8. propagation in nonlinear media. 8.1. microscopic description of nonlinearity. 8.1.1. anharmonic...

67
8. Propagation in Nonlinear Media

Upload: jared-jefferson

Post on 21-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8. Propagation in Nonlinear Media

Page 2: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.1. Microscopic Description of Nonlinearity.8.1.1. Anharmonic Oscillator.

Use Lorentz model (electrons on a spring) but with nonlinear response, or anharmonic spring

b) Harmonic spring; Low intensityc) Anharmonic spring (overstretched); High intensity

22

02

2 3

2 3

NL

NL

f x td x t dx t e tx t

dt dt m mf a x t a x tm

E

Page 3: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

At strong incident linearly polarized fields electron trajectories no longer straight lines

Page 4: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.1.2. Lorentz Force as Source of Nonlinearity

At strong incident linearly polarized fields electron trajectories no longer straight linesMolecule oscillates over other degrees of freedomLorentz force becomes significante v B

Page 5: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Simple case where electric field polarized along x, magnetic field lies on y

,0,0xEE 0, ,0yHH

ˆ ˆ ˆ0

em

x y y

f e

e E zB x y exB z

E v B

22

02

22

02

22

02

( ) ( )

0

( ) ( )

tx y

y

d x t dx t ex t E z t B t

dt dt m

d y t dy ty t

dt dt

d z t dz t ez t x t B t

dt dt m

Equations of motion from E and H fields, no force acting in y direction. Solve for x and z displacements.Take Fourier transform, obtain following equations:

2 20

2 20 .

ry

y

eE ex i i z B

m me

z i i x Bm

Page 6: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

2 2

2 2.

x

x

D eEx

D b m

b eEz

D b m

Equations obtained from method in 5.1Ignore magnetic field, we get linear response

2 20

.y

D i

eb i B

m

Express magnetic field in terms of electric field

xy

i

EB

ic

k E B 22

x xz eE eE

x me mc

Order of magnitude relation between x and z displacements

Solve for when electric field and associated irradiance where x and z are comparable

2

12

2

10 ,

x x z

mcE

eV

m

2

212

1

2

10

xI E

Wm

Page 7: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

22

2 2 2

22

2 2

2 2

1.

x

x

x

x

ez E

m c D b

eE

m c D

DeEx

m D b

eE

m D

xe Eb Dmc Using we have:

Electron oscillates at on z axis, DC term is called optical rectification

2

22 1 cos 2 .

i t i tx x

x

z E e E e

E t

Page 8: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.1.3. Dropping the Complex Analytic Signal Representation of Real Fields.

cosrU A tReal field Complex analytic signal

i tU Ae

22

2

2 2

1

2

1 cos 2

.

i t i tr

i t

U A e e

A t

U A e

2Re[ ] A cos(2 ) rU t U

Complex analytic signal does not capture DC term.

Whenever we deal with fields raised to powers higher than one, we use

1*

2rU U U

Page 9: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.2. Second-Order Susceptibility 2

220 22

2d x t dx t E tx t a x t

dt dt m

Want solution of form where is the nonlinear perturbation to linear solution. 1 2x x x

1 1212

02

2 2222

02

2 21 1 2 2

2 2 22 0.

d x t dx t eE tx t

dt dt m

d x t dx tx t

dt dt

a x t a x t x t a x t

Simplify by neglecting and

2

2 2 2 120 2x t x t x t a x t

2 1 12

2

2 ,

D x a x x

E Eea

m D D

Page 10: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

*1 1 1 1

*2 2 2 2

E E E

E E

Illuminating the nonlinear crystal with two monochromatic fields of different frequencies

22

2

2

2

1

' '1'.

' '

E Eex a

m D D D

E Eea d

m D D D

a b a b ⓥ

Page 11: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

E

22 1 1

E

E E ⓥ

22 2 1

12 0 2 1 2 1

12 222 1

All possible frequencies:

Page 12: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

22

2 1 1 2 2

221 1 1

1 1 2 1 21 1

*1 2 1 2

222 2 2

2 1 2 1 22 2

*1 2 1 2

1

21

21

ex a f f f f

m D

E E

f E ED D

E E

E E

f E ED D

E E

1 21

1 2

1 22

1 2

22

2 1 2

22211 1 2

1 221 1 1 2 1 21

*1 2

*1 2 1 2

22222 1 2

2 222 2 1 2 1 22

*1 2

1

. . . .

