804233sec1203 (1)

6
Calc 3 Lecture Not es Sec tion 12.3 Pag e 1 of 6 Section 12.3: Partial Derivatives Big idea: The notion of the derivative of a single-variable function can be extended to a multivariate function if a derivative is taken with respect to on e variable while holding the value(s) of the other variable(s) constant. This is call ed a partial derivative. Big skill: You should be able to compute first-order and higher-order partial derivatives. The derivative  f   (a) of a univariate function  f  (  x) tells us the slope of the tangent line to the curve  y =  f  (  x) at the point (a,  f  (a)). The partial derivative ( ) ,  f  a b  x tells us the slope of the tangent line to the surface ( ) ,  z f x y = at the point (a, b,  f  (a, b)) in the plane  y = b. The partial derivative ( ) ,  f  a b  y tells us the slope of the tangent line to the surface ( ) ,  z f x y = at the point (a, b,  f  (a, b)) in the plane  x = a. A graph of ( ) 2 3  y f x x = = and the tangent line to the curve at (1, 2). Note that ( ) 2  f x x = and the equation of the tangent line is 2 4  y x = + .

Upload: ahmadmoaaz

Post on 14-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

7/27/2019 804233Sec1203 (1)

http://slidepdf.com/reader/full/804233sec1203-1 1/6

Calc 3 Lecture Notes Section 12.3 Page 1 of 6

Section 12.3: Partial Derivatives

Big idea: The notion of the derivative of a single-variable function can be extended to a

multivariate function if a derivative is taken with respect to one variable while holding thevalue(s) of the other variable(s) constant. This is called a partial derivative.

Big skill: You should be able to compute first-order and higher-order partial derivatives.

The derivative  f   ′(a) of a univariate function  f  ( x) tells us the slope of the tangent line to

the curve  y =  f  ( x) at the point (a,  f  (a)). The partial derivative ( ), f  

a b x

∂tells us the slope of the

tangent line to the surface ( ), z f x y= at the point (a, b,  f  (a, b)) in the plane  y = b. The partial

derivative ( ), f  

a b y

∂tells us the slope of the tangent line to the surface ( ), z f x y= at the point (a,

b,  f  (a, b)) in the plane  x = a.

A graph of  ( ) 23 y f x x= = − and the

tangent line to the curve at (1, 2). Note

that ( ) 2 f x x′ = − and the equation of the

tangent line is 2 4 y x= − + .

7/27/2019 804233Sec1203 (1)

http://slidepdf.com/reader/full/804233sec1203-1 2/6

Calc 3 Lecture Notes Section 12.3 Page 2 of 6

A graph of  ( ) 2 2, 4 z f x y x y= = − − and the

 plane  y = 1. The plane intersects the surface

along a curve specified by

2

31

 z x y

= − =

. The

tangent line to the surface at (1, 1, 2) in the

 plane  y = 1 is also shown. Note that in this

 plane, ( ) 2 z x x′ = − and the equation of the

tangent line is 1

2 4

 x t 

 y

 z t 

=

= = − +

For the function ( ) 2 2, 4 f x y x y= − − ,

( ) 2 2, 4 0 2 0 2 f    x y x y x x

 x x∂ ∂ = − − = − − = − ∂ ∂

.

A graph of  ( ) 2 2, 4 z f x y x y= = − − and the

 plane  x = 1. The plane intersects the surface

along a curve specified by

2

31

 z y x

= − =

. The

tangent line to the surface at (1, 1, 2) in the

 plane  x = 1 is also shown. Note that in this

 plane, ( ) 2 z y y′ = − and the equation of the

tangent line is

1

2 4

 x

 y t 

 z t 

=

= = − +

For the function ( ) 2 2, 4 f x y x y= − − ,

( ) 2 2, 4 0 0 2 2 f    x y x y y y

 y y∂ ∂ = − − = − − = − ∂ ∂

.

Definition 3.1: Partial Derivative

The partial derivative of  f ( x ,  y) with respect to  x , written as f  

 x

∂, is defined by

( )( ) ( )

0

, ,, lim

h

 f x h y f x y f   x y

 x h→

+ −∂=

for any values of  x and  y for which the limit exists.

