6.5 x 11 double line - cambridge university pressassets.cambridge.org/97805218/22695/index/... ·...

32
Index absorbance, optical, 43, 52 change in, 53 shape of bands, 53 accelerated ECD testing humidity, 447, 448 weathering, 447 xenon arc, 448 acetate silicone, ECD encapsulation, 425 acetonitrile, ECD electrolyte, 254, 262, 359, 385, 390T, 419, 438 achromatic, centre of colour diagram, 67 acidity constants K a , 4 acrylic powder, ECD electrolyte thickener, 419 activation energy, 86, 87, 108, 111, 112 in colouring metal oxides, 93 in nickel oxide, 111T in tungsten trioxide, 111T to bacterial growth, 408 to counter-ion movement, 408 to diffusion, 83, 86 to electron transfer, 47 activity, 367, 38, 84 coefficient, 36, 40, 96 of pure solids, 38 admittance, 50 AEIROF, 156, 158 agar, as gelling agent, 349, 351 AGFA, 332 air conditioning, ix, 398 Airbus, ECD, windows, 401 AIROF, 155, 156 degradation of, 156 alkoxides CVD precursors, 131 forming molybdenum trioxide, 152 forming titanium dioxide, 184 alloy Inconel-600, oxide mixture on, 203 nickel–aluminium, 200 all-polymer devices, 332 all-solid-state-devices, 417 alpha particles, 160 aluminium–cobalt oxide, 195, 196 aluminium–nickel alloy, 200 aluminium–nickel oxide, 200 aluminium–silicon–cobalt oxide, 204 amino-4-bromoanthaquinone-2-sulfonate, 384 aminonaphthaquinone, 384 amorphisation, tungsten–molybdenum oxide, 193 amorphous, oxides, 88 made by vacuum evaporation, 81 amorphous silicon, 15 as photoconductor, 436 anatase, see titanium dioxide Anderson transition, 81, 99, 142, 149, 307 ANEEPS, 3 aniline, 313 aniline black, 312 aniline–polypyridyl complexes, 256 annealing endothermic process, 140 to effect crystallisation, 88, 89 cerium oxide, 166 cobalt oxide, 168 CVD product, 131 iridium oxide, 158 iron oxide, 173, 175 molybdenum trioxide, 152, 154 nickel oxide, 161 niobium pentoxide, 177 rhodium oxide, 181 spin-coated products, 135 spray pyrolysis product, 135 tungsten trioxide, 88, 140, 141, 148 vanadium pentoxide, 185 anodic coloration, coloration efficiency negative, 55 anodic reactions, definition, 46 antimony pentoxide as electrochromic host, 193 as ECD electrolyte, 421T antimony–copper alloy, substrate, 423 antimony-doped tin oxide, 1935, 196, 274, 362 optically passive, 193 applications, ECD battery charge indicator, 408, 443 camouflage, 409 452 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-82269-5 - Electrochromism and Electrochromic Devices P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky Index More information

Upload: others

Post on 04-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

Index

absorbance, optical, 43, 52change in, 53shape of bands, 53

accelerated ECD testinghumidity, 447, 448weathering, 447xenon arc, 448

acetate silicone, ECD encapsulation, 425acetonitrile, ECD electrolyte, 254, 262, 359, 385,

390T, 419, 438achromatic, centre of colour diagram, 67acidity constants Ka, 4acrylic powder, ECD electrolyte thickener, 419activation energy, 86, 87, 108, 111, 112in colouring metal oxides, 93in nickel oxide, 111Tin tungsten trioxide, 111Tto bacterial growth, 408to counter-ion movement, 408to diffusion, 83, 86to electron transfer, 47

activity, 36–7, 38, 84coefficient, 36, 40, 96

of pure solids, 38admittance, 50AEIROF, 156, 158agar, as gelling agent, 349, 351AGFA, 332air conditioning, ix, 398Airbus, ECD, windows, 401AIROF, 155, 156degradation of, 156

alkoxidesCVD precursors, 131

forming molybdenum trioxide, 152forming titanium dioxide, 184

alloyInconel-600, oxide mixture on, 203nickel–aluminium, 200

all-polymer devices, 332all-solid-state-devices, 417alpha particles, 160aluminium–cobalt oxide, 195, 196