2 0

. .

2 0

i ti t

i t

i ti t

i t

ex t a g t c c g t c c

m

EE e E E eg t

D D D D DD D

E E ec c

D D D

EE e E E eg t

D D D D DD D

E E e

D

*

2 1 2

. .c cD D

FourierTransform

Equation 8.26 indicates that, as the result of the second-order nonlinear interaction, the resulting field has components that oscillate at frequencies 22 (second harmonic of 2), 21 (second harmonic of 1), 1 +2 (sum frequency), 1 -2 (difference frequency) and 0 (optical rectification terms).

Page 13: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Importantly, 2 vanishes in centrosymmetric media 2 2 r r

22

0

2

0

.

P r r E r E r

r E r E r

P r

Fulfilled simultaneously only if

2

2 .

Ne

Ne

P r r

r

P r

2 0P r

So second-order nonlinear processes require noncentrosymmetric media

2 2 * *0

2 2

; ,

, , 1, 2

i j i j i j i j

i j i j

P E E

P Nex i j

Nonlinear susceptibility from induced polarization

2 2

0

32

1 220

; ,

. .

i j i j i i

Nex

a Neg t g t c c

m

Page 14: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.2.1. Second Harmonic Generation (SHG)

32

1 1 1 2 20 1 1

32

2 2 2 2 20 2 2

12 ; ,

2

12 ; , .

2

a Ne

m D D

a Ne

m D D

Nonlinear susceptibility a s function of linear chi:

2

1

0

1.

Ne

m D

a) SHG: pumping the chi(2) material at omega yields both the fundamental frequency (omega) and its second harmonic (2omega). b) Description in terms of virtual energy levels.

2 22 1 12 0

1 1 1 1 12 32 ; , 2 .

a m

N e

Linear:

Nonlinear:

Page 15: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.2.2. Optical Rectification (OR)

OR: a DC polarization is created in a chi(2) material.

32 2

1 1 20 1 1

21 1 12 0

1 12 3

10; ,

0

0 .

a Ne

m D D D

a m

N e

Page 16: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.2.3. Sum Frequency Generation (SFG)

32 2

1 2 1 2 20 1 2 1 2

21 1 12 0

1 2 1 22 3

1; ,

.

a Ne

m D D D

a m

N e

Page 17: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.2.4. Difference Frequency Generation (DFG)

32 2

1 2 1 2 20 1 2 1 2

21 1 12 0

1 2 1 22 3

1; ,

.

a Ne

m D D D

a m

N e

Page 18: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.2.5. Optical Parametric Generation (OPG)

The time reverse process of SFG 2

31 2 3 2

Page 19: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.3. Third-Order Susceptibility

2 30 3 .

eE tx t x t x t a x t

m

Anharmonic oscillator

Solve using perturbation theory, solution of form 𝑥 (𝑡 )=𝑥 (1 ) (𝑡 )+𝑥 ( 3) (𝑡 )

1 1 120

33 3 3 1 320 3 0.

eE tx t x t x t

m

x t x t x t a x t x t

First term vanishes, approximate 3 31 3 1

3 3a x x a x 3

3 3 3 120 3 ,x t x t x t a x t →

Page 20: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

*1 1 1 1

*2 2 2 2

*3 3 3 3 .

E E E

E E

E E

1 1 ,Ee

x t xm D

3

1

1

. .ni t

n

n n

E eex t c c

m D

So,

3 3

3 3 20 3

, , 3

m n pi

m n p

m n p m n p

E E E eex t x t x t a

m D D D

For scalar fields perturbation displacement is:

Page 21: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

3 3

3 33 3

0, , 1 , , 3

30

; , ,

; , , ,

i q q

i q ijkl q m n p j m k n l pj k l m n p

ijkl q m n p j m k n l pjkl

P Nex

P E E E

d E E E

Induced polarization both for electromagnetic fields in terms of displacement and susceptibility

Where d is the degeneracy factor

Page 22: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

General expression for 3

*

3 33

0

1; , , ,ijkl q m n p

i q j m k n l p

a Ne

d m D D D D

2 2

0a aD i

Express in terms of 3 1

3

3 1 1 1 13 03 4

; , , ,ijkl q m n p i q j m k n l p

a m

dN e

21

0

1a

a

Ne

m D

Page 23: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.3.1. Third Harmonic Generation (THG) signal contained by terms that oscillate at 3ω

