[8] investigation of the semi-dimple vortex generator applicable to, 2014.pdf

Upload: imam-syarifudin

Post on 01-Mar-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 [8] Investigation of the semi-dimple vortex generator applicable to, 2014.pdf

    1/6

    Investigation of the semi-dimple vortex generator applicable to

    n-and-tube heat exchangers

    Chi-Chuan Wang a, *, Kuan-Yu Chen a , Yur-Tsai Lin b

    a Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwanb Department of Mechanical Engineering, Yuan Ze University, Taoyuan, Taiwan

    a r t i c l e i n f o

    Article history:

    Received 17 June 2014

    Received in revised form

    14 September 2014

    Accepted 20 September 2014

    Available online xxx

    Keywords:

    Fin-and-tube heat exchanger

    Semi-dimple

    Vortex generator

    Heat transfer

    a b s t r a c t

    The present study examines the air side performance of the n-and-tube heat exchangers having semi-

    dimple vortex generator or plain n geometry. A total of eight samples are made and tested with the

    correspondingn pitch (Fp) being 1.6 mm and 2.0 mm and the number of tube row (N) are 1 and 2. The

    inlet air ow direction is also being tested upon the proposed semi-dimple VG. Test results indicate that

    the heat transfer performance of the proposed semi-dimple VG with N 1 at a smaller n pitch of

    1.6 mm is slightly higher than that of plain n geometry. ForN 1 with a larger n pitch of 2.0 mm, the

    semi-dimple VG is about 10% higher than that of plain n geometry. The difference in heat transfer

    performance amid VG and plain n geometry becomes more pronounced with N 2 and is especially

    evident when Fp 2.0 mm due to mixing contribution. In general, the difference between plain and

    semi-dimple geometry becomes more conspicuous at a larger n pitch because of the comparatively

    effectively swirled motion. Both geometries show a dependence on n pitch at N 1 but the effect is

    almost negligible when N is increased to 2. The inlet air ow direction casts negligible inuence on the

    heat transfer performance of semi-dimple VG. However, the friction factors for the opposite air ow

    operation is lower than that of normal operation, especially in low Reynolds number region.

    2014 Elsevier Ltd. All rights reserved.

    1. Introduction

    In typical air-cooled heat exchanger applications, normally the

    air-side thermal resistance accounted for nearly or more than 90%

    of the total thermal resistance. Hence accommodation of large n

    surface area is the generally adopted. In addition, protrusions or

    interrupted surfaces can be mounted on at surfaces to provide

    better heat transfer performance. The surfaces can be in the form of

    continuous surfaces (e.g. plain, wavy) or interrupted (louver, slit,

    offset, and the like). Some review articles by Wang [1,2] had

    reviewed the patents of enhanced surfaces related to the

    n-and-tube heat exchangers. From the 80 patents being surveyed, 90% of

    them are related to the interrupted surfaces. However, interrupted

    surface normally accompanied appreciable pressure drops.

    Accordingly, one of the recent designs is to introduce the so-called

    vortex generator (VG) which may ease the problem of signicant

    pressure drop caused by highly interrupted surfaces. Through some

    specic protrusions, e.g. wing or winglet-type vortex generators

    with an angle of attack, desired heat transfer augmentation at the

    expense of affordable increase in pressure drop can be achieved [3].

    For VGs applicable to the air-cooled heat exchangers, the rst

    investigation was done by Edwards and Alker[4]who showed that

    the local heat transfer coefcient can be increased as much as 40%.

    Fiebig et al. [5] reported the improvements in heat exchanger

    performance by punching vortex generators on the primary heat

    transfer surface. Tiggelbeck et al. [6,7]examined the inuence of

    rectangular wing and delta winglet on the performance ofn-and-

    tube heat exchanger. Their experimental results found that theinline arrangement is superior to staggered arrangement when VG

    is applied.

    Biswas et al.[8], and Fiebig et al.[9,10]numerically investigated

    the inuences of geometrical congurations of VG such as rectan-

    gular wing, triangular winglet and the corresponding geometry

    parameters like aspect ratio and attack angle. They concluded that

    an aspect ratio of 2 and an attack angle of 30 provides the best

    ratio of heat transfer/pressure drop. For an inline arrangement,

    55e65% heat transfer enhancement with moderate rise of pressure

    drop of 20e45%. Wang et al. [11] conducted a water tunnel visu-

    alization experiment by utilization of an enlarged scale wave type

    * Corresponding author. EE474, 1001 University Road, Hsinchu 300, Taiwan.