The partial derivative of  f ( x ,  y) with respect to  y, written as f  

 y

∂, is defined by

( )( ) ( )

0

, ,, lim

h

 f x y h f x y f   x y

 y h→

+ −∂=

for any values of  x and  y for which the limit exists.

7/27/2019 804233Sec1203 (1)

http://slidepdf.com/reader/full/804233sec1203-1 3/6

Calc 3 Lecture Notes Section 12.3 Page 3 of 6

Note: To compute a partial derivative in practice, just treat all independent variables as constants

except for the variable with respect to which the derivative is being taken.

Various notations for partial derivatives of  ( ), z f x y= :

( ) ( ) ( ) ( ), , , , x

 f z  x y f x y x y f x y

 x x x

∂ ∂ ∂= = = ∂ ∂ ∂

(Likewise for partial derivatives with respect to  y)

The expression f  

 x

∂is a partial differential operator; it indicates to take the partial derivative with

respect to  x of whatever expression follows it.

Practice:1. Compute ( ),

 f   x y

 x

∂and ( ),

 f   x y

 y

∂for  ( ) 2, 5 2 f x y x y= − using the limit definition of the

derivative.

7/27/2019 804233Sec1203 (1)

http://slidepdf.com/reader/full/804233sec1203-1 4/6

Calc 3 Lecture Notes Section 12.3 Page 4 of 6

2. Compute ( ), f  

 x y x

∂for  ( ) 2 2 2 2

, 3 4 2 7 9 f x y x y x y xy= + − + −

3. Compute ( ), f  

 x y y

∂for  ( ) ( ) ( ), cos sin xy f x y x y e= −

 

Higher order partial derivatives are partial derivatives of partial derivatives.

For a function of two variables, there are four different second-order partial derivatives:

• The partial derivative with respect to  x of  f  

 x

∂is

 f  

 x x

∂ ∂ ∂ ∂

.

Alternative notations:

2

2 xx

 f f   f  

 x x x

∂ ∂ ∂ = = ∂ ∂ ∂

• The partial derivative with respect to  y of  f  

 y

∂is

 f  

 y y

∂ ∂ ∂ ∂

.

Alternative notations:

2

2 yy f f    f  

 y y y ∂ ∂ ∂= = ∂ ∂ ∂

• The partial derivative with respect to  x of  f  

 y

∂is

 f  

 x y

∂ ∂ ∂ ∂

.

Alternative notations: ( )2

 y yx x

 f f   f f  

 x y x y

∂ ∂ ∂= = = ∂ ∂ ∂ ∂

. This is a mixed second-order

partial derivative.

• The partial derivative with respect to  y of  f  

 x

∂is

 f  

 y x

∂ ∂ ∂ ∂

.

• Alternative notations: ( )2

 x xy y

 f f    f f   y x y x∂ ∂ ∂ = = = ∂ ∂ ∂ ∂

. This is also a mixed second-order

partial derivative.

7/27/2019 804233Sec1203 (1)

http://slidepdf.com/reader/full/804233sec1203-1 5/6

Calc 3 Lecture Notes Section 12.3 Page 5 of 6

Practice:

1. Compute all four second-order partial derivatives for 

( ) 2 2 2 2, 3 4 2 7 9 f x y x y x y xy= + − + − .

2. Compute all four second-order partial derivatives for  ( ) ( ) ( ), cos sin xy f x y x y e= − .

 Notice that the mixed second-order partial derivatives are equal in both cases above… this isusually the case …

Theorem 3.1 (Equality of Mixed Second-Order Partial Derivatives)

If  f   xy( x,  y) and  f   yx( x,  y) are continuous on an open set containing (a, b), then  f   xy( x,  y) =  f   yx( x,  y).

7/27/2019 804233Sec1203 (1)

http://slidepdf.com/reader/full/804233sec1203-1 6/6

Calc 3 Lecture Notes Section 12.3 Page 6 of 6

Practice:

1. Compute  xyx f   and  xyxy f   for  ( ) ( ) ( ), cos sin xy f x y x y e= −

2. Compute  x f   ,  xy f   , and  xyz  f   for  ( ) 2 3 4, , f x y z xyz x y z = +

3. The sag S in a beam of length  L, width w, and height h is given by ( )4

3, ,

LS L w h c

wh= .

Write all three first-order partial derivatives in terms of S and one other variable to

determine which variable has the greatest proportional effect on the sag.