a bayesian estimate of the cmb-large scale...

21
A Bayesian estimate of the CMB-large scale structure cross correlation Edivaldo Moura Santos Instituto de Física - USP in collaboration with F. C. Carvalho (UERN), M. Penna Lima (APC), C. P. Novaes (ON), C. A. Wuensche (INPE) 10th PPC, 11-15 July 2016, ICTP-SAIFR, São Paulo 1 arXiv:1512.00641 (to appear in ApJ)

Upload: doquynh

Post on 17-Feb-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

A Bayesian estimate of the CMB-large scale structure

cross correlationEdivaldo Moura SantosInstituto de Física - USP

in collaboration withF. C. Carvalho (UERN), M. Penna Lima (APC), C. P. Novaes (ON), C. A. Wuensche (INPE)

10th PPC, 11-15 July 2016, ICTP-SAIFR, São Paulo1

arXiv:1512.00641 (to appear in ApJ)

Motivation• Cross-correlation can give us some additional hints on the current universe’s

accelerated phase• Crossed signal can be estimated with several different estimators• There have been many measurements in the past with quite different levels of

significances, from null to marginal to highly significant claims (depending on the estimators and data set)

• Highest signals have been seen when localised super-structures were used

2

Integrated Sachs-Wolfe (ISW) effect

3

• gravitational potentials vary with time in an accelerated universe

• superclusters x CMB hotspots• supervoids x CMB coldspots

Positive correlations:

The CMB-LSS cross correlation

4

• But from Poisson eq. in Fourier space (large-k, no-radiation limit):

• Secondary CMB anisotropy due to time variable potential:

• Galaxy overdensity fluctuations:

• One can then write a two-point correlation function in harmonic space:

Main observables here! (Ctt, Cgg, Ctg)

gµ⌫ =

0

BB@

�1� 2 0 0 00 a2(1 + 2�) 0 00 0 a2(1 + 2�) 00 0 0 a2(1 + 2�)

1

CCA

perturbed metric in an expanding flat universe:

kernels:Cxy

`

⌘ h�x

(n̂)�y

(n̂0)i = 2

Zdkk2W x

`

(k)W y

`

(k)P (k)

Expected signals for a ΛCDM cosmology

5

0

1000

2000

3000

4000

5000

6000

10 100 1000

ℓ (ℓ

+1) C

ℓtt / 2/

[µK2 ]

RCDM

10-5

10-4

10-3

10-2

10-1

10 100

Cℓgg

RCDM + selection 1RCDM + selection 2RCDM + selection 3RCDM + selection 4

0

0.05

0.1

0.15

0.2

0.25

10 100

ℓ (ℓ

+1) C

ℓtg /

2/ [µ

K]

RCDM + selection 1RCDM + selection 2RCDM + selection 3RCDM + selection 4

LSS autocorrelationCMB autocorrelation

cross-correlation

A Bayesian question

6

Question: What is the likelihood for observing the fluctuations of the combined set of a CMB temperature and a galaxy contrast map?

C = S+N

Answer (for a flat prior):

S = diag(S0,S1, · · · ,S`max

) S` =

✓Stt` Stg

`

Stg` Sgg

`

L =

1p(2⇡)Np

(detC)

exp

�1

2

dTC�1d

In harmonic spacesignal covariance matrix:

Np-pixel mapsd =( )CMB map

galaxy map

Hypothesis: Gaussian fluctuations (primordial and

instrumental noise)

Gibbs sampling equationsfluctuation field

si+1 - P (s|Si,d)

Si+1 - P (S|si+1)

(primordial signal)

(signal covariance)

Build a Markov chain whose stationary distribution is the desired likelihood.

Each step in the chain involves the draw of a S matrix and a signal map:

7

For a Markov chain with nG steps, one can use a Blackwell-Rao estimator:

The log of the Blackwell-Rao likelihood can then be maximized to get maximum likelihood values for the power spectrum

(S(0), s(0)), ..., (S(nb), s(nb))| {z }burn-in phase

, ..., (S(i), s(i)), ...

L ' 1

nG

nGX

i=1

Pi(S|s)

d=As+n

beam noise

signal

8

Two-Micron All Sky Survey (2MASS)• eXtended Source Catalog (XSC)

• near IR

• position + photometry + basic shape information

• 1,647,599 resolved objects: 97% galaxies

Publicly available from: ftp://ftp.ipac.caltech.edu/pub/2mass/allsky/

2MASS redshift distributions

9

• 2MASS is a shallow catalog

• peak sensitivity around z=0.1

Final parameterisation:

• redshift distribution from Schechter parameters that best fit K20 magnitudes:

l.o.s. comoving volume

luminosity function

PRD69 (2004) 083524

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3

Nor

mal

ized

sel

ectio

n fu

nctio

n

redshift

2MPZ photoz (12.0<K20<12.5)2MPZ photoz (12.5<K20<13.0)2MPZ photoz (13.0<K20<13.5)2MPZ photoz (13.5<K20<13.9)

Afshordi 1Afshordi 2Afshordi 3Afshordi 4

K20 ! K 020 = K20 �Ak (Ak = 0.367⇥ E(B � V ))

• KS-band 2.16 micron magnitudes (k_m_i20c) corrected for extinction using Schlegel maps (ApJ 500, 525 (1998)):

2MASS low resolution contrast maps

10

10-5

10-4

10-3

10-2

10-1

10 100

12.0 ≤ K20 < 12.5 (XSC band 1)

Cℓgg

halofit

linear theory

2MASS autocorrelations and the galaxy bias

11

10-5

10-4

10-3

10-2

10-1

10 100

12.5 ≤ K20 < 13.0 (XSC band 2)