aluminium–nickel alloy, 200aluminium–nickel oxide, 200aluminium–silicon–cobalt oxide, 204amino-4-bromoanthaquinone-2-sulfonate, 384aminonaphthaquinone, 384amorphisation, tungsten–molybdenum oxide, 193amorphous, oxides, 88

made by vacuum evaporation, 81amorphous silicon, 15

as photoconductor, 436anatase, see titanium dioxideAnderson transition, 81, 99, 142, 149, 307ANEEPS, 3aniline, 313aniline black, 312aniline–polypyridyl complexes, 256annealing

endothermic process, 140to effect crystallisation, 88, 89

cerium oxide, 166cobalt oxide, 168CVD product, 131iridium oxide, 158iron oxide, 173, 175molybdenum trioxide, 152, 154nickel oxide, 161niobium pentoxide, 177rhodium oxide, 181spin-coated products, 135spray pyrolysis product, 135tungsten trioxide, 88, 140, 141, 148vanadium pentoxide, 185

anodic coloration, coloration efficiency negative, 55anodic reactions, definition, 46antimony pentoxide

as electrochromic host, 193as ECD electrolyte, 421T

antimony–copper alloy, substrate, 423antimony-doped tin oxide, 193–5, 196, 274, 362

optically passive, 193applications, ECD

battery charge indicator, 408, 443camouflage, 409

452

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 2: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

displays, 401–4advertising boards, 402bank notes, 408cash- and credit cards, 402, 408display, cashpoint machines, 407computer screens, 363, 402

data display, 149, 265, 363electric paint, 364games, 363iPod, 363, 402laptop computer screens, 402mobile phone screens, 402NanoChromics, 347, 362, 363, 402, 406optical data storage, 265palmtop computer screens, 402smart cards, 363tickets, 408tokens, 408toys, 363, 436transport terminus screens, 402vouchers, 408watch faces, 149, 402, 443

electrochromic paper, 363, 405–6eye wear, goggles, 398, 422motorcycle helmets, 398sunglasses, 401, 422visors, 401, 422

fibre-optics, 265light modulation, 404–5medicine, 265mirrors, ix, 11, 44, 149, 307, 356, 363, 385–7,

395–7optical attenuator, 270shutters, 363, 404–5solar-energy storage, 265, 266temperature management, 265windows, 149, 200, 363, 422Airbus, 401aircraft, 400–1Asahi Glass, 400Boeing ‘Dreamliner’, 400car sun roof, 398chromogenic glazing, 397dimmable laminates, 363Flabeg Gmbh, 400Gentex, 396, 398, 400optical attenuator, 270Pilkington Glass, 400PPG Aerospace, 400Schott Glass, 400shutters, 363Stadsparkasse Bank, 400

X-ray reflector, 397Aramid resin, 198aromatic amines, 374–6, 377T–378T

charge transfer, 374contrast ratio, 376near infrared absorption, 376response time, 375type-I electrochromism, 375type-II electrochromism, 375

Arrhenius equation, 83, 408aryl viologens, 11, 28Asahi Glass, 400, 447asymmetric viologens, 355, 360automotive mirrors, see Applications, ECD mirrorazulene, 313Azure A, coloration efficiency, 57TAzure B, coloration efficiency, 57T

back potential, 92, 93, 98, 102, 105, 106,110–11, 115

bacteriagrowth, activation energy, 408reactions, 4

Bacteriorhodopsin, 3band conduction, 81band structure, poly(thiophene)s, 152bandgap, 316of PEDOT, 322

Basic Blue 3, coloration efficiency, 57Tbatteries, 14, 54, 167dry cell, 408ECD charge indicator, 408ECD like a secondary, 54photo-chargeable, of Prussian blue and tungsten

trioxide, 437rechargeable, manganese oxide, 176

Bayer AG, 323Baytron M, 323Baytron P, 323beam direction, photoelectrochromism, 433BEDOT, 326BEDOT-NMeCz, 326

