&9&3$*4&4 b - university of california,...

5
Homework 3 (due Wednesday 25 th Oct midnight) Q1. Write a system of equations that is equivalent to the given vector equations. a. b. Q2. Write a vector equation that is equivalent to the given system of equations. Q3. Check if the following set of vectors form an orthogonal set in R 3 . x 1 3 2 C x 2 7 3 C x 3 2 1 D 0 0 x 2 C 5x 3 D 0 4x 1 C 6x 2 x 3 D 0 x 1 C 3x 2 8x 3 D 0 a. {[ 0 0 −2 ] , [ 0 3 0 ] , [ −7 0 0 ] , [ 1 0 2 ] } b. {[ 1 1 −2 ],[ 5 3 4 ] ,[ 4 0 2 ] } c. {[ 1 0 1 ],[ 2 0 −2 ],[ 0 3 0 ] }

Upload: others

Post on 22-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: &9&3$*4&4 b - University of California, Irvinegraphics.ics.uci.edu/ICS6N/Homework/HW3.pdfHomework 3 (due Wednesday 25th Oct midnight) Q1. Write a system of equations that is equivalent

Homework3(due Wednesday 25th Oct midnight)

Q1. Write a system of equations that is equivalent to the given vector equations. a.

b.

Q2. Write a vector equation that is equivalent to the given system of equations.

Q3. Check if the following set of vectors form an orthogonal set in R3.

�"&��*�)-�,"'&+�"&��"&��*��$ ��*�

"@��J7D5;E7E� �3@6��� 5A?BGF7 8C 9 3@6 8 ! 29

�� 8 D!

!12

"� 9 D

!!3!1

"� 8 D

!32

"� 9 D

!2

!1

"

"@��J7D5;E7E���3@6��� 6;EB>3K�F:7�8A>>AI;@9�H75FADE�GE;@9�3DDAIEA@�3@ /09D3B:� 8� 9� !9� !29� 8C 9� 8 ! 9� 3@6 8 ! 29 'AF;57F:3F 8 ! 9 ;E�F:7�H7DF7J�A8�3�B3D3>>7>A9D3?�I:AE7�AF:7D�H7DF;57E�3D78� �� 3@6 !9� 8 3@6 9 3E�;@��J7D5;E7� �� 8 3@6 9 3E�;@��J7D5;E7��

"@��J7D5;E7E���3@6��� ID;F7�3�EKEF7?�A8�7CG3F;A@E�F:3F�;E�7CG;H3>7@FFA�F:7�9;H7@�H75FAD�7CG3F;A@

�� x1

24

3!2

8

35 C x2

24

50

!9

35 D

24

2!3

8

35

� x1

!3

!2

"C x2

!73

"C x3

!!2

1

"D

!00

"

-E7�F:7�355A?B3@K;@9�S9GD7�FA�ID;F7�735:�H75FAD�>;EF76�;@��J7D5;E7E���3@6���3E�3�>;@73D�5A?4;@3F;A@�A8 8 3@6 9 "E�7H7DK�H75FAD;@ R2 3�>;@73D�5A?4;@3F;A@�A8 8 3@6 9�

w

x

v

u

ac

d

2vb

z

y–2v –u

–v0

�� .75FADE %� &� '� 3@6 (

�� .75FADE :� ;� <� 3@6 =

"@��J7D5;E7E���3@6� �� ID;F7�3�H75FAD�7CG3F;A@�F:3F�;E�7CG;H3>7@F�FAF:7�9;H7@�EKEF7?�A8�7CG3F;A@E

�� x2 C 5x3 D 0

4x1 C 6x2 ! x3 D 0

!x1 C 3x2 ! 8x3 D 0

��� 3x1 ! 2x2 C 4x3 D 3

!2x1 ! 7x2 C 5x3 D 1

5x1 C 4x2 ! 3x3 D 2

"@��J7D5;E7E� �3@6� �� 67F7D?;@7�;8 & ;E�3�>;@73D�5A?4;@3F;A@�A8%1� %2� 3@6 %3

��� %1 D

24

1!2

0

35� %2 D

24

012

35� %3 D

24

5!6

8

35� & D

24

2!1

6

35

�� %1 D

24

101

35� %2 D

24

!23

!2

35� %3 D

24

!675

35� & D

24

11!5

9

35

"@��J7D5;E7E� ��3@6� �� 67F7D?;@7�;8 & ;E�3�>;@73D�5A?4;@3F;A@�A8F:7�H75FADE�8AD?76�8DA?�F:7�5A>G?@E�A8�F:7�?3FD;J A

�� A D

24

1 !4 20 3 5

!2 8 !4

35� & D

24

3!7!3

35

��� A D

24

1 0 5!2 1 !6

0 2 8

35� & D

24

2!1

6

35

��� %7F %1 D

24

13

!1

35� %2 D

24

!5!8

2

35� 3@6 & D

24

3!5

h

35 �AD�I:3F

H3>G7�E��A8 h ;E & ;@�F:7�B>3@7�EB3@@76�4K %1 3@6 %2�

� � %7F 91 D

24

10

!2

35� 92 D

24

!217

35� 3@6 < D

24

h!3!5

35 �AD�I:3F

H3>G7�E��A8 h ;E < ;@�F:7�B>3@7�97@7D3F76�4K 91 3@6 92�

"@��J7D5;E7E� ��3@6� �� >;EF�SH7�H75FADE�;@ +B3@ f91; 92g �AD�735:H75FAD� E:AI�F:7�I7;9:FE�A@ 91 3@6 92 GE76�FA�97@7D3F7�F:7�H75FAD3@6�>;EF�F:7�F:D77�7@FD;7E�A8�F:7�H75FAD �A�@AF�?3=7�3�E=7F5:

��� 91 D

24

312

35� 92 D

24

!401

35

��� 91 D

24

11

!2

35� 92 D

24

!230

35

��� ;H7�3�97A?7FD;5�67E5D;BF;A@�A8 +B3@ f91; 92g 8AD�F:7�H75FADE

91 D

24

82

!6

35 3@6 92 D

24

123

!9

35

�� ;H7�3�97A?7FD;5�67E5D;BF;A@�A8 +B3@ f91; 92g 8AD�F:7�H75FADE;@��J7D5;E7� �

�� %7F 8 D!

2!1

"3@6 9 D

!21

" +:AI � F:3F

!hk

";E � ;@

+B3@ f8; 9g 8AD�3>> h 3@6 k

� �A@EFDG5F�3 3 " 3?3FD;JA� I;F:�@A@L7DA�7@FD;7E� 3@6�3�H75FAD& ;@ R3 EG5:�F:3F & ;E %&+ ;@�F:7�E7F�EB3@@76�4K�F:7�5A>G?@EA8 A

"@��J7D5;E7E����3@6���� ?3D=�735:�EF3F7?7@F�,DG7�AD��3>E7 #GEF;8K735:�3@EI7D

� 3 �@AF:7D�@AF3F;A@�8AD�F:7�H75FAD!

!43

";E Π!4 3 !

4 ,:7 �BA;@FE � ;@ � F:7 �B>3@7 �5ADD7EBA@6;@9 � FA!

!25

"3@6

!!5

2

">;7�A@�3�>;@7�F:DAG9:�F:7�AD;9;@

5 �@�7J3?B>7�A8�3�>;@73D�5A?4;@3F;A@�A8�H75FADE 91 3@6 92

;E�F:7�H75FAD 1291

ICS 6N – Homework 7

(In order to solve these problems, it is highly recommended to read Chapters 1.3 -1.5 in the book)

1. Write a system of equations that is equivalent to the given vector equation.

a)

b)

2. Write a vector equation that is equivalent to the given system of equations.

a)

b)

3. Check if the column vectors of matrix A are linearly independent or not.

a)

�"&��*�)-�,"'&+�"&��"&��*��$ ��*�

"@��J7D5;E7E� �3@6��� 5A?BGF7 8C 9 3@6 8 ! 29

�� 8 D!