    Tel.: 886 3 5712121x55105; fax: 886 3 5720634.

    E-mail addresses: [email protected], [email protected]

    (C.-C. Wang).

    Contents lists available atScienceDirect

    Applied Thermal Engineering

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m/ l o c a t e / a p t h e r m e n g

    http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054

    1359-4311/

    2014 Elsevier Ltd. All rights reserved.

    Applied Thermal Engineering xxx (2014) 1e6

    Please cite this article in press as: C.-C. Wang, et al., Investigation of the semi-dimple vortex generator applicable to n-and-tube heatexchangers, Applied Thermal Engineering (2014), http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054

    mailto:[email protected]:[email protected]://www.sciencedirect.com/science/journal/13594311http://www.elsevier.com/locate/apthermenghttp://dx.doi.org/10.1016/j.applthermaleng.2014.09.054http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054http://www.elsevier.com/locate/apthermenghttp://www.sciencedirect.com/science/journal/13594311mailto:[email protected]:[email protected]
  • 7/25/2019 [8] Investigation of the semi-dimple vortex generator applicable to, 2014.pdf

    2/6

    VG applicable to n-and-tube heat exchanger. Their results clearly

    indicated that introducing VGs greatly relief the futile transverse

    vortices behind the tube.

    There hadbeen numerousnumerical studies associated with the

    performance of VG type n-and-tube heat exchangers[12e18], but

    only very few studies had actually implemented VG in the actual

    n-and-tube heat exchangers. For instance, He et al. [19] imple-

    mented a triangular winglet VG in a n-and-tube heat exchanger

    having inline conguration. Their experimental results show little

    impact of the 10 array and a moderate heat-transfer improvement

    up to 32% for the small pair, both introducing additional pressure

    loss of approximately 20e40%. Wang et al.[20]compared air-side

    performance between delta-winglet VGs and wavy-n surface in

    n-and-tube heat exchangers under dry- and wet-surface condi-

    tions. With the rise of tube row, they found that the performance of

    the VG surface relative to the wavy-n surface becomes more

    evident.

    In this study, the authors propose an alternative VG congura-

    tion that is based on the dimple design. With the presence of

    dimple alongside the n surface, the ip side becomes a hemi-

    sphere. As the air ow across the dimple surface, the ow separa-

    tion may occur and it would generate a re-circulation zone and an

    upwash ow. The upwash vortices periodically ow out the dimpleto give rise to horseshoe vortices and improved the heat transfer

    process accordingly. Tests are then performed and are compared

    with plain n geometry. In essence, the overall objective of this

    study is therefore to present some detailed comparisons of the air

    side performance of the semi-dimple VG against and plain n ge-

    ometry. The effects of the n pitch and the number of tube row will

    be also reported in this study.

    2. Experimental setup

    As tabulated inTable 1,a total of eight sample coils which in-

    cludes plain and semi-dimple VG. The detailed dimension and the

    photo of the semi-dimple VG is schematically shown in Fig. 1.

    Notice that the n thickness (df), collar diameter (dc), transverse

    pitch (Pt), and longitudinal pitch (Pl) for all the test samples are

    0.11 mm, 7.5 mm, 21 mm, and 18.2 mm, respectively. The corre-

    spondingn pitch (Fp) rangesfrom1.6 to2.0 mm and the number of

    tube row (N) spans from 1 to 2 as shown inTable 1.Detailed con-

    struction of the circuitry arrangement is identical to Wang et al.

    [21]. The experiments are conducted in an open wind tunnel as

    shown inFig. 2. The ambient air ow was forced across the test

    section by means of a 5.6 kW centrifugal fan with an inverter. To

    avoid and minimize the effect of ow maldistribution in the ex-

    periments, an air straightener-equalizer and a mixer were pro-

    vided. The inlet and the exit temperatures across the sample coil

    were measured by two T-type thermocouple meshes. The inlet

    measuring mesh consists of twelve thermocouples while the outlet

    mesh contains 36 thermocouples. The sensor locations inside therectangular duct were established following ASHRAE recommen-

    dation [22]. These data signals were individually recorded and then

    averaged. During the isothermal test, the variance of these ther-

    mocouples was within 0.2 C.