Beer–Lambert law, 53, 55, 146, 147, 148,150, 151, 176

Bell Laboratories, 29benzoquinonesbenzoquinone, o-, 381benzoquinone, p-, 381, 382

benzyl viologen, 8, 344T, 346,352T, 356, 358

di-reduced, 358radical, recrystallisation, 357

Berlin green, see Prussian greenbetaines, 5biological membrane potentials, 3biphenyls, 379, 380bipolaronin poly(thiophene)s, 320in tungsten trioxide, 147

bis(dimethylamino)diphenylamine, 4,40-, 384bismuth oxide, 166coloration efficiency, 56T, 166formation via evaporation, 166; rf sputtering, 166response time, 166

bismuthas secondary electrochrome, 444Telectrodeposition of, 8, 27, 304, 305–6

coloration efficiency, 306cycle life, 305ECD, 306

Index 453

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 3: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

bismuth (cont.)electrochemistry, 304, 305electron mediation, 305

bithiophenes, 320conducting polymers, 316

bleachingchemical, viologens, 359models, 105–8

Faughnan and Crandall, 105–8Green, 108, 109

rate, 33electrochromes, for nickel oxide, 164; for

vanadium pentoxide, 188potentiostatic, 105–8

self, 15, 54, 150, 153types

type-II electrochromes, 79–115type-III electrochromes, 79–115

blueprints, Prussian blue, 26, 405Boeing ‘Dreamliner’, ECD, windows, 400brightness, and colour analysis, 64British Fenestration Rating Council, 397bromoanil, o-, 382, 383solubility product, 383

bronze, 82, 103of lithium tungsten trioxide, electro-irreversibility

of, 82of metal oxide, 61, 81, 82, 103of molybdenum trioxide, 103, 151of sodium tungsten trioxide, 27of tungsten trioxide, 81, 113, 144

Butler–Volmer equation, 29, 42, 46–8, 95butyl viologen, 352Tg-butyrolactone, ECD electrolyte, 167, 186, 303,

304, 362, 419

cadmium sulfide, 437calomel reference electrode, see saturated calomel

electrodecamouflage, ECD application, 409capacitance effects, 11, 50electrolytic capacitors, 52

car mirrors, see applications, ECD, mirrorscar sun roof, ECD application, 398carbazoles, 313, 376, 379Timmobilised, 391N-carbazylcarbazole, 379TN-ethylcarbazole, 379TN-phenylcarbazole, 379T, 381Ttype-II electrochromes, 376

carbon electrochromes, ‘carbon based’, 303, 305screen printed carbon, 303, 305see also diamond, fullerene and graphite

carbon, substrate, 424castable films, poly(aniline), 332–3catalytic silver paint, depositing Prussian

blue, 283catechole, 271, 272cathode ray tubepower consumption, 15television, 402, 403

cathodic coloration, coloration efficiencypositive, 55

cathodic-arc deposition, of vanadium pentoxide, 185cathodic, definition, 46CE, see coloration efficiencycells, 34

aqueous, 37–9electrochemical, 417electroneutrality in, 38

cellulose acetate, composite with poly(aniline), 333cerianite, 166cerium oxide, 166–7, 194

annealing of, 166chemical diffusion coefficient, 85Telectrochemistry of, 167electrochromic host, 193–5formation via

dip coating, 135physical vapour deposition, 166spin coating, 135spray pyrolysis, 135, 166

optical properties, 166optically passive, 166

cerium vanadate, 202cerium–nickel oxide, 200cerium–praseodymium oxide, 179cerium–tin oxide, 201cerium–titanium oxide, 194

as secondary electrochrome, 444Tchemical diffusion coefficient, 194coloration efficiency, 194EXAFS, of, 194optically passive, 194via dc magnetron sputtering, 194, 195

cerium–titanium–titanium oxide, 203cerium–titanium–zirconium oxide, 203cerium–tungsten oxide, see tungsten–cerium oxidecerium–vanadium–titanium oxide, 203cerium–zirconium oxide, 203cerous ion, as electron mediator, 359characteristic time, in Faughnan and Crandall

model of coloration, 95, 111charge

electronic, 42faradaic, 52

charge capacity, 200charge density, 55charge dispersibility, 127charge transfer, 42

aromatic amines, 374complexation of

cyanophenyl paraquat, 60, 359ferrocyanide, 359heptyl viologen, 359methyl viologen, 359viologens, 342–5, 353, 359

intervalence, 60–1, 127, 145orbitals, 61oxides

and cobalt ion, 169in iron–titanium oxide, 202

454 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 4: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