!12

"� 9 D

!!3!1

"� 8 D

!32

"� 9 D

!2

!1

"

"@��J7D5;E7E���3@6��� 6;EB>3K�F:7�8A>>AI;@9�H75FADE�GE;@9�3DDAIEA@�3@ /09D3B:� 8� 9� !9� !29� 8C 9� 8 ! 9� 3@6 8 ! 29 'AF;57F:3F 8 ! 9 ;E�F:7�H7DF7J�A8�3�B3D3>>7>A9D3?�I:AE7�AF:7D�H7DF;57E�3D78� �� 3@6 !9� 8 3@6 9 3E�;@��J7D5;E7� �� 8 3@6 9 3E�;@��J7D5;E7��

"@��J7D5;E7E���3@6��� ID;F7�3�EKEF7?�A8�7CG3F;A@E�F:3F�;E�7CG;H3>7@FFA�F:7�9;H7@�H75FAD�7CG3F;A@

�� x1

24

3!2

8

35 C x2

24

50

!9

35 D

24

2!3

8

35

� x1

!3

!2

"C x2

!73

"C x3

!!2

1

"D

!00

"

-E7�F:7�355A?B3@K;@9�S9GD7�FA�ID;F7�735:�H75FAD�>;EF76�;@��J7D5;E7E���3@6���3E�3�>;@73D�5A?4;@3F;A@�A8 8 3@6 9 "E�7H7DK�H75FAD;@ R2 3�>;@73D�5A?4;@3F;A@�A8 8 3@6 9�

w

x

v

u

ac

d

2vb

z

y–2v –u

–v0

�� .75FADE %� &� '� 3@6 (

�� .75FADE :� ;� <� 3@6 =

"@��J7D5;E7E���3@6� �� ID;F7�3�H75FAD�7CG3F;A@�F:3F�;E�7CG;H3>7@F�FAF:7�9;H7@�EKEF7?�A8�7CG3F;A@E

�� x2 C 5x3 D 0

4x1 C 6x2 ! x3 D 0

!x1 C 3x2 ! 8x3 D 0

��� 3x1 ! 2x2 C 4x3 D 3

!2x1 ! 7x2 C 5x3 D 1

5x1 C 4x2 ! 3x3 D 2

"@��J7D5;E7E� �3@6� �� 67F7D?;@7�;8 & ;E�3�>;@73D�5A?4;@3F;A@�A8%1� %2� 3@6 %3

��� %1 D

24

1!2

0

35� %2 D

24

012

35� %3 D

24

5!6

8

35� & D

24

2!1

6

35

�� %1 D

24

101

35� %2 D

24

!23

!2

35� %3 D

24

!675

35� & D

24

11!5

9

35

"@��J7D5;E7E� ��3@6� �� 67F7D?;@7�;8 & ;E�3�>;@73D�5A?4;@3F;A@�A8F:7�H75FADE�8AD?76�8DA?�F:7�5A>G?@E�A8�F:7�?3FD;J A

�� A D

24

1 !4 20 3 5

!2 8 !4

35� & D

24

3!7!3

35

��� A D

24

1 0 5!2 1 !6

0 2 8

35� & D

24

2!1

6

35

��� %7F %1 D

24

13

!1

35� %2 D

24

!5!8

2

35� 3@6 & D

24

3!5

h

35 �AD�I:3F

H3>G7�E��A8 h ;E & ;@�F:7�B>3@7�EB3@@76�4K %1 3@6 %2�

� � %7F 91 D

24

10

!2

35� 92 D

24

!217

35� 3@6 < D

24

h!3!5

35 �AD�I:3F

H3>G7�E��A8 h ;E < ;@�F:7�B>3@7�97@7D3F76�4K 91 3@6 92�

"@��J7D5;E7E� ��3@6� �� >;EF�SH7�H75FADE�;@ +B3@ f91; 92g �AD�735:H75FAD� E:AI�F:7�I7;9:FE�A@ 91 3@6 92 GE76�FA�97@7D3F7�F:7�H75FAD3@6�>;EF�F:7�F:D77�7@FD;7E�A8�F:7�H75FAD �A�@AF�?3=7�3�E=7F5:

��� 91 D

24

312

35� 92 D

24

!401

35

��� 91 D

24

11

!2

35� 92 D

24

!230

35

��� ;H7�3�97A?7FD;5�67E5D;BF;A@�A8 +B3@ f91; 92g 8AD�F:7�H75FADE

91 D

24

82

!6

35 3@6 92 D

24

123

!9

35

�� ;H7�3�97A?7FD;5�67E5D;BF;A@�A8 +B3@ f91; 92g 8AD�F:7�H75FADE;@��J7D5;E7� �

�� %7F 8 D!

2!1

"3@6 9 D

!21

" +:AI � F:3F

!hk

";E � ;@

+B3@ f8; 9g 8AD�3>> h 3@6 k

� �A@EFDG5F�3 3 " 3?3FD;JA� I;F:�@A@L7DA�7@FD;7E� 3@6�3�H75FAD& ;@ R3 EG5:�F:3F & ;E %&+ ;@�F:7�E7F�EB3@@76�4K�F:7�5A>G?@EA8 A

"@��J7D5;E7E����3@6���� ?3D=�735:�EF3F7?7@F�,DG7�AD��3>E7 #GEF;8K735:�3@EI7D

� 3 �@AF:7D�@AF3F;A@�8AD�F:7�H75FAD!

!43

";E Π!4 3 !

4 ,:7 �BA;@FE � ;@ � F:7 �B>3@7 �5ADD7EBA@6;@9 � FA!

!25

"3@6

!!5

2

">;7�A@�3�>;@7�F:DAG9:�F:7�AD;9;@

5 �@�7J3?B>7�A8�3�>;@73D�5A?4;@3F;A@�A8�H75FADE 91 3@6 92

;E�F:7�H75FAD 1291

7. Calculate the angle between the vectors u and v.

a. 𝒖 = [304

] , 𝒗 = [30

−4]

b. 𝒖 = [101

] , 𝒗 = [040

]

c. 𝒖 = [111

] , 𝒗 = [222

]

8. Calculate the projection vector c of vector b onto vector a.

a. 𝒂 = [100

] , 𝒃 = [321

]

b. 𝒂 = [030

] , 𝒃 = [12

−1]

c. 𝒂 = [002

] , 𝒃 = [503

]

9. Check if the following set of vectors form an orthogonal set in R3.

a. {[00

−2] , [

030

] , [−700

] , [102

] }

b. {[11

−2] , [

534

] , [402

] }

c. {[101

] , [20

−2] , [

030

] }

10. Verify properties of scalar product presented in Slide 3 of Lecture 3 for the following vectors and scalars:

𝒖 = [−121

] , 𝒗 = [122

] , 𝒘 = [111

] , 𝑐 = 2

Page 2: &9&3$*4&4 b - University of California, Irvinegraphics.ics.uci.edu/ICS6N/Homework/HW3.pdfHomework 3 (due Wednesday 25th Oct midnight) Q1. Write a system of equations that is equivalent

Q4. Use determinant to find our if the matrix is invertible:

Q5. Compute the inverse of the following matrices if it exists:

Q6. Choose the values of h and k such that the system has: (i) no solution, (ii) unique solution,

(iii) many solutions. Given separate answers for each part.

