8/9/2015ieng 475: computer-controlled manufacturing systems 1 ieng 475 - lecture 02 manufacturing...

21
06/14/22 IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

Upload: emil-garrett

Post on 23-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

1

IENG 475 - Lecture 02

Manufacturing Operations

Page 2: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

2

Agenda

Lab Schedule Lab Plan Manufacturing Operations Levels of Automation Questions & Issues

Page 3: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

3

Tuesday 1:00 PM Lab

Mike Dietz Austin Louchart Jesse Wilkins Zach Kohama Ziad Alzuhair*

Page 4: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

4

Tuesday 2:30 PM Lab

Page 5: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

5

Tuesday 4:00 PM Lab

Dylan McLellan Joel Niesche Taylor Mammenga

Page 6: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

6

Thursday 1:00 PM Lab

Terry Nguyen Kristy Rennick Cassie Kulesa Zach Boyd Brianna Dodge*

Page 7: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

7

Thursday 2:30 PM Lab

Rick Vanderhulst Nate Hibl Andrea Sawyer Tyler Derickson* Caleb Miller*

Page 8: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

8

Thursday 4:00 PM Lab**

Ben Johnson* Anne Christensen* Stevey Lee* Cody Kopriva*

Page 9: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

9

Tuesday 2:30 PM Lab

Ben Johnson Anne Christensen Stevey Lee Cody Kopriva Brianna Dodge

Page 10: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

10

Lab Schedule Review Lab assignment off of Materials Page Meet in MIL Lab (need to start/stop labs on time)

• Take notes during lab in LAB Engineering Notebook (everyone)

• Lab assignments (1 per team) – usually due next lab• brief summary and documentation of design/exercise

• short answer to questions (if any)

• copy pages from everyone

• 5S at end of each lab Primary result of lab exercises is to complete project

• Open Lab times as necessary

• Open class and lab periods reserved at end of term

• Use Finals Week for project documentation & demo

Page 11: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

11

Project Concept 1 Desk Clock / Business Card Holder / Name Plate

• Clock Face & Base:• Two pieces – must contain clock mechanics & business cards

• One color – Material: Red Oak

• Design of clock face must incorporate SMD moniker

• Design of base must incorporate four button feet

• Design of base must hold cards and be individually customized w/ name

• Design of base must incorporate CO2 laser engraving

• Stock: 5.45” x 5.45” x ¾” – Base• Final dimensions depend on your fixture design(s)

• Card & Clock Face Posts:• One color – Material: Red Oak

• Each member designs their own sculpted posts

• Stock: ½” dia x 4” long• Final: 0.25” dia x 1.00” long (max, each post)

Page 12: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

12

Project Concept 2 Desk Caddy / Business Card Holder / Tablet Holder

• Tablet Brace & Caddy Base:• Two pieces – must contain clock mechanics & business cards

• One color – Material: Red Oak

• Design of one piece must incorporate SMD moniker

• Design of base must incorporate four button feet

• Design of base must hold cards and be individually customized w/ name

• Design of base must incorporate CO2 laser engraving

• Stock: ¾” – Red Oak• Final dimensions depend on your fixture design(s)

• Card & Brace Posts:• One color – Material: Red Oak

• Each member designs their own sculpted posts

• Stock: ½” dia x 4” long• Final: 0.25” dia x 1.00” long (max, each post)

Page 13: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

13

Project Concept 3 Expanding Cribbage Board

• Bottom, Slide Base & Slide:• One color – Material: Red Oak

• Design of slide must incorporate SMD moniker

• Design of slide base must incorporate individually customized text

• Design of slide base must incorporate CO2 laser engraving

• Design of bottom must contain card deck and pegs

• Bottom must have four button feet

• Stock: 5.45” x 5.45” x ¾” – Slide Base & Bottom

• Stock: 5.45” x 5.45” x ¼” – Slide• Final dimensions depend on your fixture design(s)

• Pegs:• One color – Material: Red Oak

• Each member designs their own sculpted posts

• Stock: ½” dia x 3” long• Final: 0.25” dia x 1.00” long (max, each post)

