87 ghz static frequency divider in an inp-based mesa dhbt technology s. krishnan, z. griffith, m....

21
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy and M. Rodwell Department of Electrical and Computer Engineering, University of California, Santa Barbara [email protected] 805-893-8044 GaAsIC, October 2002—Monte

Upload: melina-hines

Post on 29-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology

S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei,

D. Scott, M. Dahlstrom, N. Parthasarathy and M. Rodwell

Department of Electrical and Computer Engineering,

University of California, Santa Barbara

[email protected] 805-893-8044 GaAsIC, October 2002—Monterey, CA

Page 2: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Why Static Frequency Dividers (SFD)?

MS flip-flops are very widely-used high speed digital circuits:Master-Slave Flip-Flop with inverting feedback

Connection as 2:1 frequency divider provides simple test method

Standard benchmark of logic speed: Performance comparisons across technologies

Dynamic, super-dynamic, frequency dividers: Higher maximum frequency than true static dividers Narrow-band operation more limited applications

High Speed technology performance: HRL: > 100 GHz divider—this conference with E2CL

UCSB: 75 GHz static dividers using InAlAs/InGaAs TS-HBTsHRL: 72.8 GHz static dividers using InAlAs/InGaAs HBTs

Page 3: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

• f does not predict logic speed

• fmax does not predict logic speed

• Large signal operation involves switching time constants

Why Static Dividers, and what makes them fast

clock clock clock clock

inin

out

out

MS latch: key digital element : resynchronizes data to clock often sets system maximum clock

ctsinterconne and , ,,

,

, ,

:include sdelay termt Significan

logiccbcb

logiclogic

excbbjebcbi

b

jecb

RCRCRC

V

IR

I

VC

I

VC

Page 4: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Mesa DHBT Epitaxial Layer Structure

InP Emitter n+ doped

P+ InGaAs Base: 52 meV Band gap grading

2000 Å n- InP Collector

Material Doping (cm-3) Thickness ()

n-InGaAs 1∙1019 300

n-InGaAlAs 1∙1019 90

n-InP 1∙1019 900

n-InP 8∙1017 300

n-InGaAlAs 8∙1017 233

p-InGaAlAs 2∙1018 66

p-InGaAs 4∙1019 (Be) 400

n-InGaAs 2.25∙1016 100

n-InGaAlAs 2.25∙1016 240

n-InP 5.66∙1018 30

n-InP 2.25∙1016 1630

n-InGaAs 1∙1019 250

n-InP 1∙1019 1250

InP SI N/A

Page 5: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 1

Page 6: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 2

Page 7: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 3

Page 8: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 4

Page 9: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 5

Page 10: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 6

Page 11: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 7

Page 12: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide 8

Page 13: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: Key Features

Slide complete

Page 14: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

mesaIC Process: overview

• Both junctions defined by selective wet-etch chemistry

• Narrow base mesa allows for lowAC to AE ratio

• Low base contact resistance—Pd based ohmics with C < 10-7 ∙cm2

• Collector contact metal and metal ‘1’ used as interconnect metal

• NiCr thin film resistors = 40 /

• MIM capacitor, with SiN dielectric… -- used only for bypass capacitors

• Low loss, low r = 2.7 microstrip wiring environment

• Microstrip wiring environment….

• has predictable characteristic impedance

• controlled-impedance interconnects within dense mixed signal IC’s

• ground plane eliminates signal coupling that occurs through on-wafer gnd-return inductance

Page 15: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

DC and RF measurements

• Common emitter characteristics• Device geometry: emitter metal = 0.7 8.0 m2, real device = 0.6 ∙ 7.0 m2

• Collector to emitter area ratio, AC / AE = 4.5

• f = 205 GHz, fmax = 210 GHz

• Measurement condition:VCE = 1.2 Volts, Jc = 2.5 mA/m2

• IB = 50 A per step

• DC beta = 20• Self heating present—not observed in previous runs with same material

Page 16: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Circuit diagram: Static Frequency Divider

Circuit Details….

• ECL topology

• JEF = 2.0 mA / m2

• Jsteering = 2.5 mA / m2

• VEE = - 4.5 Volts

• Microstrip interconnects

• Output voltage for acquire and hold components, V = 300mV

• Output buffer used for measurement isolation, Vout 300 mV

Hold ckt

Acquire ckt

clock clock

clockclock

out

out

Q1 Q2Q3 Q4 Q5 Q6

Q7 Q8

Q9Q10

Q11Q12

Q13 Q14

Q15Q15 Q16

Q1,Q2,Q5,Q6,Q9 & Q11 : 0.6*7 m2

Q3,Q4,Q7,Q8,Q10 & Q12 : 0.6*5 m2

device gemoetries : emitter junction areas

Q1,Q2,Q5,Q6,Q9 & Q11 : 1.7*11 m2

Q3,Q4,Q7,Q8,Q10 & Q12 : 1.7*9 m2

device gemoetries : collector junction areas

Component ValuesRef = 395 ohmRclk=220 ohmRclk,ef=280 ohmRin = 90 ohmRl = 90 ohmVee = -3.5 V

Ref RefRefRef

RefRefRefRef

Rclk

Rclk

Rclk,ef

Rclk,efRclk,ef

Rclk,ef

Rin Rin

Rin Rin

Rl

RlRl

Rl Rl

RlRl

Rl

Page 17: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Chip Photograph: 87 GHz Divider

Synthesizer clk Divider Output

DC bias

DC clkDevice Count = 32

Die Area = 0.7 x 0.7 mm2

Page 18: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Measurements: DC – 40 GHz setup

• Clock input 0 dm

• Divider Operation from 4 GHz to 40 GHz

• Measurement establishes fully static nature of divider

Output waveform @ 2 GHz; fclk = 4 GHz

VEE

DC clk

Out

Sampling oscilloscopeDC - 40 GHz Synthesizer

Clk

0 dm

Page 19: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Measurements: 50 – 75 GHz setup

Output waveform @ 37.5 GHz; fclk = 75 GHz

• Clock input 0 dm

• Divider Operation from 50 GHz to 75 GHz

VEE

DC clk

Out

Sampling oscilloscope

DC - 40 GHz Synthesizer

Clk

0 dmFrequency tripler

16.67 – 25 GHz

50 – 75 GHz

Page 20: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Measurements: 75 – 110 GHz setup

• Clock input 9.7 dm

• Divider Operation from 75 GHz to 87 GHz

Output waveform @ 43.5 GHz; fclk = 87 GHz

VEE

DC clk

Out

Sampling oscilloscopeClk

9.7 dm20 – 40 GHz Amp

Frequency tripler

75 – 110 GHz Amp

DC - 40 GHz Synthesizer

Page 21: 87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy

Conclusions

Accomplishments:• Demonstrated a fully static, static frequency divider in a

narrow triple-mesa DHBT process—up to 87 GHz

Future Direction:

• Reduce device parasitics (rex, rbb) and wiring capacitance

• Increased current density (JE) reduces

• Continued lateral scaling of base contact to decrease AE / AC ratio – lower CCB

Acknowledgements:

• This work was support by the Office of Naval Research (ONR--N00014-01-1-0024) and by Walsin Lihwa / UC

Core

C

logiccbload

logiccb

J

ΔVCR

I

ΔVC )(F/m2τ