7. sound wave

Upload: manish-tak

Post on 04-Apr-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 7. Sound Wave

    1/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 134

    EXERCISE # 1

    1.4 IysV }kjk nwjh r; djus es a yxk le;

    10 102 =2

    1gt2 =

    2

    19.8t2 t =

    7

    1sec.

    f =yxk le;

    kdh la[;dEiuks=

    7/1

    8= 56 Hz3

    2.2* V T V increases c

  • 7/29/2019 7. Sound Wave

    2/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 135

    laiks"kh O;frdj.k ds fy, iFkkUrj (S)S = n (n = 1, 2, 3, 4....... )

    ;gk S = 2 mvr% laiks"kh O;frdj.k ds fy, fodYi A vkSj B fodYi lgh gS vr% blh rjg fouk'kh O;frdj.k lehdj.k ds fy,

    S = (2n + 1)2

    vr% D fodYi lgh gSA Ans A, B, D,

    4.4 First maxima after O will appear when path difference S = so AP BP =

    22 14.2 2.4 = = 0.2

    sound velocity = n = 1800 0.2 = 360 m/sO ds ckn izFke mfPp"B izkIr gksxk tc iFkkUrj S = gSAvr% AP BP =

    22 14.2 2.4 =

    = 0.2

    /ofu osx = n = 1800 0.2 = 360 m/s4.8 path difference iFkkUrj = r 2 r

    S = r ( 2) n = Sfor constructive interference

    lEiks"kh O;frdj.k ds fy;s

    n = r ( 2) =n

    )2(r n =

    V

    = )2(r

    Vn

    6.2 n1: n

    2: n

    3= 1 : 2 : 3

    1

    V

    : 2

    V

    : 3

    V

    = 1 : 2 : 3

    1

    : 2

    : 3

    = 1 :21

    :31

    6.62

    1= + .6d,

    1=

    1

    V

    4

    2= + .3d,

    2=

    2

    V

    1

    2

    = )d3.(4

    )d6.(2

    = )d3.(2

    )d6.(

    6.15 Equation of stationary wave from closed end = a sink x cos tcan fljs ls vizxkeh rjax dk lehdj.k = a sink x cos t

    Now at x =7

    4

    7=

    Amplitude vk;ke = a sin kx = a sin7

    2

    = a sin74

    72

    = a sin2

    = a

  • 7/29/2019 7. Sound Wave

    3/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 136

    7.2* 262 f| = |256 f| x 2

    (262 f) = (256 f) x 2 f = 250, 258 HzUnknown Frequency can not be greater than 262 Hz. because no. of beats heard with 262 Hz is more then

    the no. of beats heard with 256 Hz.

    |262 f| = |256 f| x 2

    (262 f) = (256 f) x 2 f = 250, 258 Hz

    vKkr vkofk 262 Hz ls T;knk ugh gks ldrh gS] D;ksafd 262 Hz ds lkFk lqus x;s foLianks dh la[;k 256Hz ds lkFk lqusx;s foLianks dh la[;k ls T;knk gSA

    7.4 sin 2nt + sin 2 (n 1) t + sin 2 (n + 1) t

    sin 2nt + 2 sin2

    )]1n1n(t2[ cos

    2

    )]1n1n(t2[

    sin 2nt + 2 sin 2nt cos 2 t

    sin 2nt [1 + 2 cos 2 t] fbeat izLian

    = 1

    7.5

    1=

    2

    V

    2=

    4

    V

    no. of beat heard lqus x;s foLianks dh la[;k n1 n

    2=

    4

    V= 4

    if length of pipes are doubled. no of beats heard 1n 2n = 8

    V=

    2

    4= 2

    ;fn ikbi dh yEckbZ nqxquh dj nh tkrh gS rks lqus x;s foLianks dh la[;k n 2n = 8V =

    24 = 2

    8.3 n = rs nV

    vV

    , n

    r=

    sVV

    Vn

    n = nVV

    VV

    s

    s

    =

    50350

    50350 1.2 =

    300

    400 1.2 = 1.6 KHz

    8.7

    n =

    cosVV

    sinVV

    s

    on tan =

    2

    1is constant and n remains constant and n < n.