43 3

330

3 31 13 03 4

13 ; , ,

3

3 ,

a Ne

d m D D

a m

N e

The THG susceptibility for one component of the electric field (scalar case) is

2 20D i

Page 24: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.3.2. Two-Photon Absorption (TPA) and Intensity-Dependent Refractive Index

1 , 2 , 3 ,

43 3

23 20

3 2 21 13 03 4

1; , ,

a Ne

d m D D

a m

N e

If

3 2 2 23 1 1 1 1 13 0

3 4

3 3

2

,

R I R I

R I

a mi

N e

i

Page 25: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

0 2n n n I

Define effective refractive index

21 3

2320

2

3

1 3

1,

E

n E

n

20 22 1 ( )n n I

Find expression for

3

2 20 0

3 3

20 0

2 2

3

4

3

4

' '' .

R I

nn c

in c

n in

Page 26: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

• A plane wave undergoes an intensity-dependent loss of factor e^-alpha.

• b) Energy level diagram for single photon absorption (left) and two-photon absorption (right).

Page 27: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.3.3. Four Wave Mixing

3 3

1 2 3 30 1 2 3

1; , ,

a Ne

d m D D D D

1 2 3 1 2 3 k k k k

k-vector conservation, phase matching condition

Page 28: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

a) Generic four-wave mixing process. b) Momentum conservation.

1 2 33 *0 1 2 36 .i

NLP A A A e k k k r

Page 29: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Phase conjugation via degenerated four wave mixing: field E4 emerges as the phase conjugate of E3, i.e. E4=E3*.

8.3.4. Phase Conjugation via Degenerate (all are the same) Four-Wave Mixing

Page 30: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Population of the excited vibrational levels obeys the Maxwell-Boltzmann distribution

1,B

E

k TP E ez

Spontaneous Raman scattering: -a) Stokes shift-b) anti-Stokes shift

8.3.5. Stimulated Raman Scattering (SRS).8.3.5.1. Spontaneous Raman Scattering

Page 31: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

10

1

0

1B

h

k TP Ee

P E

Thus, the Stokes component is typically orders of magnitude stronger !

Page 32: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

.p E the molecular optical polarizability,

0

0

.v

vv x

t x tx

0

0

.v

vv x

P t N P

N x t E tx

* ,v vi t i tv v vx t A e A e

Harmonic vibration occurs spontaneously due to Brownian motion

0

*

0

. .

. . . . .

L

L v L v

L NL

i tL L

i t i tNL v L v L

v

P t P t P t

P t N A e c c

P t N A A e c c A A e c cx

Page 33: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.3.5.2. Stimulated Raman Scattering

22

2,v v

v v

d x t dx t F tx t

dt dt m

To derive expression for SRS susceptibility, solve equation of motion for vibrational mode of resonant frequency and damping

.vdW Fdx

2

20

0

1

21

2

1

2

t

t

v tv

W p t E t

E t

dx E t

dx

2

0

0

1.

2

1

2

v

tv

v

dWF t

dx

dE t

dx

dF E E

dx

* *

. .SL i ti tL S

L L S S L L S S

E t A e A e c c

E A A A A

Page 34: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

2 2

*

2 2

0

1

1

2

vv

L S L S

v v

Fx

m i

A Ad

m dx i

0

0

0

0

.

vv

vv

L NL

P N x Ex

N E N x Ex

P P

Induced polarization for SRS

2*

*2 2

0

* *0

2L S L S

NL L L L Lv v

RL S L S L L L L

A AN dP A A

m dx i

d A A A A

nonlinear contribution

2 2* *

220

2

L SS i ti tL S L L

NLv v L S L S

A A A e A eN dP t

m dx i

Page 35: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

2

220 0

1

12S

v v L S L S

N dxt

m dx i

L v S

2

0 0

1

12S

v L S

N dxt i

m dx

By resonantly enhancing the vibration mode the Stokes component can be amplified significantly; in practice, this amplification can be many orders of magnitude higher than for the spontaneous Raman.

Page 36: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

susceptibility associated with the anti-Stokes component

L AS v L S

2

0 0

*

1

12AS

v L S

S

N dt i

m dx

t

a) Raman susceptibility at Stokes frequency; indicates amplification. b) Raman susceptibility at anti-Stokes frequency; indicates absorption.

Strong attenuation

Page 37: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.3.6. Coherent Anti-Stokes Raman Scattering (CARS) and Coherent Stokes Raman Scattering (CSRS)

• Coherent Anti-Stokes Raman Scattering (CARS) and Coherent Stokes Raman Scattering (CSRS) are also established methods for amplifying Raman scattering.