    The pressure drop of the test coil was detected by a precision

    differential pressure transducer, reading to 0.1 Pa. The air ow

    measuring station was a multiple nozzle code tester based on the

    ASHRAE 41.2 standard[23]. The working medium in the tube side

    was hot water. The inlet water temperature was controlled by a

    thermostat reservoir having an adjustable capacity up to 25 kW.

    Both the inlet and outlet temperatures were measured by two pre-

    calibrated RTDs (Resistance temperature device, Pt-100 U). Their

    accuracy was within 0.05 C. The water volumetric ow rate is

    detected by a magnetic ow meter with 0.002 L/s resolution.

    All the data signals are collected and converted by a data acqui-

    sition system (a hybrid recorder). The data acquisition system then

    transmitted the converted signals through GPIB interface to the host

    computer for further operation. During the experiments, the water

    inlet temperature was held constant at 60.0 0.2 C, and the tube

    side Reynolds number was approximately 38,000. Frontal velocities

    of inlet air ranged from 1 to 5 m/s. The energy balance between air

    side and tube side was within 2%. The water side resistance (evalu-

    ated as 1/hiAi) was less than 10% of the overall resistance in all cases.

    The test n-and-tube heat exchangers are tension wrapped having

    an Ltype n collar. Thermal contact conductance provided by themanufacturers ranged from 11,000 to 16,000 W/m2 K.

    3. Data reduction

    The -NTUmethod is applied to determine the UA product in the

    analysis heat transfer and pressure loss characteristics of the test

    coil from the experimental data. The detailed derivation of the heat

    transfer coefcient can be referred to Wang et al.[21]and will not

    repeat here. The obtained air sider heat transfer coefcient is then

    in terms of the Colburnj factor:

    j ho

    rVmaxCpaPr2=3 (1)

    whereVmax Vfr/s. The term,s, is the ratio of the minimum ow

    area to frontal area. All the uid properties are evaluated at the

    average values of the inlet and outlet temperatures under the

    steady state condition. The friction factors are calculated from the

    pressure drop equation proposed by Kays and London [24]. The

    relation for the dimensionless friction factor,f, in terms of pressure

    drop is shown below:

    fAcAo

    rm

    r1

    "2DPr1

    G2c

    1 s2

    r1

    r2 1

    # (2)

    whereAoandAcstand for the total surface area and the ow cross-

    sectional area, respectively. Uncertainties in the reported experi-

    mental values were estimated by the method suggested by Moffat

    [25]. The derived uncertainties of Colburn jfactors range from 2.4 %

    to 7.3 % and is 3.6% to 11.2 % of the friction factors.

    4. Results and discussion

    The test samples areof plain and semi-dimple VG congurations

    with the number of tube row being 1, and 2. The corresponding n

    pitches (Fp) are 1.6 and 2.0 mm, respectively. Test results are in

    terms ofj and ffactors.Fig. 3denotes the test results for N 1 for

    plain and semi-dimple VG geometry. For N1, it appears that thej

    andfsemi-dimple VG is higher than those of the plain n geometry.

    The Colburnjfactors for VG surface is about 10% higher than that of

    plain surface when Fp is1.6 mmandRedc>

    1000 but shows 20e

    40%

    Table 1

    Detailed geometric parameters of the test samples.

    No. Fp(mm) N, row Geometry

    1 1.6 1 Plain

    2 1.6 1 VG

    3 2.0 1 Plain

    4 2.0 1 VG

    5 1.6 2 Plain

    6 1.6 2 VG

    7 2.0 2 Plain

    8 2.0 2 VG

    C.-C. Wang et al. / Applied Thermal Engineering xxx (2014) 1e62

    Please cite this article in press as: C.-C. Wang, et al., Investigation of the semi-dimple vortex generator applicable to n-and-tube heatexchangers, Applied Thermal Engineering (2014), http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054

  • 7/25/2019 [8] Investigation of the semi-dimple vortex generator applicable to, 2014.pdf

    3/6

    higher friction factor. This is also applicable when Fp is raised to

    2.0 mm. Both n geometries show a dependence ofn pitch when

    N 1, and normally a smaller n pitch will lead to a higher heat

    transfer performance. The effect ofn pitch on heat transfer per-

    formance for N 1 is associated with the development of boundary

    layer. Based on the experiments carried out by Saboya and Sparrow

    [26]who used a naphthalene sublimating method, they found that

    the boundary layer development for plain n geometry was the

    most important factor of the 1-row n-and-tube heat exchanger,

    and the effect of vortex might gain more importance as the Rey-

    nolds number increased. Note that the results with respect to the

    n pitch for plain n geometry is especially pronounced for N 1.