    tan =2

    1rFkk nfu;r jgrs gS vkSj n < n

    so. graph. must be

    vr% xzkQ ,slk gksxkA

  • 7/29/2019 7. Sound Wave

    4/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 137

    EXERCISE # 2

    PART- I

    1.

    pipeclosedfor

    4

    v

    pipeopenfor2

    v

    f .fun

    f T , but f does not depend on pressure.for closed pipe f

    1st overtone= 3f

    fundamental.

    fy,dscUn ikbZi

    fy,dsikbZi[kqys

    4

    v2

    v

    f .fun

    f T , ysfdu fnkc ij fuHkZj ugh djrk gSA

    cUn ikbZi ds fy, fizFke vf/kLojd = 3fewyHkwr

    4. Path difference (S) between direct and reflected wave = 130 120 = 10 m

    for so constructive interference S = n

    =n

    10

    n

    S

    (n = 1, 2, 3, .......)

    = 10, 4

    10,

    3

    10,

    2

    10

    ..... Ans (A)lh/kh vkSj ijkofrZr rjaxksa ds e/; iFkkUrj (S) = 130 120 = 10 m

    vr% lEiks"kh O;frdj.k ds fy, S = n

    =n

    10

    n

    S

    (n = 1, 2, 3, .......)

    = 10,4

    10,

    3

    10,

    2

    10..... Ans (A)

    5. frequency of two source n1

    = 50 n2

    = 51

    nks lzk srks ds e/; vkofr n1

    = 50 n2

    = 51

    so beat frequency = 1/sec.

    vr% foLian vkofr = 1/sec.

    Now intensity ratio of maximum & minimum value = 221

    221

    min

    max

    )aa(

    )aa(

    =1

    4

    8

    162

    vc vf/kdre vkSj U;wure ekuks dk vuqikr = 221

    221

    )aa(

    )aa(

    wureU;

    vf/kdre

    = 1

    4

    8

    162

    So Ans Dvr% fodYi D lgh gSA

  • 7/29/2019 7. Sound Wave

    5/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 138

    6. y1

    = A cos (ax + bt)

    so here vr% ;gka k = a

    2

    = a a

    2

    = b n = 2b

    2

    reflected

    incident

    reflected

    incident

    a

    a

    64.0

    a

    reflected= 0.8 A

    2

    a

    a

    64.0

    ijkorhZr

    vkifrr

    ijkorhZr

    vkifrra

    ijkorhZr= 0.8 A

    For reflected wave Displacement equation

    ijkorhZr rjax ds fy;s foLFkkiu lehdj.ky

    2= 0.8 A cos ( ax + bt + )

    = 0.8 A cos (ax bt)

    by super position law resultant wave

    v/;kjksi.k fl)kUr ls ij.kkeh rjaxy = y

    1+ y

    2

    = A cos (ax + bt) + [ 0.8 A cos (ax bt)]

    so incorrect option is D Ans D

    vr% lgh fodYi D gSA Ans D

    7. Due to Doppler effect apparent frequency of S1will continuously decreases. But apparent frequency of S

    2

    changes to lower value when it crosses o so best represented graph is.Ans (C)

    MkWIyj izHkko ds dkj.k S1dh vkofr yxkrkj ?kVrh gSA ysfdu S

    2dh vkHkklh vkofr tc ;g o dks ikj djrh gS rks NksVs

    ekuks ls ifjofrZr gks tkrh gS vr% lgh xzkQC gksxkA

    8. To get beat frequency 1, 2, 3, 5, 7, 8, it is possible when other three tuning fork have frequenci es 551,553, 558, etc.

    1, 2, 3, 5, 7, 8, foLian vkofr izkIr djus ds fy;s ;g lEHko gS fd vU; rhuks Lofj=k dh vkofr 551, 553, 558 bR;kfngksA