(In order to solve problems 6 - 8, it is highly recommended to read Chapters 3.1, 3.2)

6. Find the determinants of the following matrices by using row reduction to echelon form:

a)

b)

c)

7.

a) Use determinant to find out if matrix is invertible:

b) Use determinant to find out if set of vectors is linearly independent:

ICS 6N – Homework 5

1. Compute the determinant of the following matrices:

a) 𝐴 = [ 3 −6−1 2 ]

b) 𝐵 = [5 21 3]

c) 𝐶 = [2 1 31 −1 −2

−1 3 2]

d) 𝐷 = [1 0 00 2 00 0 −4

]

e) 𝐸 = [1 2 4 32 4 8 6

−3 5 2 2−1 2 5 −4

]

2. Compute the inverse of the following matrices if it exists:

a) 𝐴 = [5 64 5]

b) 𝐵 = [6 77 8]

c) 𝐶 = [−5 10−4 8 ]

d) 𝐷 = [0 1 00 0 −1

−1 0 0]

e) 𝐸 = [−2 1 2 1−4 2 4 22 1 −3 3

−1 5 4 2]

10. Choose values of h and k such that the system has: I) no solution , II) unique solution, III) many solutions. Give separate answers for each part:

a)

b)

11. Mark each statement with True or False. Justify your answer.

a) In some cases, a matrix may be row reduced to more than one matrix in reduced echelon form, using different sequences of operations.

b) The row reduction algorithm applies only to augmented matrices for a linear system.

c) A basic variable in a linear system is a variable that corresponds to a pivot column in the coefficient matrix.

d) Finding a parametric description of the solution set of a linear system is the same as solving the system.

e) If one row in an echelon form of an augmented matrix is [0 0 0 5 0], then the associated linear system is inconsistent.

f) The reduced row echelon form of a matrix is unique.

g) If every column of an augmented matrix contains a pivot, then the corresponding system is consistent.

h) The pivot positions in the matrix depend on whether row interchanges are used in the row reduction process.

i) A general solution of a system is an explicit description of all solutions of the system.

j) Whenever a system has free variables, the solution set contains many solutions.

Page 3: &9&3$*4&4 b - University of California, Irvinegraphics.ics.uci.edu/ICS6N/Homework/HW3.pdfHomework 3 (due Wednesday 25th Oct midnight) Q1. Write a system of equations that is equivalent

Q7. Let A and B be 3x3 matrices with determinant of A = 4 and determinant of B = -3. Use

properties of determinant to compute:

a det (AB)

b det (5A)

c det BT

d det A-1

e det A3

Q8. Let A be a 4x4 matrix with determinant 7. Give a proof or a counter example for each of

the following.

Q9. Given three points A = (1, 3, 1), B = (2, 5, -3), C = (-4, 1, 8).

a. Find the angle in degrees at vertex A.

b. Find the area within the triangle formed by the three points.

Q10. Consider the two vectors v = 3i - 2j + 4k and w = i + j + 2k.

a. Find a vector u that is perpendicular to both v and w.

b. Find the area of the parallelogram that has adjacent edges given by v and w.

c. Find the area of the triangle that has adjacent edges given by v and w.

17. Let A : Rn → Rk be a linear map. Show that the following are equivalent.

a) A is injective (hence n ≤ k ). [injective means one-to-one]

b) dim ker(A) = 0.

c) A has a left inverse B , so BA = I .

d) The columns of A are linearly independent.

18. Let A : Rn → Rk be a linear map. Show that the following are equivalent.

a) A is surjective (hence n ≥ k ).

b) dim im(A) = k .

c) A has a right inverse B , so AB = I .

d) The columns of A span Rk .

19. Let A be a 4× 4 matrix with determinant 7. Give a proof or counterexample for eachof the following.

a) For some vector b the equation Ax = b has exactly one solution.

b) For some vector b the equation Ax = b has infinitely many solutions.

c) For some vector b the equation Ax = b has no solution.

d) For all vectors b the equation Ax = b has at least one solution.