    The subsequent results have shown that the difference in heat

    transfer coefcient in association with n pitch is comparatively

    small whenN2. The phenomenon can be further explained from

    the numerical results of the effect ofn pitch carried out by Tor-

    ikoshi et al.[27]. They conducted a 3-D numerical investigation of a

    1-row plain n-and-tube heat exchanger. Their investigation

    showed that the vortex forms behind the tube were suppressed and

    the entire ow region was kept steady and laminar when the n

    pitch was small enough. A further increase ofn pitch would result

    in a noticeable increase of cross-stream width of vortex region

    behind the tube. As a result, lower heat transfer performance is

    seen for a larger Fp at a low frontal velocity when N 1. A recent

    numerical simulation by Zhang et al.[28]of the n-and-tube heat

    exchanger having plain n conguration also unveils similar re-

    sults. Their simulation indicates that the steady state velocity elds

    are reached when the n pitch is in the order of 2 mm (or less than

    2.0 mm). On the other hand, when the n pitch is larger than 2 mm

    but smaller than 12.38 mm, velocities exhibit some degree of os-

    cillations. Despite the serious velocity oscillations, stable and

    symmetric vortices are formed behind each tube and the duct ow

    effect is more dominant, thereby deteriorating the heat transfer

    performance. Note that the semi-dimple VG shows moderate heat

    transfer improvement (~10%) over plain n geometry for N 1

    whenFp2.0 mm. However, the improvement is reduced when Fpis reduced to 1.6 mm. In fact, the heat transfer improvement is only

    1e5% when Redc is less than 1000. The results are actually not so

    surprising due to several possible causes. Firstly, the entrance

    length for the present plate n geometry is about 10 mm, impli-

    cating improvement at the entrance region is comparatively futile.

    Secondly, for the 1-row conguration, the generated vortices in the

    rear part of the heat exchanger will impose less inuence on the

    downstream area. Moreover, it becomes more apparent when the

    n pitch is reduced for smaller n spacing will jeopardize the for-

    mation of longitudinal vortices.

    Fig. 1. Detailed geometry and photo of the semi-dimple VG and relevant operation (unit: mm).

    C.-C. Wang et al. / Applied Thermal Engineering xxx (2014) 1e6 3

    Please cite this article in press as: C.-C. Wang, et al., Investigation of the semi-dimple vortex generator applicable to n-and-tube heatexchangers, Applied Thermal Engineering (2014), http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054

  • 7/25/2019 [8] Investigation of the semi-dimple vortex generator applicable to, 2014.pdf

    4/6

    Test results for N 2 are shown in Fig. 4. Asshownin the gures,

    a further increase of the number of tube row (N 2), the air ow

    within the plain n-and-tube heat exchanger may become periodic

    developed, and results in the vortex-controlled regime. Conse-

    quently, the effect ofn pitch on heat transfer performance is muchless profound for N 2. The results can be elaborated from the

    numerical results of 2-row conguration by Torikoshi and Xi[29].

    Their simulations show that the air ow after the rst row cylinder

    is stabilized due tothe existence of the second tube row rather than

    in the wake of the rst row. Therefore, the 2-row n-and-tube heat

    10 Settling Devices (Flow Straightener)

    7 T/C outlet temperature measuring station

    5 T/C inlet temperature measuring station

    3-phase, 220V

    6 Test unit(Heat Exchanger)

    3 Developing section

    4 Pressure tap(inlet)

    8 Pressure tap(outlet)

    11 Nozzle pressure tap(inlet)

    T

    9 Mixer

    PID

    1 Air inlet2 Straightener

    SCR

    HEATER

    ReservoirThermostatHot Water

    Air Flow

    13 Multiple nozzles plate

    21 Temperature sensor

    14 Settling Devices (Flow Straightener)

    19 RTD inlet temperature of water side20 RTD outlet temperature of water side

    12 Nozzle pressure tap(outlet)

    17 Water pump

    18 Water flow meter

    22 Inverter

    Hybrid

    Recorder

    15 Centrifugal fan16 Air discharge

    Computer

    GPIBPC

    P H.X

    SATP

    NOZZLEP

    3-phase, 220V

    Fig. 2. Schematic of the test facilities.