    9. f1

    = f0

    trainsound

    sound

    vv

    v

    = 2.11

    f0

    1.2 vsound

    = vsound

    + v v =5

    vsound

    f2

    = f0

    sound

    mansound

    v

    vv = 0.8

    2

    0

    f

    f= 1.25

    f1

    = f0

    jay/ofu

    /ofu

    vv

    v

    = 2.1

    1f0

    1.2 v/ofu

    = v/ofu

    + v v =5

    v /ofu

    f2

    = f0

    /ofu

    fDrO;/ofu

    v

    vv = 0.8

    2

    0

    f

    f= 1.25

    10. Let original frequency is f ekuk okLrfod vkofr fgSA

    by the concept of Doppler effect MkWIyj izHkko dh vo/kkj.kk lsfrequency of reflected wave ijkorhZr rjax dh vkofr

    f = f12332

    12332f

    uV

    uV

    , f f = 6 ,

    320

    344f f = 6 f =

    24

    6320 = 80 Hz

  • 7/29/2019 7. Sound Wave

    6/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 139

    18.

    f = f0

    sourcesound

    sound

    vv

    v

    /ofu/ofu

    /ofu

    VV

    V=

    cosv330330

    .600 =37cos20330

    330.600

    = 600 .

    314

    330 ~ 630.5 Hz.

    19. There is no relative motion between source and observer so frequency remain constant n =0

    V

    ;gka L=kksr vkSj izs{kd ds e/; lkis{k xfr ugh gks jgh gS vr% vkofr fu;r jgsxhA n =0

    V

    when wind start blowing in the direction of wave motion then velocity of sound = V + uw

    tc gok rjax dh fn'kk esa pyuk izkjEHk gksxh rc /ofu dk osx = V + uw

    so apparent wave length ' =n

    uV w=

    V

    uV w

    0

    vr% vkHkklh rjaxnS/;Z ' =n

    uV w=

    V

    uV w

    0

    Ans (B)

    20. frequency of sound for approaching observer fa

    =c

    vc f

    ikl vkus okys iz{ksd ds fy;s /ofu vkofr fa

    =c

    vc f

    For receding observer fr=

    c

    vcf

    nwj tkus okys izs{kd ds fy;s fr = cvc

    f

    fr+ f

    a= 2f f =

    2

    ff ar

    25. Let the velocity of source at mean position is u observer hear maximum

    frequency when source approaching line f rom mean positions

    ekuk ek/; fLFkfr ij L=kksr dh vkofr u gS rFkk izs{kd vf/kdre vkofr lqusxk tc L=kksr ek/; fLFkrh dh js[kk esa igqaprk gSA

    Lmax

    =uc

    c

    and minimum frequency when source reseeding from mean position Lmax

    =

    uc

    c

  • 7/29/2019 7. Sound Wave

    7/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 140

    vkSj tc L=kksr ek/; fLFkrh ls n wj tkrk gS rc U;wure vkofr Lmax

    =uc

    c

    velocity at mean position ek/; fLFkrh ij osx u = )cos1(gd2

    Lmaxvf/kdre = )cos1(gd2c

    c

    Lmin U;wure

    =)cos1(gd2c

    c

    Ans (C)

    26.

    AT B Path difference is O and at A path di fference is 4 . From n formula there are 3 maxima positionbetween A & B . So total maxima in ellipse = 16

    B ij iFkkUrj O gS vkSj A ij iFkkUrj 4 gSA n fl)kUr ls A vkSj B ds e/; rhu mPpre fLFkrh jgsxhA vr% nh?k Zor

    ij dqy vf/kdre= 16 gksxkNote if there were circle, rectangle, square instead of ellipse, answer is same.

    uksV ;fn ;gka nh?k Zor ds LFkku ij ok] vk;r ;k ox Z gksrk rks Hkh mRrj leku gk srk gSA

    33. Second overtone of open pipe =12

    V3

    second overtone of closed pipe =24

    V5

    Since, these frequency are same

    21 4

    V5

    2

    V3

    52

    34

    2

    1

    =5

    6

    Now, the ratio of fundamental frequencies :

    2

    1

    2

    1

    4

    V

    2

    V

    1

    22

    = 10 : 6 = 5 : 3 Ans.

    gy. [kqys ikbZi dk f}rh; vf/kLojd =12

    V3

    can ikbi dk f}rh; vf/kLojd =24

    V5

    pwafd vkofr;ka leku gS

  • 7/29/2019 7. Sound Wave

    8/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 141

    21 4

    V5

    2

    V3

    52

    34

    2

    1

    =5

    6

    vc, ewy fo/kkvks dk vuqikr:

    2

    1

    2

    1

    4

    V

    2

    V

    1

    22

    = 10 : 6 = 5 : 3 Ans.

