802.11 wlan mac layer modeling · team 2: 802.11 wlan mac layer modeling mentor: radu v. balan...

25
TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University Michigan Technological University University of Michigan Rashi Jain Mechie Nkengla New Jersey Institute of Technology University of Illinois-Chicago August 17, 2007

Upload: others

Post on 09-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Mentor: Radu V. Balan

802.11 WLAN MAC Layer Modeling

Lisa Driskell Yejun Gong Xueying HuPurdue University Michigan Technological

UniversityUniversity of Michigan

Rashi Jain Mechie NkenglaNew Jersey Institute of

TechnologyUniversity of Illinois-Chicago

August 17, 2007

Page 2: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Outline

v Objectivev Overviewv ns-2v Results (.nam)v Results (.tr)v Conclusionsv Future Objectives

Page 3: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Project Objective: Analyze the relationships of the parameters for a modified EO Markov model and validate the model under certain assumptions with (ns2) network simulations.

Objective

Page 4: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Overview

MAC MAC

Packets Generated

IFQ

Agent/UDP Transmission

Agent/NullFinal

Destination

System Layout

Page 5: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

p

Overview

Page 6: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Prob (packet dropped due to collision) =

Avg # of retries = )p1(p1

p L−−

1Lp +

pL(1-p) + pLp

…pb(1-p)…p2(1-p)p(1-p)1-pProbability

L…b…210Exact # retries

Previous Analysis of Markov Model

Overview

Page 7: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

• Analyzed Markov model• Compared analytical results with computed

results to verify the analysis.• Use analytical results compared with network

simulations to determine whether the system can indeed be modeled with a Markov chain.

Outline

Overview

Page 8: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Ns-2

Ns-2 simulator

Ns-2 SimulatorInput

.tcl file

.tr file

Output Trace File

.nam file

Page 9: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Ns-2

Ns-2 simulator

• Closely relates to real world.

• A packet-based event-driven simulation.

• Can incorporate the wireless mechanism

• Allows for mobile stations

• Provides animations

Page 10: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Ns-2

Example of a ns2 simulation

Page 11: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Nam Trace

Nam Trace Format<type> -t <time> -s <source id> -d <destination id> -p <pkt-type> -e <extent> -c <conv> -a <packet attribute> -i <id> -k <trace level>

0~#pkts

i

AGT, MAC

k

cbr,ACK

0~NSTA

0~simTime

h, r, d, +, -

psttype

Page 12: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Nam Trace : Medium Busy Time

The packet is on the air from t, if at ttype=‘h’ AND k=‘MAC‘ (Hop)

The medium is busy in[t, t+pktTransTime]

The medium is busy in collision case.

TxFrame 1

TxFrame 2

BusyCollision

Page 13: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Nam Trace : Medium Busy Time

Medium Busy Time ? , if NSTA ? < critical numberMedium Busy Time ? , if NSTA ? > critical number

Page 14: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

1-Hop# cket)Retries(pa# with

ThisNodepktsSendTo#

packet thisof Retries#(node)AvgRetries hisNodepktSendToT

=

=∑Numerical:

Theoretical:

But how to find p?

retries. #max theis L andy probabilitcollision theis p where

)p1(*p-1

p(node)AvgRetries L−=

Page 15: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

1LcpktTransSuColpktDropDue

ColpktDropDuep +

+=

pktSend=

pktDropDueCol+

pktDropDueQueue+

pktDropDueEnd+

pktTransSuc

Type=‘h’ AND k=‘AGT’ AND p=‘cbr’

Type=‘d’ AND k=‘IFQ’ AND p=‘cbr’

LastHopTime+pktTransTime>sucTime

Type=‘r’ AND k=‘AGT’ AND p=‘ACK’

Page 16: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Results (.nam)

Average number of retries

Page 17: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Results (.nam)

Average number of retries

Page 18: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Example of a .tr output

Page 19: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Results (.tr)

Average number of retriesFrom simulation

From calculation

Page 20: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Results (.tr)

Average number of retries for AP with varying packet period and offset

Page 21: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Average number of retries with varying packet period and offset

5 Stations

Page 22: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Results (.tr)

Comparison between of the average number of retries from calculation and simulation

Page 23: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Conclusions

Conclusions

• Estimated parameter ‘p’• Determined the saturation value• Established validity of the Markov model• Established importance of assumption of

synchronicity

Page 24: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Future Objectives

• Use the .nam and .tr files to extract information about– Average service time – Average wait time

• Use the above times to find relationships between parameters

• Compare computed results and simulated results for different packet arrival configurations

• Compute the throughput/delay

• Create a deterministic model

(Someone Else’s) Future Objectives

Page 25: 802.11 WLAN MAC Layer Modeling · TEAM 2: 802.11 WLAN MAC layer modeling Mentor: Radu V. Balan 802.11 WLAN MAC Layer Modeling Lisa Driskell Yejun Gong Xueying Hu Purdue University

TEAM 2: 802.11 WLAN MAC layer modeling

Questions

Questions?