    N=1

    Redc

    100 1000 10000

    f

    dna

    j

    0.01

    0.1

    Fp = 1.6 mm (Plate)

    Fp = 1.6 mm (VG)

    Fp = 2.0 mm (Plate)

    Fp = 2.0 mm (VG)

    f

    j

    Fig. 3. Test results for N

    1.

    N=2

    Redc

    100 1000 10000

    f

    dnaj

    0.01

    0.1

    Fp = 1.6 mm (Plate)

    Fp = 1.6 mm (VG)

    Fp = 2.0 mm (Plate)

    Fp = 2.0 mm (VG)

    f

    j

    Fig. 4. Test results for N

    2.

    C.-C. Wang et al. / Applied Thermal Engineering xxx (2014) 1e64

    Please cite this article in press as: C.-C. Wang, et al., Investigation of the semi-dimple vortex generator applicable to n-and-tube heatexchangers, Applied Thermal Engineering (2014), http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054

  • 7/25/2019 [8] Investigation of the semi-dimple vortex generator applicable to, 2014.pdf

    5/6

    exchanger still reveals similar results as those ofN 1. However, it

    can be seen that the effect ofn pitch for N 2 become less pro-

    found when compared with N 1. Apparently, this is because the

    presence of additional staggered tube row that brings about better

    mixing. In this regard, one can see that the effect of n pitch is

    rather small, and this is applicable for both plain and semi-dimple

    VG geometry. For the 2-row heat exchangers, it appears that the

    heat transfer performance for the semi-dimple VG relative to plain

    n geometry is increased. For instance, forFp2.0 mm, the j factor

    for the semi-dimple VG geometry exceeds those of plain n

    conguration by more than 17% when Redc is above 3000. The

    corresponding increase of friction factoris about 30%. There are two

    explanations for the rise of relative heat transfer performance be-

    tween the semi-dimple VG and plain n. Firstly, the presence of

    staggered tube row arrangement will bring about a better ow

    mixing mechanism, and this mechanism is reinforced by the semi-

    dimple. This can be made clear from the present semi-dimple ge-

    ometry which features a punched open area below the semi-

    dimple as depicted inFig. 1.Note that prior to manufacturing the

    semi-dimple vortex generator n die, a separate numerical simu-

    lation is carried out to determine the suitable location and the

    arrangement of the semi-dimple vortex generator. Through the

    punched open area, part of the air ow may ow through andyields a better mixing. As a consequence, the mixing mechanism

    becomes more pronounced when the Reynolds number is

    increased, thereby resulting in a detectable difference in heat

    transfer performance amid plain and semi-dimple VG.

    The previous studies[30,31]for plain n geometry also showed

    that at a higher Reynolds number subject to a larger number of tube

    row may also bring about vortices along the ns, therefore the effect

    of n pitch on heat transfer coefcient is reduced. As depicted in

    Fig. 4(N 2), one can see that the heat transfer performance of the

    semi-dimple VG is almost independent ofn pitch. This is because

    additional mixing augmentation caused by the staggered tube row is

    imposed upon the swirled motion. The combined effects result in a

    similar heat transfer performance for bothn pitches.

    For comparison purpose, the air ow into the semi-dimple VGcan be reversed as shown inFig. 1(c). For normal operation, the air

    ow encounters the semi-dimple VG which provides the protrusion

    to generate vortices. For opposite operation, the air ow is directed

    through the punched open area of the semi-dimple VG to provide air

    ow mixing. Fig.5 shows the corresponding test resultsfor N 2 and

    Fp 2.0 mm subject to normal and opposite air ow operations.

    Interestingly, the heat transfer performance is barely the same while

    the friction factor for the opposite operation is notably lower than

    those of normal operation. The difference is especially pronounced

    when theReynolds number is lower than 1500. In fact, thedifference

    can be as high as 30e40%. The identical heat transfer performance

    implies that the contribution of swirled ow and mixing mechanism

    are actually comparable. The lower friction factor for opposite

    operation is mainly associated of the airow being directed throughthe punched holes while under normal operation the air ow im-

    pinges upon the semi-dimpledirectly, thereby a higher frictionfactor

    for normal operation is encountered.

    Based on the present test results, the heat transfer and frictional

    performance of the proposed semi-dimple vortex generator can be

    empirically correlated as:

    j 0:29Re0:58dc

    Fpdc

    0:8N0:2 (3)

    f2:2Re0:38dc 2Fpdc

    0:5

    1:4 log10RedcFpdc

    1:5

    ! (4)

    The foregoing equations can predict 90% of the measured semi-

    dimple VG data within 10%.