    40. For stable interference, phase difference should not vary with time.

    Hence waves should have same frequency and a constant phase difference.

    LFkk;h O;fDrj.k ds fy, dykUrj le; ds lkFk ifjofrZr ugh gksuk pkfg,vr% rjax dh vkofr leku ,oa dkykUrj vpj j[kuk pkfg,A

    41.

    Wave emitted from Q ls mRlftZr rjax y =A sin (t kxQ)

    Wave emitted from P ls mRlftZr rjax y = A sin (t kxp

    +2

    )

    = p

    Q

    = t kxp

    +2

    (t kx

    Q)

    = k (xQ

    xp) +

    2

    =2

    (xQ

    xp) +

    2

    =10

    (x

    Q x

    p) +

    2

    For A ds fy, xQ

    xP= 5

    =10

    ( 5) +

    2

    = 0

    For B ds fy, xQ

    xP

    = 5

    = For C ds fy, x

    Q x

    P= 0

    =2

    C= (+ + 2cos0) : (+ + 2cos) : (+ + 2cos

    2

    )

  • 7/29/2019 7. Sound Wave

    9/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 142

    42. When sound wave is reflected from rigid end displacement wave get extra phase at and pressure wave get noextra phase

    So option A, B, C are correct .

    tc /ofu rjaxs n

  • 7/29/2019 7. Sound Wave

    10/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 143

    5.time taken by sound waves to travel dx

    /ofu rjax }kjk dx nwjh r; djus esa fy;k x;k le;

    dt =V

    dx=

    M

    RT

    dx

    =

    RT

    M

    dx

    dt =

    1

    M

    R

    T

    dxT = T

    1+ x

    d

    TT 12

    dt =

    1

    M

    R

    xd

    TTT

    dx

    121

    t =

    1

    M

    R

    12 TT

    d2

    d

    121 x

    d

    TTT

    =12 TT

    d2

    1

    M

    R

    12 TT =

    12 TT

    d2

    1

    M

    R

    Vo=

    M

    RTo(given) fn;k gS

    o

    o

    T

    V=

    M

    R

    t =12 TT

    d2

    1

    o

    o

    T

    V

    = 21 TT

    d2

    o

    o

    V

    T=

    oV

    d2 21

    o

    TT

    T

    =

    360

    9002

    900100

    400

    = 2.5 sec

    6. Assume a spherical surface of radius a passing through the ring. The waves passing through ring also passthrough sphere.

    oy; ls ikl gksrh gqbZa

    f=kT;k dh ,d xksyh; lrg dh dYiuk djrs gSA rjaxs oy; ds lkFk&lkFk xksys ls Hkh xqtjrh gSAarea of ds = 2a sinadds dk {ks=kQy = 2a sinad

    s = 2a2

    0

    dsin

    s = 2a2 [cos + cos 0]s = 2a2 [1 cos]

    Energy tkZ = sa4

    power2

    sa4 2

    kfDr'=

    2

    power

    2

    kfDr'(1cos)

    = 24

    power

    2

    4

    kfDr'

    Energy tkZ =2

    l4 02

    (1cos)

    < > = 220

    2)/R(1

    11

    = 2l20

    22 5.0l

    l1

    w20 Ans

  • 7/29/2019 7. Sound Wave

    11/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 144

    EXERCISE # 3

    1.1 (A) y = 4 sin (5x 4t) + 3 cos (4t 5x + /6)

    is super position of two coherent waves moving in positive direction, so their equivalent will be an another

    travelling wave.

    (B) y = 10 cos

    330

    xt sin (100)

    330

    xt lets check at any point, say at x = 0,

    y = (10 cos t) sin (100 t)

    at any point ampli tude is changing sinusoidally. so this is equation of beats.