in oxide ion, 168in permanganate, 60in tungsten trioxide, 60

rate of, 95resistance to, 105

charging, double-layer, 52chemical diffusion coefficient, 46, 84T, 87, 88, 90,

96, 101, 102, 112, 190, 195Tand diffusion coefficient, 84and insertion coefficient, 90–1definition of, 84electrode reactions when, 47ions through oxides, 85Tcobalt oxide, 195Tions through WO3, 87, 88Liþ in LixWO3, 91molybdenum trioxide, 153nickel oxide, 85Tniobium pentoxide, 85Ttitanium dioxide, 184tungsten trioxide, 84T, 85T, 101, 195Tvanadium pentoxide, 85T

ions through oxide mixturescerium–titanium oxide, 194cobalt–tungsten oxide, 195, 195Tindium–tin oxide, 197tungsten–cobalt oxide, 195T

ions through phthalocyanineslutetium phthalocyanine, 85Tzinc phthalocyanine, 85T

ions through conducting polymerspoly(carbazole), 85Tpoly(isothianaphene), 85T

chemical potential, of Hþ in WO3, 93, 94chemical tethering, write–erase efficiency, 346chemical vapour deposition

annealing needed, 131of metal oxides, 131–2

iron oxide, 174molybdenum trioxide, 151, 397nickel oxide, 161praseodymium oxide, 178, 179tantalum oxide, 182tungsten trioxide, 141, 148, 150, 397

of mixtures of metal oxide,tungsten–molybdenum oxide, 397

precursorsalkoxides, 131hexacarbonyls, 131, 135–6, 397

products impure, 132process is two-step, 131

chemically modified electrode, see derivatisedelectrodes

chloranil, 382o-, 382, 383cycle life, 383

p-, 382chloride ion, gasochromic, sensor

for, 406Chroma meter, 62

and colour analysis, 63, 64–71

chromatic colour, and colour analysis, 62, 64chromium oxide, 167and batteries, 167coloration efficiency, 167electrochemistry, 167formation via

electron-beam evaporation, 167rf sputtering, 167

gasochromic, 407Tterminal effect suppressor, 423

chromium phthalocyanine, 261chromium–iron–nickel oxide, 203chromium–molybdenum oxide, 199chromium–nickel oxide, 200chromogenic glazing, 397; see also ECD,

windowschromophore, definition, 2chronoabsorptometry, 57chronoamperometry, 83peaks, 99–101

chronocoulometry, 57, 59CIE, see Commission internationale de l’eclairagecircuit element, 50clusters, c-WO3 in a-WO3, 88cobalt acetylacetonate complex, 168cobalt hydroxide, 169cobalt oxide, 167–70, 195annealing, 168charge transfer in, 169chemical diffusion coefficient, 195Tcoloration efficiency, 56T, 169, 172TECDs of, 170electrochemistry of, 168–9electrochromic host, 195–6

incorporating gold, 204Tformation via

CVD, 172Tdip coating, 168electrodeposition, 132, 172Tevaporation, 172Toxidation of cobalt, 168, 169peroxo species, 168rf sputtering, 167sol–gel, 135, 168, 172T, 195sonication, 133, 134spin coating, 135spray pyrolysis, 135, 168, 169, 172T

gasochromic applications, 406lithium deficient, 167optical properties, 168, 169–70secondary electrochrome, 170

cobalt oxyhydroxide, 81, 168formation via electrodeposition, 168

cobalt phthalocyanine, 261cobalt tartrate complex, 168cobalt–aluminium oxide, 195, 196coloration efficiency, 195via sol–gel, 195

cobalt–aluminium–silicon oxide,195, 204

cobalt–nickel–iridium oxide, 203

Index 455

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 5: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

cobalt–tungsten oxide, 195chemical diffusion coefficient, 195, 195T

colloid, via sol–gel, 134coloration, 2and colour analysis, 66extrinsic, 52–3after potential stopped, 114chemical, 101–2galvanostatic 96–8, 104, 417iridium oxide, 157

phase changes in, 157metal oxides

involves counter ions, 80involves ionisation of water, 81

potentiostatic, 99, 104, 358, 417three-electrode, 443

potential step, 354–5pulsed, 87, 365pulsed current, titanium dioxide, 184tailoring, 334tungsten trioxide, 80

hysteresis, 143involves water, 80two-electron process, 103

type-II electrochromes, 79–115coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139and conjugation length, 60and extinction coefficient, 55anodic coloration, Z is negative, 55cathodic coloration, Z is positive, 55composite CCE, 55, 57–60definition, 15intrinsic, 54–60metal hexacyanoferrates