Cℓgg

halofit

linear theory

10-5

10-4

10-3

10-2

10-1

10 100

13.0 ≤ K20 < 13.5 (XSC band 3)

Cℓgg

halofit

linear theory

10-5

10-4

10-3

10-2

10-1

10 100

13.5 ≤ K20 ≤ 14.0 (XSC band 4)

Cℓgg

halofit

linear theory

10-5

10-4

10-3

10-2

10-1

10 100

12.0 ≤ K20 < 12.5 (XSC band 1)

Cℓgg

halofit

linear theory

2MASS autocorrelations and the galaxy bias

12

10-5

10-4

10-3

10-2

10-1

10 100

12.5 ≤ K20 < 13.0 (XSC band 2)

Cℓgg

halofit

linear theory

10-5

10-4

10-3

10-2

10-1

10 100

13.0 ≤ K20 < 13.5 (XSC band 3)

Cℓgg

halofit

linear theory

10-5

10-4

10-3

10-2

10-1

10 100

13.5 ≤ K20 ≤ 14.0 (XSC band 4)

Cℓgg

halofit

linear theory

�8 = 0.78

Noise into the WMAP9 channels

W1 Nobs map

• WMAP 3 cleanest channels: (Q (40 GHz) / V (60 GHz) / W (90 GHz))

13

Average noise power over 100 sky realisations

W1 temperature (I) map

0

500

1000

1500

2000

2500

3000

3500

4000

100 200 300 400 500 600 700 800 900 1000

ℓ (ℓ +

1) C

ℓ / 2

π [m

icro

K2 ]

QVW

ILCQ-noiseV-noiseW-noise

• Average noise power fairly well understood, but pixel-to-pixel correlation hard to model

• Gaussian noise model in pixel space:

Data publicly available from: http://lambda.gsfc.nasa.gov

�2 =�20

Nobs

WMAP9 low resolution (r5) maps

14

CMB autocorrelation @ harmonic space (MC)

10-1

100

101

102

103

104

10

ℓ (ℓ

+1) C

ℓtt / 2/

[µK2 ]

input RCDM

full sky signal (ns=512)

full sky signal (5deg filter/ns=32)

full sky signal (5deg filter/2muK noise/ns=32)

full sky input noise

15

Added Gaussian noise dominates over signal for l>60

16

mean

fluctuation

mean+fluc

CMB LSS MC

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

cosmic variancebest fit + total errorΛCDM fiducial spec

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

0

1000

2000

3000

4000

10 100

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

10-4

10-3

10-2

10-1

Cℓgg

10-4

10-3

10-2

10-1

Cℓgg

-1.0

0.0

1.0 band 1

Cℓtg

[µK]

-1.0

0.0

1.0 band 2

Cℓtg

[µK]

-1.0

0.0

1.0 band 3

Cℓtg

[µK]

-1.0

0.0

1.0

10 100

band 4

Cℓtg

[µK]

10-4

10-3

10-2

10-1

Cℓgg

10-4

10-3

10-2

10-1

10 100

Cℓgg

Maximum likelihood spectra (MC)

1750,000 samples

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

cosmic variancesystematics

best fit + total errorΛCDM fiducial spec.

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

0

1000

2000

3000

4000

10 100

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

10-4

10-3

10-2

10-1

Cℓgg

10-4

10-3

10-2

10-1

Cℓgg

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

band 1

Cℓtg

[µK]

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

band 2

Cℓtg

[µK]

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

band 3

Cℓtg

[µK]

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

10 100

band 4

Cℓtg

[µK]

10-4

10-3

10-2

10-1

Cℓgg

10-4

10-3

10-2

10-1

10 100

Cℓgg

Final spectra and systematics (data)

1850,000 samples drawn red line is not a fitscale invariant Jeffrey’s prior used

arXiv:1512.00641

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

cosmic variancesystematics

best fit + total errorΛCDM fiducial spec.

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

0

1000

2000

3000

4000

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

0

1000

2000

3000

4000

10 100

ℓ (ℓ

+ 1

) Cℓtt /

2 π

[µK2 ]

10-4

10-3

10-2

10-1

Cℓgg

10-4

10-3

10-2

10-1

Cℓgg

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

band 1

Cℓtg

[µK]

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

band 2

Cℓtg

[µK]

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

band 3

Cℓtg

[µK]

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

10 100

band 4

Cℓtg

[µK]

10-4

10-3

10-2

10-1

Cℓgg

10-4

10-3

10-2

10-1

10 100

Cℓgg

Final spectra and systematics (data)

1950,000 samples

We also get a low CMB quadrupole (l=2) value

arXiv:1512.00641

Likelihood 1d slices

20

Likelihoods are too broad for low-l multipoles: cosmic variance dominated

0.0

0.5

1.0 ℓ=2lik

elih

ood

b1b2b3b4

ℓ=3 ℓ=4

0.0

0.5

1.0 ℓ=5

likel

ihoo

d ℓ=6 ℓ=7

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

ℓ=8

likel

ihoo

d

Cℓtg [µK]

-0.4 -0.2 0.0 0.2 0.4

ℓ=9

Cℓtg [µK]

-0.4 -0.2 0.0 0.2 0.4

ℓ=10

Cℓtg [µK]

Summary

21

• ISW is an additional tool for late time acceleration studies

• Likelihood for combined CMB-galaxy map estimated via Gibbs

sampling and maximised

• Gibbs chain validated with Monte Carlo control samples

• Systematics associated to the sampling algorithm estimated: they

are not the dominant contribution to the uncertainty

• For a shallow catalog like 2MASS, cosmic variance is the main

source of uncertainty

• Future: use Planck as CMB map and deeper surveys like SDSS.