    (C) y = 10 sin (2x 120t) + 10 cos (120t + 2x) = superposition of two coherent waves travellingin opposite direction.

    equation of standing waves.(d) y = 10 sin (2x 120 t) + 8 cos (118t 59/30x) = superposition of two waves whose frequencies areslightly different (

    1= 120,

    2= 118)

    equation of Beats.(a) y = 4 sin (5x 4

    t) + 3 cos (4t 5x + /6)

    nks /kukRed fn'kk esa xfreku dyk lEc) rajxks dk v/;kjksi.k gS] bl izdkj budk rqY; Hkh ,d vU; izxkeh rjax gSA

    (b) y = 10 cos

    330

    xt sin (100)

    330

    xt fdlh fcUnq ij tkp djrs gS] x = 0 ij,

    y = (10 cos t) sin (100 t)

    fdlh Hkh fcUnq ij vk;ke T;koh; ifjofrZr gksrk gSA bl izdkj ;g foLiUnksa dh lehdj.k gS(c) y = 10 sin (2x 120t) + 10 cos (120t + 2x) = foijhr fn'kk esa lapkfjr nks dyk lEcU/k rjaxks dk

    v/;kjksi.kvizxkeh rjxksa dk lehdj.k(d) y = 10 sin (2x 120 t) + 8 cos (118t 59/30x) = nks rjax ks dk v/;kjksi.k ftudh vko fr;ksa esa tjk lk vUrjgS (

    1= 120,

    2= 118)

    foLiUn dh lehdj.k

    1.2 Find all speeds w.r.t. wind and apply doppler effect .

    lHkh pkyksa dks gok ds lkis{k ysus ij vkSj MkWIyj izHkko dk mi;ksx djus ij(A) The wavelength of the waves coming towards the observer from source

    L=kksr ls izs{kd dh rjQ vkrh gqbZ rjax dh rjaxnS/;Z= (V - V

    W+ V

    S)/f

    (B) The wavelength of the waves incident on the wall

    nhokj ij vkifrr gksrh gqbZ rjax dh rjaxnS/;Z= (V + V

    W- V

    S)/f

    (C) The wavelength of the waves coming towards observer f rom the wall = (V VW V

    D)/f

    r

    nhokj ls izs{kd dh rjQ vk jgh rjax dh rjaxnS/;Z(D) Frequency of the waves (as detected by O) coming from wall after reflection = (V - V

    W- V

    O)f

    r/(V - V

    W-

    VD)

    tc nhokj ls ijkorZu ds ckn rjax dh vkofk izs{kdO ds }kjk izsf{kr)

    = (V - V

    W- V

    O)f

    r/(V - V

    W- V

    D)

    2.1 = (0.1 mm) cos80

    2(y + 1

    cm) cos 2(400) t

    end correction is 1cm. ,so at y = -1 cm.

    = (0.1 mm) cos80

    2(1 cm+ 1

    cm) = (0.1 mm) cos (0) = Antinode

    So upper end is open.

    at lower end y = 99 cm

  • 7/29/2019 7. Sound Wave

    12/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 145

    = (0.1 mm) cos80

    2(99 + 1)

    = 0.01 cos2

    5= 0 Node

    tube is closed at lower end

    So tube is open closed.

    = (0.1 mm) cos80

    2(y + 1

    cm) cos 2(400) t

    fljk la'kks/ku 1cm. ,vr% y = 1 cm ij

    = (0.1 mm) cos80

    2(1 cm+ 1

    cm) = (0.1 mm) cos 2(0) = izLiUn

    blfy, ijh fljk [kqyk gqvk gSuhpys fljsa ij y = 99 cm = 0.99 m

    = (0.1 mm) cos80

    2(99 + 1)

    = 0.01 cos2

    5 = 0 fuLiUn

    uyh fupys fljs ij cUn gSAblfy, uyh [kqyh cUn gS

    2.2

    2

    80

    2So = 80

    and effective length of air column = 99 + 1 = 100 cm

    So4

    5

    l= 5

    4

    , so five half loops will be formed

    open

    closed

    = 5

    4

    so second overtone.