    5. Conclusions

    In this study, an experimental study is carried out to examine

    the air side performance of the n-and-tube heat exchangershaving plain or semi-dimple vortex generator. A total of eight

    samples are made and tested in a well controlled wind tunnel. The

    corresponding n pitch of the test samples are 1.6 mm and 2.0 mm

    respectively and the number of tube row are 1 and 2, respectively.

    The operational Reynolds number is from 400 to 4000. The inlet air

    ow direction into the semi-dimple VG is also examined in this

    study. Based on the foregoing discussions, some major conclusions

    of this study are summarized as follows:

    (1) For the air side performance for N 1 with a smaller n pitch

    of 1.6 mm, the heat transfer performance for the semi-

    dimple VG is slightly higher than that of plain n geome-

    try. For a larger n pitch of 2.0 mm, the heat transfer per-

    formance for the semi-dimple VG is approximately 10%higher than that plain n geometry but accompanies a

    30e40% increase of friction factor.

    (2) For the air side performance ofN 2, the effect ofn pitch

    cast a negligible inuence on the heat transfer performance

    for both n geometries. However, the heat transfer perfor-

    mance of the semi-dimple VG relative to plain n geometry

    is also increasing due to the contribution of mixing. A heat

    transfer augmentation of 17% for semi-dimple VG can be

    achieved but the corresponding friction factor penalty is

    about 30%. The difference in heat transfer performance is

    increased with the rising Reynolds number and the results

    prevail for both n pitches. However, the difference in heat

    transfer performance becomes more pronounced at a larger

    n pitch due to comparatively effectively swirled motion.

    N=2

    Redc

    100 1000 10000

    f

    dnaj

    0.01

    0.1

    Fp = 2.0 mm (Normal VG)

    Fp = 2.0 mm (Opposite VG)

    f

    j

    Fig. 5. Comparison of the present semi-dimple VG subject to reversing inlet ow

    condition.

    C.-C. Wang et al. / Applied Thermal Engineering xxx (2014) 1e6 5

    Please cite this article in press as: C.-C. Wang, et al., Investigation of the semi-dimple vortex generator applicable to n-and-tube heatexchangers, Applied Thermal Engineering (2014), http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054

  • 7/25/2019 [8] Investigation of the semi-dimple vortex generator applicable to, 2014.pdf

    6/6

    (3) With regard to the effect of inlet air ow into the semi-

    dimple VG heat exchangers, test results indicate that the

    heat transfer performance is barely the same while the

    friction factor for the opposite operation is notably lower

    than those of normal operation. The difference is especially

    pronounced when the Reynolds number is lower than 1500.

    In fact, the difference can be as high as 30e40% when the

    Reynolds number is less than 1000. The identical heat

    transfer performance implies that the contribution of swirled

    ow and mixing mechanism are actually comparable.

    (4) A correlation is proposed to describe the data of semi-dimple

    VG n-and-tube heat exchanger, the proposed correlation

    can describe 90% of the test data within 10%.

    Acknowledgements

    The authors appreciate the nancial support from the Ministry

    of Science and Technology, Taiwan under contract 103-3113-E-009-

    002.

    Nomenclature

    A areaAc minimum ow area, rAfrAo total surface area

    cp specic heat at constant pressure

    dc n collar outside diameter,do 2dfdo tube outside diameter

    f friction factor

    Fp n pitch

    Gc mass ux of the air based on the minimum ow

    area,rVmaxho heat transfer coefcient

    j Nu/RePr1/3, the Colburn factor

    k thermal conductivity

    N number of tube row

    NTU number of transfer unitDP pressure drop

    Pl longitudinal tube pitch

    Pr Prandtl number

    Pt transverse tube pitch

    Redc rVdc/m, Reynolds number

    T temperature

    df n thickness

    U overall heat transfer coefcient

    Vfr frontal velocity

    Vmax maximum velocity inside the heat exchanger, VmaxVfr/s

    _Qave=

    _Qmax, heat exchanger effectiveness

    m dynamic viscosity ofuid

    r density

    s contraction ratio of cross-sectional area

    Subscripts

    1 air side inlet

    2 air side outlet

    air air side

    f n surface

    m mean value

    References

    [1] C.C. Wang, Technology review e a survey of recent patents of n-and-tubeheat exchangers, J. Enhanc. Heat Transfer 7 (5) (2000) 333e345.