• These techniques involve two laser frequencies for excitation

31 2 1 1 22 ; , ,CARS A

32 1 2 2 12 ; , ,CSRS S

CARS is a powerful method currently used in microscopy we will hear about it during student presentations.

Page 38: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

8.4.1. Nonlinear Helmholtz Equation

,,

,, ,

,

, 0.

tt

tt

t tt

t

t

B rE r

D rH r j r

D r

B r

follow the standard procedure of eliminating B and H from the equations

0

0.j

2

0 2

,, 0,

tt

t

D r

E r

0

0

0

, , ,

, , ,

, ,

L NL

r NL

t t t

t t t

t t

D r E r P r

E r P r P r

E r P r

2

2

,

.

t

E r E E

E

8.4. Solving the Nonlinear Wave Equation.

Page 39: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

2 222

02 2 2

, ,, ,NLt tnt

c dt t

E r P r

E r Nonlinear wave equation after approximation,

term negligible D E

2 2 20

0

1, , , ,NL

E r E r P r

Page 40: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Propagation of the Sum Frequency Field

2 23 1 2 1 2 0 3 1 2 1 2; ; , ; , , ,NLP E t E t r r r

SFG nonlinear polarization has the form

1 1

2 2

3 3

1 1

2 2

3 3

, . .

, . .

, . .

i t z

i t z

i t z

E t A e c c

E t A e c c

E t A e c c

r r

r r

r r

2

22 2 233 3 3 0 3 0 1 22

, , , ,E t n E t E t E tc

r r r r

11 1n c

3 3

3 3

22

3 32

223

3 3 3 32

,

2 .

i t zz

i t zz

dE t A e

dt

dAdA i A e

dz dz

r

3 3 0E Ex y

Page 41: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

1 2 3

223 3 2

3 0 3 0 1 222 .i zd A t dA zi A A e

dt dz

23 3

32

223 1 2

1 2 3

2

,

i kzd A t dA ti Be

dt dt

B A A

k

Simplifying approximation, 1A and 2A , do not change with z (do not deplete).

223 3

32.

d A z dA t

dz dz

amplitude is slowly varying

332

i kzidA t e dz

Page 42: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

33 0

3

2

3

2

3

2

3

2

1

2

2sin 22

sin 22

2

sinc .22

Li kz

i kL

i kL

i kL

i kL

iBA L e dz

iB e

i k

kLiBe

k

kLiBLe

kL

iB kLe

2

3 3

2 22

23

1

2

sinc ,28

I z A z

B L kL

0n

The intensity of SFG field is

Net output power can vanish at , 2 ,...2kL

a) The SFG output field has a phase that depends on the position where the conversion took place.b) The overall SFG intensity oscillates with respect to <eq>

Page 43: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Parametric Processes: Phase Matching

3 1 2

1 13 23 2 ,

nn n

c c c

0k

3 1 2

1 1 2 23

1 2

.n n

n

Normal dispersion Abnormal dispersion.

Page 44: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Normal dispersion curves for a positive uniaxial crystal.

Negative e on n Positive e on n

Type I 3 3 1 1 2 2e o on n n 3 3 1 1 2 2o e on n n

Type II 3 3 1 1 2 2e e on n n 3 3 1 1 2 2o o en n n

Table 8-1.

Page 45: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

2 2

2 2 20

1 cos sin

en n n

phase matching can be achieved by angle tuning, that is, selecting the angle that ensures 0k

Type II phase matching by angle tuning in a positive uniaxial crystal: o-ordinary wave, e-extraordinary wave, c-optical axis.

3 3 1 1 2 2, ,on n n

3 3 1 1 2 2,o on n n

Type I

Type II

Page 46: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Electro-Optic Effect

The electro-optic effect is the charge in optical properties of a material due to an applied electric field that oscillates at much lower frequencies than the optical frequency.

Electro-Optic Tensor

a) Linear interaction with a birefringent crystal. b) Electro-optic (nonlinear) interaction. p is the induced dipole, E(omega) is the optical field, and E(0) is the static field. These sketches should be interpreted as 3D representations.

Page 47: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

The induced polarization for the Pockels effect

20; ,0 ; ,0 0 .i ijk j kP E E

Due to the electro-optic effect, an optical field can suffer voltage-dependent polarization and phase changes.