    2

    80

    2 vr% = 80

    ok;q LrEHk dh izHkkoh yEckbZ = 99 + 1 = 100 cm

    blfy,4

    5

    l = 5

    4

    , blfy, ikp v)Z ywi cusxs

    Open ( )[kqyk

    Closed ( )cUn = 5 4

    blfy, nwljk vf/kLojd

    2.3 Pex

    = Bdx

    d

    = (5 105) (0.1 103)80

    2sin

    80

    2(y + 1cm) cos 2(400) t

    = (125 N/m2) sin80

    2(y + 1cm) cos 2(400t)

  • 7/29/2019 7. Sound Wave

    13/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 146

    4.1 I = 2r4

    P

    211

    211

    21

    22

    2

    1

    2

    1

    rP2

    )r2(P

    r

    r

    P

    P

    I2

    =2

    2.0

    2

    1

    = 0.1 w/m2.

    4.2 =V2

    P2m

    1012 =(300))5.1(2

    P2m

    P = 3 10 Pm a-5

    Pm

    = BAK

    = (v2) A

    f

    v

    2

    Pm

    = (2Vf)A

    3 10-5 = (2) (1.5) (300) (103) A

    A = 1/3 10 m -10

    4.3 for stationary wave vizxkeh rjax ds fy;s Y = y1

    + y2

    2a sinkx cost = a sin(tkx) + y2

    y2 = a sin (k x + t) + a sin (k x t) a sin(tkx)y

    2= a [sin (kx +t) + 2sin(kx t)] Ans

    4.4 effective length izHkkoh yEckbZ = 83.2 + 0.3d = 85 cm

    n =85.04

    340

    4

    V

    = 100 (fundamental frequency ewy vkofr )

    other resonating frequency below 1000 Hz

    1000 Hz ls uhps dh vU; vu quknh vkofr;kW100, 300, 500, 700, 900

    so four overtone below 1000 Hz.

    vr% 1000 Hz ls uhps 4 vf/kLojd

  • 7/29/2019 7. Sound Wave

    14/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 147

    EXERCISE # 4PART-I1. The motorcyclist observes no beats. So the apparent frequency observed by him from the two sources must be

    equal.

    f1= Frequency recorded by motorcyclist from police car.

    f2 = Frequency recorded by motorcyclist from stationary siren.For no beats f

    1= f

    2

    176

    330

    330165

    22330

    330

    Solving this equation we get, = 22 m/seksVj lkbZfdy pkyd dksbZ foLian ugha lqukrk gS] blfy, mlds }kjk lquh xbZ nksuksa lzksr dh vkHkklh vkofk cjkcj gksuh pkfg,Af1= iqfyl dkj dh eksVj lkbZfdy pkyd }kjk lquh xbZ vkofk

    f2= :dh gqbZ dkj dh eksVj lkbZfdy pkyd }kjk lquh xbZ vkofk

    dksbZ foLian ugha lquus ds fy, f1= f

    2

    176

    330

    330165

    22330

    330

    gy djus ij ge izkIr djrs gSa , = 22 m/s

    2. Let e be the end correction.

    0.1 + e =4

    0.35 + e =

    4

    3

    Solving this equation we get

    e = 0.025 m = 2.5 cm

    ekuk e fljk la'kks/ku gSA fn;k x;k gS ,

    0.1 + e = 4

    0.35 + e = 4

    3

    gy djus ij ge izkIr djrs gSa e = 0.025 m = 2.5 cm

    3. Fundamental frequency, f=)r6.0(4

    v

    speed of sound v = 4f ( + 0.6r)or v = (4) (480) [(0.16) + (0.6)(0.025)] = 336 m/s

    0.6r

    ewy vkofrZ , f =)r6.0(4

    v

    /ofu dh pky v = 4f ( + 0.6r);k v = (4) (480) [(0.16) + (0.6)(0.025)] = 336 m/s

    4. The frequency is a characteristic of source. It is independent of the medium. Hence, the correct option is (D).

    vko fk, L=kksr dk vfHkyk{kf.kd xq.k gSA ;g ek/;e ls Lora=k gSA vr% lgh fodYi (D) gSA

    5. fc= f

    0(both first overtone) (nksuksa izFke vf/kLojd)

    or;k

    L4

    v3 c =

    0

    0

    L2

    v2 L

    0= L

    v

    v

    3

    4

    c

    0

    = L

    3

    4

    2

    1

    as D;ksfd v

    1.

