position algorithm:

  Velocity algorithm:

  Sampling time Ts must be sufficiently small: Ts ≤ 0.1 · Ta Ts ≤ 0.25 · Tu

s

nnD

n

isiInPn T

eeKTeKeKu 1−−++= ∑

s

nnnDsnInnPn T

)ee(eKTeK)e(eKΔu 211

2 −−−

−−++−=

Page 59: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  59

Stability: Nyquist Criterion

  Plo]ng the transfer func?on of the opened control system as Nyquist Plot (separate axis for real and imaginary part) 

  Cri?cal point of F(ω):    [‐1,0i]   Amplitude passage     ωD1 :     |F(ωD1)| = 1   Phase passage             ωD2 :     arc(F(ωD2)) = π   Stable behavior:          ωD1 < ωD2 

Page 60: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  60

Stability: Nyquist Criterium (2)

-1

ω >

Im

Re

ω=0 ω=∞ critical point ωD1

ωD2

Page 61: A Brief Introduction to Feedback Control · A Brief Introduction to Feedback Control ... Proportional Control ... Boundary conditions of Designing a Control System by Rules using

Introduc?on to Control Theory  61

Stability: Bode Plot |G (jω)|

ω

ω

‐90°

‐180°

‐270°

10

1

|F | > 1 …  instabil|F | = 1|F | < 1 …  s tabil

Φ > ‐180° …  s tabilΦ = ‐180°Φ < ‐180° …  instabil

Φ

Quality of Stability: •  Amplitude margin

•  Phase margin