Prussian blue, 59TPrussian white, 59T

metal hydridesmagnesium–samarium hydride, 308samarium–magnesium hydride, 308

metal oxides, 56Tbismuth oxide, 56T, 166chromium oxide, 167cobalt oxide, 56T, 169, 172Tcopper oxide, 172iridium oxide, 56T, 70, 158iron oxide, 56T, 70, 175, 175T, 201Tmanganese oxide, 176molybdenum trioxide, 56T, 154, 155T, 199,

199Tnickel oxide, 56T, 70, 165Tniobium pentoxide, 56T, 178, 181T,

199T–201T, 200niobium pentoxide, mixtures, 201rhodium oxide, 56T, 181tantalum oxide, 56T, 183titanium dioxide, 56T, 184, 185Ttungsten trioxide, 56T, 146, 147, 148, 148T,

191, 193, 201vanadium pentoxide, 56T, 189, 190T

metal oxyfluoridestitanium oxyfluoride, 205

tungsten oxyfluoride, 205metals, bismuth, 306mixtures of metal oxide

cerium–titanium oxide, 194cobalt–aluminium oxide, 195indium–tin oxide, 197, 199, 199Tiron oxide, mixtures, 198iron–niobium oxide, 201Tmolybdenum–tin oxide, 199T–201Tnickel–titanium oxide, 202nickel–tungsten oxide, 200niobium–iron oxide, 201Tniobium–tungsten oxide, 201samarium–vanadium oxide, 202titanium–molybdenum oxide, 199tungsten–niobium oxide, 201tungsten–molybdenum oxide, 56T, 192tungsten–vanadium oxide, 202vanadium–samarium oxide, 202zirconium–tantalum oxide, 203

organic dyesAzure A, 57TAzure B, 57TBasic Blue ix, 57TIndigo Blue, 57TMethylene Blue, 57TNile Blue, 57TResazurin, 57TResorufin, 57TSafranin O, 57TToluylene Red, 57T

organic electrochromes, 57Tcyanines, 378fullerene, 304, 305–6

organic polymersPEDOT, 59T, 437poly(3,4-ethylenedioxy thiophenedidode-

cyloxybenzene), 57Tpoly(3,4-propylenedioxypyrrole), 57Tpoly(3,4-propylenedioxythiophene), 57T

phthalocyanineslutetium phthalocyanine, 260

quantum mechanical, 55sign of, 55viologens, 349, 361, 362, 363; methyl

viologen, 57Tcoloration models

Bohnke, 101–2, 113, 115Faughnan and Crandall, 91–6, 99, 102, 110, 111,

113, 115Green, 96–8, 102, 113, 115Ingram, Duffy, Monk, 99–101, 102, 113, 115

WIV and WV, 102–3coloration rate, 33, 139, 149

and flux, 75mixing oxides, enhances rate, 200nickel oxide, 163vanadium pentoxide, 188

colorimetric theory, 62colour analysis, 62–71

and light sources, 64

456 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 6: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

conducting polymers, 62Prussian blue, 62, 70

colour diagram, achromatic centre, 67colour formed, amount of, 53colour manipulation, metal-oxide mixtures, 190colour space, 63, 64–71colour tailoring, 399combinatorial chemistry, 409Commission internationale de l’eclairage (CIE), 62,

63, 334complementarity, during cell operation, 41complementary electrochromism, 290complexes, see, charge-transfer complexation;

coordination complexescomposite coloration efficiency CCE, 55, 57–60

determined at wavelength maximum, 59determined with reflected light, 57

composites, conducting polymer, 332–3comproportionation

tungsten trioxide, 103viologens, 357–8, 365

computer screen, ECD applications, 363concentration gradient, 45, 51, 93, 97, 98, 104, 110,