Page 14: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

14

Project Concept 4 Modular Parchisi Board – four modules make a game set

• Slide Base & Slide:• One color – Material: Red Oak

• Design of slide top must incorporate SMD moniker & custom text

• Design of slide bottom must be ¼ of game board

• Design of slide must incorporate CO2 laser engraving

• Design of slide base must contain pawns & dice (dice are purchased)

• Slide Base bottom must have four button feet & connect to slide as the Start

• Stock: 5.45” x 5.45” x ¾” – Slide Base

• Stock: 5.45” x 5.45” x ¼” or ¾”– Slide (team choice!)• Final dimensions depend on your fixture design(s)

• Pawns:• One color – Material: Red Oak

• Each member designs their own sculpted pawns

• Stock: ½” dia x 4” long• Final: 0.25” dia x ¾ ” long (max, each pawn)

Page 15: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

15

Project Concept 5 Mini Chess Set

• Custom Case Top & Chess Board Base:• Two parts – must contain all chess pieces

• One color – Material: Red Oak & Plastic/Metal• Design of case top must incorporate SMD moniker

• Design of base bottom will be chess board

• Engraved Insert (plastic/metal)

• Design of chess board must incoporate CO2 laser engraving

• Stock: 5.45” x 5.45” x ¾” – Case Top & Base• Final dimensions depend on your fixture design(s)

• Chess Pieces:• Two colors – Material(s): Red Oak/Ash, Stains/Paint

• Each member designs at least one piece, add group pawn design

• Stock: ½” dia x 3” long• Final: 0.25” dia x 1.00” long (max, piece), 1/2” long (max, pawn)

Page 16: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

16

Project Concept 6 Boxed CATAN Board – box & five hex types make a game set

• Box Case & Hexagonal Squares• One / two color – Material: Red Oak or Laminated Acrylic

• Design of sliding top must incorporate SMD moniker & custom text – milling!

• Slide top must fit with box case and must function well

• Design of slide box case must contain parts & dice (dice are engraved)

• Design of hexes and must incorporate CO2 laser engraving, could interlock

• Stock: ½” or ¾” – Red Oak for sides of Slide Box Case (team choice!)

• Stock: ¼” Red Oak – Slide Top / Back• Final dimensions depend on your fixture design(s)

• Pieces:• Four colors – Material: Red Oak, PLA or ABS plastic

• Each member designs their own sculpted pieces

• Dice would be laser engraved

• Buildings / Cities are either turned on lathe or 3-D printed

• Production disks are laser engraved

Page 17: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

17

Manufacturing Operations

What competitive trends exist?• Where are products being made?

• What kind of products are being made at these locations?

• How are products being made at these locations?

What is the basis for manufacturing competitiveness? • Competitive Advantage(s):

Page 18: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

18

Levels of Automation

1. Manual Production – using single station manned cells operating independently

2. Automated Production – using single station automated cells operating independently

3. Automated, Integrated Production – using multi-station automated systems with automated material handling

The appropriate level of automation is situational – there is no universal best

answer!

Page 19: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

19

Manufacturing Operations Mfg Plant Capabilities & Capacity Limitations:

• Technological Processing Capabilities

• Physical Production Capabilities/Capacities

• Production Capacity Limits

Conditions for Appropriate Automation:• Predictable, stable / expanding market

• Need to satisfy business objectives of firm

• Technology must be available at the right:• Performance

• Cost

• Maturity

Page 20: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

20

Reasons for Automating Increase labor productivity To reduce labor cost To mitigate the effects of labor shortages To reduce or eliminate routine manual tasks To improve worker safety To accomplish processes that cannot be done

manually To improve product quality To reduce manufacturing lead time To avoid the high cost of not automating

Page 21: 8/9/2015IENG 475: Computer-Controlled Manufacturing Systems 1 IENG 475 - Lecture 02 Manufacturing Operations

04/19/23 IENG 475: Computer-Controlled Manufacturing Systems

21

Reasons NOT to Automate Task is too technologically difficult to automate Product life cycle is too short Product is too customized Product demand is too variable To reduce the risk ($) of product failure

To deal with these aspects, use the USA Principle:• Understand• Simplify• Automate