Kerr effect

30; ,0,0 ; ,0,0 ,i ijkl j k lP E E E

Page 48: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Pockles effect

2

0

1; ,0 0 .i ii jj ijk j kP r E E

20

2 2

ijkijkijk

ii jj i j

rn n

ijk jikr r

Change in the rank of the tensor, from 3 to 2

11 1

22 2

33 3

12 21 6

13 31 5

23 32 4 .

k k

k k

k k

k k k

k k k

k k k

r r

r r

r r

r r r

r r r

r r r

Electro-optic tensor can be represented by a 3x6 matrix. This tensor contraction, allowed by the permutation symmetry, reduces the number of independent elements from 23 27 to 3 6 18 .

Page 49: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Electro-Optic Effect in Uniaxial Crystals

41

41

63

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

rr

r

r

Use KDP (KH2PO4, or potassium dihydrogen phosphate) as a specific example of uniaxial crystal

The KDP refractive index tensor is (in the normal coordinate

system of interest)

0 0

0 0

0 0

o

o

e

n

n n

n

assume that the voltage is applied only along z, such that only 63r is relevant.

Page 50: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

20 n D E P

Electro-optic effect in a KDP crystal. For E(0) parallel to z, the normal axes rotate by 45 degrees around the z-axis.

2 2 20 0 0

,

i i i i j ijk j k

ij j

D n E n n r E E

E

electric displacement can be expressed for each component as (i=x, j=y, k=z)

2 40 0 63

2 40 0 63

20

0

0

.

x o x o y z

y o y o x z

z e z

D n E n r E E

D n E n r E E

D n E

2 463

4 20 63

2

0 0

0 0 .

0 0

o o z

o z o

e

n n r E

n r E n

n

Page 51: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

express ij in a reference system rotated about the z-axis by an arbitrary angle, say

2

0 2

2

0 2

'

cos sin cos sin

sin cos sin cos

sin 2 cos 2,

cos 2 sin 2

o

o

o

o

R R

n D

D n

n D D

D n D

463 0o zD n r E

2

20

2

0 0

' 0 0 .

0 0

o

o

e

n D

n D

n

Page 52: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Electro-Optic Modulators (EOMs)

defining the normal refractive indices

' 'ij ijn

2

363

363

' 0 0

' 0 ' 0

0 0 '

'

1

2

10

21

' 02

' .

x

y

z

x o

oo

o o z

y o o z

z e

n

n n

n

n n D

Dn

n

n n r E

n n n r E

n n

phase retardation

363

0

' '

20 ,

x y

o z

n n Lc

n r E L

0 .z

VE

d

half-wave voltage 03

63

.2 o

dV

n r L

.V

VV

Page 53: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

a) Longitudinal modulators (electrodes are made of transparent material), d=L. b) Transverse modulator, d<L.

Page 54: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

a) Electro-optic (EO) crystal operating as phase modulator: incident polarization parallel to the new normal axis. b) Amplitude modulation: input polarization parallel to original (i.e. when V=0) normal axis; P is a polarizer with its axis parallel to x.

30 63

0

0

1

2

2

'

.

oo

o

k n r Vin k L

i Vin k L

E V Ee e

Ee e

KDP longitudinal modulator reads

Page 55: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

0

2

0

2

' 045 45

' 1

0

0

2 2

2 245 .2 2

2 2

x

y

i

i

ER W V R

E

eW V

e

R

(x’,y’) is rotated by 45° with respect to (x,y)

2

2

' sin 2

' '

sin ,2

x

x x

VE i

I E

V

0

0

sin

sin .

V t V t

Vt t

V

voltage is modulated sinusoidally, at frequencies, , much lower than the optical

frequency,

Page 56: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

0

2 0

1' sin

2

1' sin sin .

2

x

x

Vt t

V

VI t t

V

phase and intensity modulations

0

0

0

1' 1 cos sin

2 2

11 sin sin

2

1sin .

2 2

x

VI t t

V

Vt

V

Vt

V

''

1.

2

xd tt

dt

V tV

phase modulators also modulate the frequency of the light

Liquid crystal spatial light modulator: a) phase mode; b) amplitude mode.

Page 57: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Acousto-Optic Effect

The acousto-optic effect is the change in optical properties of a material due to the presence of an acoustic wave

Elasto-Optic Tensor

Light wave (wavevector k, frequency omega, speed c) interacts with a travelling grating induced by a sound wave (wavevector script-k, frequency Omega, speed v).