    [2] C.C. Wang, A survey of recent patents ofn-and-tube heat exchangers from2001e2009, Int. J. Air-Cond. Refrig. 18 (1) (2010) 1e13.

    [3] G. Biswas, H. Chattopadhyay, A. Sinh, Augmentation of heat transfer by cre-ation of streamwise longitudinal vortices using vortex generators, HeatTransfer Eng. 33 (4e5) (2012) 406e424.

    [4] F.J. Edwards, G.J.R. Alker, The improvement of forced convection surface heattransfer using surfaces protrusions in the form of (A) cubes and (B) vortexgenerators, in: Proc. 5th Int. Heat Transfer Conf., vol. 2, 1974, pp. 244e248.

    [5] M. Fiebig, P. Kallweit, N.K. Mitra, Wing-type vortex generators for heattransfer enhancement, in: Proc. Eighth Int. Heat Transfer Conference, vol. 6,1986, pp. 2909e2913.

    [6] S. Tiggelbeck, N.K. Mitra, M. Fiebig, Comparison of wing-type vortex genera-

    tors for heat transfer enhancement in channel ows, J. Heat Transfer 166(1994) 880e885.

    [7] S. Tiggelbeck, N.K. Mitra, M. Fiebig, Experimental investigation of heat transferenhancement and ow losses in a channel with double rows of longitudinalvortex generators, Int. J. Heat Mass Transfer 36 (1993) 2327e2337.

    [8] G. Biswas, N.K. Mitra, M. Fiebig, Heat transfer enhancement in n-tube heatexchangers by winglet type vortex generators, Int. J. Heat Mass Transfer 37(1994) 283e291.

    [9] M. Fiebig, Vortices generators and heat transfer, Trans. IChemE 76 (1998)108e123.

    [10] M. Fiebig, A. Valencia, N.K. Mitra, Wing-type vortex generators for n-and-tube heat exchangers, Exp. Therm. Fluid Sci. 7 (1993) 287e295.

    [11] C.C. Wang, J. Lo, Y.T. Lin, M.S. Liu, Flow visualization of wavy-Type vortexgenerator having inline n-tube arrangement, Int. J. Heat Mass Transfer 45(2001) 1933e1944.

    [12] H. Huisseune, C. T'Joen, P.D. Jaeger, B. Ameel, S.D. Schampheleire, M.D. Paepe,Performance enhancement of a louvered n heat exchanger by using deltawinglet vortex generators, Int. J. Heat Mass Transfer 56 (2013) 475e487.

    [13] H. Huisseune, C. T'Joen, P.D. Jaeger, B. Ameel, J. Demuynck, M.D. Paepe,Numerical study of ow deection and horseshoe vortices in a louveredn round tube heat exchanger, J. Heat Transfer 134 (2012) 091801-1e091801-11.

    [14] Y.L. He, H. Han, W.Q. Tao, Y.W. Zhang, Numerical study of heat-transferenhancement by punched winglet-type vortex generator arrays in n-and-tube heat exchangers, Int. J. Heat Mass Transfer 55 (2012) 5449e5458.

    [15] J.F. Fan, Y.L. He, W.Q. Tao, Application of combined enhanced techniques fordesign of highly efcient air heat transfer surface, Heat Transfer Eng. 33 (1)(2012) 52e62.

    [16] J.M. Wu, W.Q. Tao, Impact of delta winglet vortex generators on the perfor-mance of a novel n-tube surfaces with two rows of tubes in different di-ameters, Energy Convers. Manag. 52 (2011) 2895e2901.

    [17] J. Li, S. Wang, J. Chen, Y.G. Lei, Numerical study on a slit n-and-tube heatexchanger with longitudinal vortex generators, Int. J. Heat Mass Transfer 54(2011) 1743e1751.

    [18] P. Chu, Y.L. He, W.Q. Tao, Three-dimensional numerical study ofow and heattransfer enhancement using vortex generators in n-and-tube heat ex-changers, J. Heat Transfer 131 (2009) 091903-1e091903-9.

    [19] J. He, L. Liu, A.M. Jacobi, Air-side heat-transfer enhancement by a new winglet-type vortex generator array in a plain-n round tube heat exchanger, J. HeatTransfer 132 (2010) 071801-1e071801-9.