  • 7/29/2019 7. Sound Wave

    15/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 148

    7. 1.8 103 = fV300

    300

    s

    2.2 10

    3 = fV300

    300

    s V

    s= 30 m/s

    8. 100f2 1 f1 = 502f

    2= 92 f

    2= 46

    beat frq = 50 46 = 4foLian vkofk = 50 46 = 4

    9. v =k

    =

    5.0

    100

    Speed pky v = 200

    10. At x = 0,

    y = y1

    + y2

    = 2A cos 96 t cos 4 tFor y = 0 ds fy;s, cos 96 t = 0 or;k cos 4 t = 0

    for 0 < t < 1 cos 4 t become 0 at t =8

    1,

    8

    3,

    8

    5,

    8

    7sec

    0 < t < 1 ds fy, cos 4 t, le; t =8

    1,

    8

    3,

    8

    5,

    8

    7 lSd.M ij 'kwU; gksxk

    but cos 96 t is not 0 at these values but cos 96 t become 0, 96 times in 1 sec.Therefore net amplitude become zero 100 times.

    ysfdu cos 96 t bu ekuks ds fy, 'kwU; ugh gS ysfdu cos 96 t, 1 lSd.M esa 96 ckj 'kwU; gksxkvr% dqy vk;ke100 ckj 'kwU; gksrk gSA

    11. VS/A

    = 340 + 20 = 360

    20

    A B

    340340

    20 30

    VS/B

    = 340 30 = 310

    12. Because

    VS = VO = 20so as seen from passengers of train A,

    f = f0

    frequencyf = f1 1 f = f2 2

    Intensity

    13. As seen from B

    fmin

    = )800(20340

    30340

    )1120(20340

    30340fmax

    310ff minmax

    VS/A = 340 + 20 = 360

    20

    A B

    340340

    20 30

    VS/B

    = 340 30 = 310

    D;ksafdV

    S= V

    O= 20

    Vsu A ds ;k=kh }kjk ns[kk x;k ,f = f

    0

    B }kjk ns[kk x;k A

    fmin

    = )800(20340

    30340

  • 7/29/2019 7. Sound Wave

    16/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 149

    )1120(20340

    30340fmax

    310ff wureU;vf/kdre

    14. As string and tube are in resonance f1

    = f2

    |f1 n| = 4 Hz.When T increases, f

    1also increases. It is given

    that beat frequency decreases to 2 Hz.

    n f1

    = 4

    n = 4 + f1

    as f1= f

    2

    n = 4 + f2

    f2

    =4

    V3=

    )4/3(4

    3403

    = 340

    n = 344

    pwafd jLlh rFkk V~;wc vuqukn esa gSA f1

    = f2

    |f1 n| = 4 Hz.tc T c

  • 7/29/2019 7. Sound Wave

    17/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 150

    f =)vv)(vv(

    f)vv(v2

    21

    012

    v

    f)vv(2 012

    Givenv

    f)vv(2 012 =

    100

    2.1f0

    v2 v1 = 7.126Answer in nearest integer is 7.

    ekuk dkjksa dh pky V1o V2gSA dkj }kjk izkIr vkoZrh f1 =

    1vvv

    f0

    dkj }kjk ijkofrZr vkoZrh f2 =

    v

    vv 1

    1vvv

    f0

    f = f2 f2 =

    1

    1

    2

    2

    vv

    vv

    vv

    vvf0

    f =

    )vv)(vv(

    )vv)(vv()vv)(vv(

    21

    2112f0

    f =)vv)(vv(

    f)vv(v2

    21

    012

    v

    f)vv(2 012

    fn;k x;k gSv

    f)vv(2 012 =

    100

    2.1f0

    v2 v1 = 7.126fudVre iw.kkZd esa mkj 7 gSA

    17. Fundamental frequency of close organ pipe =1

    1

    4

    V

    cUn vuqukn uyh dh ewy vkofk =1

    1

    4

    V

    Second harmonic frequency of string =2

    2

    2

    V2

    jLlh dh f}rh; lauknh vkofk =2

    2

    2

    V2

    So vr%,1

    1

    4

    V

    =

    2

    2V

    =8.04

    320

    =

    5.0

    1

    50

    2500 =50

    =50

    1=

    5.0

    m

    m = 10 gm.

  • 7/29/2019 7. Sound Wave

    18/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 151

    20.