112, 114, 115, 303, 305conducting polymers, 9, 62, 80, 312–34

and electroluminescent organic light-emittingdiodes, 312

and field-effect transistors, 312and sensors, 312and solar-energy conversion, 312colour analysis of, 62composites, 332–3electrochromic, 57, 60high resistance, 11history, 312oxidative polymerisation, 313–14p-doping, 315type-III electrochromes, 317

conductivity, electronic, 113phthalocyanine complexes, 263silver paint, 349through bands, 81, 127, 147

conductivityindium–tin oxide, 422ionic, metal oxides, 89MxWO3, 81, 113, 142

protons in tantalum oxide, 181, 183of amorphous and polycrystalline WO3, 82

conjugation length, 314and coloration efficiency, 60

construction, ECD, 417contact lithography, 258contrast ratio, 9, 14, 104, 146, 156, 189, 197, 333,

346, 348, 349, 352, 376, 384, 385, 388, 400all-polymer ECD, 332and electrolyte fillers, 445

convection, 43, 44, 75, 76absent in solid-state ECDs, 44

coordination complexes, 253intervalence charge transfer, 253metal-to-ligand charge transfer, 253

copper ethoxide, 170copper hexacyanoferrate, 294copper oxide, 170–2as secondary electrochrome, 165coloration efficiency, 172electrochemistry, 172formation via

copper ethoxide, 170electrodeposition, 171electron mediator, 305, 306sol–gel, 170specular reflectance, 407T

Cottrell equation, 76, 77, 354Coulomb’s law, 102counter electrode, 41, 48electrochromic, see secondary electrochrome

counter ionactivation energy, 408movement, 82–5, 188

during coloration of metal oxides, 80rate of, 33size, 87–8swapping of, 87through solid film, 86viologens, effect of, 352–4Agþ through tungsten trioxide, 142, 146CN– through iridium oxide, 157Csþ through tungsten trioxide, 146deuterons through tungsten trioxide, 87F– through iridium oxide, 157Kþ through

iron oxide, 174iron oxide mixtures, 198tin oxide, 205tungsten trioxide, 142, 146

Liþ throughcerium oxide, 167cerium–titanium oxide, 194cobalt oxide, 169fullerene, 303, 304–5graphite, 303, 304iron oxide, 173, 174iron oxide mixtures, 198ITO, 197manganese oxide, 176molybdenum trioxide, 152nickel oxide, 163niobium pentoxide, 178praseodymium oxide, 179tin oxide, 197, 205titanium dioxide, 184tungsten trioxide, 88, 89, 90, 96, 113, 130, 142,

146, 148, 150, 151, 410, 419vanadium pentoxide, 186, 188

Mg2þ throughmolybdenum oxide, 152tungsten trioxide, 146

Naþ throughiron oxide, 174iron oxide mixtures, 198tin oxide, 205

Index 457

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 7: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

counter ion (cont.)tungsten trioxide, 87, 90, 109, 113, 130, 142,

146, 147vanadium pentoxide, 186

OH– throughanodic oxides, 87cobalt oxide, 195, 195Tlutetium phthalocyanine, 259

CR, see contrast ratiocritical micelle concentration, heptyl viologen, 355CRT, see cathode ray tubecrystal latticechanges during coloration, 86–7motion of is rate limiting, 87stresses in, 130

crystal violet, 376crystallisation, by annealing, 89CT, see charge transfercurrent, 38, 41as rate, 38coloration, 93definition, 42, 77depends on rates, 75faradaic, 45, 76leakage, 52limiting, 76non-faradaic, 76parasitic, 52

CVD, see chemical vapour depositioncyanines, 376coloration efficiency, 378electrochromic, 60merocyanines, 376spiropyrans, 376squarylium, 379

cyanophenyl paraquat, 8, 28, 60, 344T, 349, 350,351, 352, 356, 358

charge transfer complexation, 359diffusion coefficient, 77Toptical charge transfer in, 60

cyanotype photography, of Prussian blue, 26cycle life, 12–13, 172, 178, 179, 188, 197, 205, 269,