20. Let A : Rn → Rk be a real matrix, not necessarily square.

a) If two rows of A are the same, show that A is not onto by finding a vector y =(y1, . . . , yk) that is not in the image of A . [Hint: This is a mental computation ifyou write out the equations Ax = y explicitly.]

b) What if A : Cn → Ck is a complex matrix?

c) More generally, if the rows of A are linearly dependent, show that it is not onto.

21. Let A : Rn → Rk be a real matrix, not necessarily square.

a) If two columns of A are the same, show that A is not one-to-one by finding a vectorx = (x1, . . . , xn) that is in the nullspace of A .

b) More generally, if the columns of A are linearly dependent, show that A is notone-to-one.

22. Let A and B be n × n matrices with AB = 0. Give a proof or counterexample foreach of the following.

a) Either A = 0 or B = 0 (or both).

5

Page 4: &9&3$*4&4 b - University of California, Irvinegraphics.ics.uci.edu/ICS6N/Homework/HW3.pdfHomework 3 (due Wednesday 25th Oct midnight) Q1. Write a system of equations that is equivalent

Q11. Compute the determinant and rank of the following matrices.

a. 1 −1 20 2 40 0 0

b.

1 6 20 0 10 0 0

Q12.

Q13. Prove that (A-1)T = (AT)-1 where A is an invertible matrix.

Q14. Prove (AB)-1 = B-1A-1 using two matrices.

Q15. Using properties of determinants prove the following:

𝑦𝑧 𝑧 𝑦𝑧 𝑧𝑥 𝑥𝑦 𝑥 𝑥𝑦

= 4𝑥𝑦𝑧

Q16.

DETERMINANTS 69

(iii) A system of equations is consistent or inconsistent according as its solutionexists or not.

(iv) For a square matrix A in matrix equation AX = B

(a) If |A| ≠ 0, then there exists unique solution.

(b) If |A| = 0 and (adj A) B ≠ 0, then there exists no solution.

(c) If |A| = 0 and (adj A) B = 0, then system may or may not be consistent.

4.2 Solved Examples

Short Answer (S.A.)

Example 1 If 2 5 6 58 8 3x

x , then find x.

Solution We have 2 5 6 58 8 3x

x . This gives

2x2 – 40 = 18 – 40 ⇒ x2 = 9 ⇒ x = ± 3.

Example 2 If

2

21

2

1 1 1 11 ,

1

x x

y y yz zx xyx y zz z

Δ= Δ = , then prove that ∆ + ∆1 = 0.

Solution We have 1

1 1 1yz zx xyx y z

Interchanging rows and columns, we get

1

111

yz xzx yxy z

2

2

2

1x xyz x

y xyz yxyz

z xyz z

=

DETERMINANTS 79

2 2 2

1 1 11 cosA 1 cosB 1 cosC 0

cos A cosA cos B cosB cos C cosC

⎡ ⎤⎢ ⎥

Δ= + + + =⎢ ⎥⎢ ⎥+ + +⎣ ⎦

.

17. Find A–1 if 0 1 1

A 1 0 11 1 0

and show that 2

–1 A 3IA2 .

Long Answer (L.A.)

18. If 1 2 0

A 2 1 20 1 1

⎡ ⎤⎢ ⎥= − − −⎢ ⎥⎢ ⎥−⎣ ⎦

, find A–1.

Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.

19. Using matrix method, solve the system of equations3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 .

20. Given 2 2 4 1 1 0

A 4 2 4 , B 2 3 42 1 5 0 1 2

, find BA and use this to solve the

system of equations y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17.

21. If a + b + c ≠ 0 and 0a b cb c ac a b

= , then prove that a = b = c.

22. Prove that

2 2 2

2 2 2

2 2 2

bc a ca b ab c

ca b ab c bc a

ab c bc a ca b

is divisible by a + b + c and find the

quotient.