    [20] C.C. Wang, Y.J. Chang, C.S. Wei, B.C. Yang, A comparative study of the airsideperformance of winglet vortex generator and wavy n-and-tube heat ex-changers, ASHRAE Trans. 110 (2004) 53e57.

    [21] C.C. Wang, R.L. Webb, K.U. Chi, Data reduction of air-side performance ofn-and-tube heat exchangers, Exp. Therm. Fluid Sci. 21 (2000) 228e236.

    [22] ASHRAE Handbook Fundamental, SI ed., American Society of Heating,Refrigerating and air-conditioning Engineers, Inc., Atlanta, 1993, pp. 14e15(Chap. 13).

    [23] ASHRAE Standard 41.2-1987, Standard Methods for Laboratory Air-owMeasurement, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 1987.

    [24] W.M. Kays, A.L. London, Compact Heat Exchangers, third ed., McGraw-Hill,New York, 1984.

    [25] R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm.Fluid Sci. 1 (1988) 3e17.

    [26] E.M. Saboya, E.M. Sparrow, Transfer characteristics of two-row plate n and

    tube heat exchanger congurations, Int. J. Heat Mass Transfer 19 (1976)41e49.

    [27] K. Torikoshi, G. Xi, Y. Nakazawa, H. Asano, Flow and heat transfer performanceof a plate-n and tube heat exchanger (1st report: effect ofn pitch), in: 10thInt. Heat Transfer Conf, 1994, pp. 411e416 paper 9-HE-16.

    [28] L.Z. Zhang, W.C. Zhong, J.M. Chen, J.R. Zhou, Fluid ow and heat transfer inplaten-and-tube heat exchangers in a transitional ow regime, Numer. HeatTransfer Part A 60 (2011) 766e784.

    [29] K. Torikoshi, G. Xi, A numerical study ofow and thermal elds innned tubeheat exchangers (effect of the tube diameter), in: ASME HTD, vol. 317-1, 1995,pp. 453e458.

    [30] C.C. Wang, C.J. Lee, C.T. Chang, Y.J. Chang, Some aspects ofn-and-tube heatexchangers: with and without louver ns, J. Enhanc. Heat Transfer 6 (1999)357e368.

    [31] C.C. Wang, K.U. Chi, Heat transfer and friction characteristics of plain n-and-tube heat exchangers: part 1: new experimental data, Int. J. Heat MassTransfer 43 (2000) 2681e2691.

    C.-C. Wang et al. / Applied Thermal Engineering xxx (2014) 1e66

    Please cite this article in press as: C.-C. Wang, et al., Investigation of the semi-dimple vortex generator applicable to n-and-tube heatexchangers, Applied Thermal Engineering (2014), http://dx.doi.org/10.1016/j.applthermaleng.2014.09.054

    http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref9http://refhub.elsevier.com/S1359-4311(14)00826-6/sref9http://refhub.elsevier.com/S1359-4311(14)00826-6/sref9http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref24http://refhub.elsevier.com/S1359-4311(14)00826-6/sref24http://refhub.elsevier.com/S1359-4311(14)00826-6/sref25http://refhub.elsevier.com/S1359-4311(14)00826-6/sref25http://refhub.elsevier.com/S1359-4311(14)00826-6/sref25http://refhub.elsevier.com/S1359-4311(14)00826-6/sref25http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref31http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref30http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref29http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref28http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref27http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref26http://refhub.elsevier.com/S1359-4311(14)00826-6/sref25http://refhub.elsevier.com/S1359-4311(14)00826-6/sref25http://refhub.elsevier.com/S1359-4311(14)00826-6/sref25http://refhub.elsevier.com/S1359-4311(14)00826-6/sref24http://refhub.elsevier.com/S1359-4311(14)00826-6/sref24http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref23http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref22http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref21http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref20http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref19http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref18http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref17http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref16http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref15http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref14http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref13http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref12http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref11http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref10http://refhub.elsevier.com/S1359-4311(14)00826-6/sref9http://refhub.elsevier.com/S1359-4311(14)00826-6/sref9http://refhub.elsevier.com/S1359-4311(14)00826-6/sref9http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref8http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref7http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref6http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref5http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref4http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref3http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref2http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1http://refhub.elsevier.com/S1359-4311(14)00826-6/sref1