2

,

k

v

the medium acts as a (phase) grating, which is capable of diffracting the light

Page 58: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

induced polarization in the normal coordinate system

3

3 2 20

, , 1

.i i j ijkl kl jj k l

P n n P S E

1.

2k l

kll k

u uS

x x

strain tensor

Kerr electro-optic effect, induced polarization

3

3 2 20

1

0 0 ,i i j ijkl k l jijkl

P n n S E E E

0 0 .ijkl kl ijkl k lP S S E E

, , , , 1, 2,3; , 1, 2,...,6

11, 11; 1, 1

22, 22; 2, 2

33, 33; 3, 3

12, 12; 6, 6

13, 13; 5, 5

23, 23; 4, 4.

ijkl mnP P i j k l m n

ij kl m n

ij kl m n

ij kl m n

ij kl m n

ij kl m n

ij kl m n

electro-optic tensor, due to symmetry, the elasto-optic tensor can also be used using the following (Voigt) contraction

Page 59: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Photoelastic effect: the sound wave induces strain, which in turn modulates the refractive index. a) Longitudinal sound wave; b) Transverse (shear) sound wave. Lambda is the sound wavelength, with Omega the frequency and v the propagation speed.

Page 60: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Acousto-Optic Effect in Isotropic Media

Let us investigate in more detail the acousto-optic effect in isotropic media

elasto-optic tensor for isotropic media

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

' ' ' 0 0 0

' ' ' 0 0 0

' ' ' 0 0 0

10 0 0 ' ' 0 0

21

0 0 0 0 ' ' 02

10 0 0 0 0 ' '

2

mn

p p p

p p p

p p p

p pp

p p

p p

Page 61: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

3 40 3 13 63 53

3 40 3 63 23 43

3 40 3 53 43 33 .

x x y z

y x y z

z x y z

P n S p E p E p E

P n S p E p E p E

P n S p E p E p E

33 3klS S S expressions for the polarization

43 53 63 0p p p

3 40 3 13

3 40 3 23

3 40 3 33 .

x x

y y

z z

P n S p E

P n S p E

P n S p E

320

,

n P

D E

E

Dielectric displacement

212

2 20 3 12

211

1 ' 0 0

0 1 ' 0 .

0 0 1 '

n p

n S n p

n p

dielectric tensor

medium becomes uniaxial, i.e. xx yy zz

Page 62: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

3

1

21

2

z

i t kz

uS

z

ikAe

plane acoustic wave of amplitude A

.i t kzzu Ae

a) Brogg regime; b) Raman-Nath regime.

Page 63: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Bragg Diffraction Regime

wave equation for the total field (incident plus diffracted) reads

3222

02 2 2

31

1 2

, ,,

, ,

, , , ,

i t

E t P tnE t

c t t

P t BAe E t

E t E t E t

k r

r rr

r r

r r r

2 2 22 0 2 1

2

, , , ,

, .i

E n E F E

F BAe

k r

r r r r

r

Fourier transform

1 1, , .i te E t E r r

2 2 21 0 1, , 0E n E r r

32

1

1 1

, ,

,

i

V

E F e d

A

qrq r r

q

k k

1 1A

2 1

2 1 .

k k

Bragg condition

Page 64: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

21

1

1

2

2

.

k

k

The Brogg condition: a) k1, k2 and script-k are, respectively, the incident, diffracted and acoustic wavevectors. b) Triangle that illustrates geometrically k2=k1+script-k.

1

1

2 sin

sin 2

k

n

Page 65: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

Raman-Nath Diffraction Regime

a) Bragg diffraction (see solution for k2).

b) Raman-Nath diffraction when sound wave is curved (multiple solutions for k2).

scattering potential in the (x,z) coordinates 2

0

02 2, ,i x

i z zF x z BAe e

Page 66: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)

diffracted field is the Fourier transform of F

2

2 00

, , .2

xx z z

qE q q q

q is the scattering wavevector, 2 1 q k k .

2

2 12 1 0

0

.2

x xz z

k kk k

if the sound beam curvature satisfies

2

2 10

0

,2

x xk km

Where m=0,1,2,…, the diffracted beam has multiple solutions

2 1 0 0 .z zk k m

Page 67: 8. Propagation in Nonlinear Media. 8.1. Microscopic Description of Nonlinearity. 8.1.1. Anharmonic Oscillator. Use Lorentz model (electrons on a spring)