Page 5: &9&3$*4&4 b - University of California, Irvinegraphics.ics.uci.edu/ICS6N/Homework/HW3.pdfHomework 3 (due Wednesday 25th Oct midnight) Q1. Write a system of equations that is equivalent

Q17. State true or false.

a.

b.

c.

84 MATHEMATICS

47. If f (x) =

17 19 23

23 29 34

41 43 47

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

x x x

x x x

x x x

+ + +

+ + +

+ + +

= A + Bx + Cx2 + ..., then

A = ________.State True or False for the statements of the following Exercises:

48. –13A = 31A , where A is a square matrix and |A| ≠ 0.

49. (aA)–1 = –11 A

a , where a is any real number and A is a square matrix.

50. |A–1| ≠ |A|–1 , where A is non-singular matrix.

51. If A and B are matrices of order 3 and |A| = 5, |B| = 3, then|3AB| = 27 × 5 × 3 = 405.

52. If the value of a third order determinant is 12, then the value of the determinantformed by replacing each element by its co-factor will be 144.

53.1 22 3 03 4

x x x ax x x bx x x c

+ + ++ + + =+ + +

, where a, b, c are in A.P.

54. |adj. A| = |A|2 , where A is a square matrix of order two.

55. The determinant sin A cos A sin A +cosBsin B cos A sin B+cosBsin C cos A sin C+cosB

is equal to zero.

56. If the determinant +

x a p u l fy b q v m gz c r w n h

splits into exactly K determinants of

order 3, each element of which contains only one term, then the value of K is 8.

84 MATHEMATICS

47. If f (x) =

17 19 23

23 29 34

41 43 47

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

x x x

x x x

x x x

+ + +

+ + +

+ + +

= A + Bx + Cx2 + ..., then

A = ________.State True or False for the statements of the following Exercises:

48. –13A = 31A , where A is a square matrix and |A| ≠ 0.

49. (aA)–1 = –11 A

a , where a is any real number and A is a square matrix.

50. |A–1| ≠ |A|–1 , where A is non-singular matrix.

51. If A and B are matrices of order 3 and |A| = 5, |B| = 3, then|3AB| = 27 × 5 × 3 = 405.

52. If the value of a third order determinant is 12, then the value of the determinantformed by replacing each element by its co-factor will be 144.

53.1 22 3 03 4

x x x ax x x bx x x c

+ + ++ + + =+ + +

, where a, b, c are in A.P.

54. |adj. A| = |A|2 , where A is a square matrix of order two.

55. The determinant sin A cos A sin A +cosBsin B cos A sin B+cosBsin C cos A sin C+cosB

is equal to zero.

56. If the determinant +

x a p u l fy b q v m gz c r w n h

splits into exactly K determinants of

order 3, each element of which contains only one term, then the value of K is 8.

84 MATHEMATICS

47. If f (x) =

17 19 23

23 29 34

41 43 47

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

x x x

x x x

x x x

+ + +

+ + +

+ + +

= A + Bx + Cx2 + ..., then

A = ________.State True or False for the statements of the following Exercises:

48. –13A = 31A , where A is a square matrix and |A| ≠ 0.

49. (aA)–1 = –11 A

a , where a is any real number and A is a square matrix.

50. |A–1| ≠ |A|–1 , where A is non-singular matrix.

51. If A and B are matrices of order 3 and |A| = 5, |B| = 3, then|3AB| = 27 × 5 × 3 = 405.

52. If the value of a third order determinant is 12, then the value of the determinantformed by replacing each element by its co-factor will be 144.

53.1 22 3 03 4

x x x ax x x bx x x c

+ + ++ + + =+ + +

, where a, b, c are in A.P.

54. |adj. A| = |A|2 , where A is a square matrix of order two.

55. The determinant sin A cos A sin A +cosBsin B cos A sin B+cosBsin C cos A sin C+cosB

is equal to zero.

56. If the determinant +

x a p u l fy b q v m gz c r w n h

splits into exactly K determinants of

order 3, each element of which contains only one term, then the value of K is 8.