    Open end will act like pressure node & close end will act l ike pressure antinode so for reflected wave will be high

    pressure for close end and will be low pressure for open end.

    Ans. B & D

    21.

    First resonance occurs at fundamental frequency

    f =V

    4( e) + e =

    V

    4f(where e = 0.6 2 = 1.2 cm)

    + e =5124

    336

    = 0.164 m

    = 16.4 1.2 = 15.2 cm

    PART - II

    1. Let the tubes A and B have equal length called as l. Since, tube A is opened at both the ends, therefore, itsfundamental frequency

    ekuk nksuks uyh;ksa A rFkk B dh yEckbZ leku () gSA D;ksfd A, nksuks fljks ls [k qyh gS vr% ewykofr

    nA = 2

    v

    Since, tube B is closed at one end, therefore, its fundamental frequency

    D;ksfd B ,d fljs ls cUn gS blfy;s bldh ewykofrZ

    nB = 4

    v

    From eqs. (1) and (2), we get

    lehdj.k (1) vksj (2) ls ge izkIr djrs gS fd

    B

    A

    n

    n=

    4/v

    2/v

    =2

    4= 2 : 1

  • 7/29/2019 7. Sound Wave

    19/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 152

    ////

    ///

    /////

    //

    /////DS

    2. The tuning fork of frequency 288 Hz is producing 4 beats /sec with the unknown tuning fork i.e., the frequencydifference between them is 4. Therefore, the frequency of unknown tuning fork= 288 4= 292 or 284On placing a little wax on unknown tuning fork, its frequency decreases but now the number of beats producedper second is 2 i.e. the f requency difference now decreases. It is possible only when before placing the wax, the

    frequency of unknown fork is greater than the frequency of given tuning fork. Hence, the frequency of unknowntuning fork = 292 Hz

    288 Hz vkofr dk Lofj=k vKkr Lofj=k ds lkFk 4 foLian/lSd.M mRiUu djrk gS vFkkZr~ nksuks ds e/; vkofr vUrjky 4 gSAvr% vKkr Lofj=k dh vkofr= 288 4= 292 or 284

    vKkr Lofj=k ij FkksMk lk ekse yxkus ij mldh vkofr ?kVrh gS ysfdu vc izfr lSd.M foLianks dh la[;k 2 gksxh A vFkkZr~vkofr vUrjky ?kVrk gSA og rHkh lEHko gS tc] vKkr Lofj=k dh vkofr, ekse yxkus ls igys, fn;s x;s Lofj=k dh vkofr lsvf/kd gksxhAvr% vKkr Lofj=k dh vkofr = 292 Hz

    3. Frequency of tuning fork decreases with temperature.

    rkieku ds lkFk Lof j=k dh vkofk ?kVrh gSA4. Frequency of string is 256 5.

    Since number of beats is decreasing when frequency of string is increasing so frequency of string is 256 5.

    jLlh dh vkofk 256 5 gksxhtc jLlh dh vkofk c

  • 7/29/2019 7. Sound Wave

    20/20

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 153

    8. 1 = 10 log0

    1

    2 = 10 log

    0

    2

    1 2 = 10 log2

    1

    = 20

    log2

    1

    = 2

    2

    1

    = 100

    9. V02=

    M

    RT=

    32

    RT

    5

    7= 460

    VHe=

    M

    RT=

    4

    RT3

    5

    =7

    532460460

    12

    5 = 1419 m/s

    10. During summer speed of sound increases. So wavelength increases.

    so x > 3 18 so x > 54

    xfeZ;ksa esa /ofu dh pky c 54

    11. Motor cycle has travelled a distance s. Its velocity at that point

    v = as2

    The observed frequency

    f' = f330

    v330

    0.94 = 330v330

    v = 0.06 330 m/s= 19.8 m/s

    s =22

    8.19

    a2

    v 22

    = 9.92 = 98 m

    eksVj lkbZfdy s nwjh r; djrh gSA ml fcUnq ij bldk osx

    v = as2

    sf{kr vkofk

    f' = f330

    v330

    0.94 = 330v330

    v = 0.06 330 m/s= 19.8 m/s

    s =22

    8.19

    a2

    v 22

    = 9.92 = 98 m

    12.