294, 303, 304, 305, 308, 362, 383, 389, 443,444T, 447

and kinetics, 11deep and shallow cycles, 12, 443enhanced by mixing oxides, 200measurement of, 12

cyclic voltammetry, 48–50, 83of conducting polymers, poly(aniline), 333of metal hexacyanoferrates

copper hexacyanoferrate, 294Prussian blue, 286, 287

of metal oxidesiridium oxide, 156niobium pentoxide, 178rhodium oxide, 181tungsten trioxide, 93vanadium pentoxide, 187

of viologens, 352, 355,356, 357, 359

schematic, 48cyclodextrin, beta, 351, 359

Darken relation, 85data display, ECD applications, 149, 363dc magnetron sputtering, 136

of mixtures of metal oxidecerium–titanium oxide, 194, 195indium–tin oxide, 136titanium–cerium oxide, 136tungsten–cerium oxide, 136

of metal oxidesmolybdenum trioxide, 136, 141, 151nickel oxide, 136niobium pentoxide, 136, 177praseodymium oxide, 136, 178tantalum oxide, 136, 182tungsten trioxide, 136vanadium pentoxide, 136, 185

of metal oxyfluoridestitanium oxyfluoride, 205tungsten oxyfluoride, 205

onto ITO, 136DDTP, 326decomposition, of electrochrome, 49deep cycles, cycle life, 443defect sites, 103, 127, 146DEG, see diethylene glycoldegradation, 443

acid, sulfuric, 420aquatic, 89mechanical stresses, 397

caused by ion movement, 13fullerene electrochromes, 303, 305indium–tin oxide, 423, 444–5lutetium phthalocyanine, 260metal oxides, photolytic, 54, 125molybdenum trioxide, 153nickel oxide, 163tungsten trioxide, 149, 150

via Cl– ion, 150; yields tungstate, 89vanadium pentoxide in acid, 186viologens, 351, 357

DEMO 2005 show, 402deposition in vacuo, 137–8depth profiling, 89derivatised electrodes, 7

definition, 12pyrazolines, 387–8

contrast ratio, 388ECD, 388response times, 387

TCNQ species, 388–9reversibility, 389write–erase efficiency, 388

TTF species, 387, 389–90cycle life, 389ion hopping, 390ion tunnelling, 390

viologen ECDs, 346–8, 361desolvation, during ion insertion, 89

458 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 8: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

deuteron, motion through WO3, 87diacetylbenzene, p-, 77, 78

immobilised, 390T, 391Tdiamond electrochromes, 303, 305

absorption in near infrared, 399dielectric properties, 50diethyl terephthalate, immobilised, 391Tdiethylene glycol, 331diffusion, 43, 111, 386

activation energy for, 83energetics of, 112fast track, 98length, 45, 101, 403linear, 76of electrochromes, 12

diffusion and migration, concurrent, 83diffusion coefficient, 44, 45, 48, 77, 77T, 83, 90–1,

96, 97, 101, 102, 112, 403, 407Tand chemical diffusion coefficient, 84and oxygen deficiency, 103includes migration effects, 83solution-phase speciescyanophenyl paraquat, 77Tferric ion, 77Tmethyl viologen, 77T

diffusion rate, 33digital video disc, 408dihedral angle, 314, 320

poly(thiophene)s, 323Tdihydro viologen, see viologen, doubly reduceddimer, of WV–WV, 103, 145, 147dimethoxyphenanthrene, 2,7-, 380dimethylterephthalate, immobilised, 391Tdimmable window laminates, ECD

applications, 363dinuclear ruthenium complexes, mixed-valency,

268Tnear infrared electrochromism, 268T

diode-array spectroscopy, 355dioxypyrrole, 327–8dip coating

of metal oxides, 135cerium oxide, 135cobalt oxide, 168iridium oxide, 135iron oxide, 135nickel oxide, 135, 161niobium pentoxide, 135tantalum oxide, 182titanium dioxide, 135, 184tungsten trioxide, 135, 141vanadium pentoxide, 135

of mixed metal oxides, 135iron–titanium oxide, 202titanium–iron oxide, 201, 202

substrates, ITO, 135directed assembly, ECD, 157

of Prussian blue, 285di-reduced, viologens, 343, 357, 358

ethyl viologen, 358heptyl viologen, 358

methyl viologen, 358displays, see applications, ECDdissolution, of WO3, 89dithiolene complexes, 266–7DMF, as ECD electrolyte, 254, 419DMSO, as ECD electrolyte, 150, 157, 261dodecylsulfonate, within poly(pyrrole), 333dominant wavelength, and colour analysis, 62Donnelly mirror, 11as sunglasses, 401

double insertion, of ions and electrons, 138double potential step and cycle life, 12double-layer, charging, 11, 52Dreamliner, Boeing, windows, 400Drude theory, 101, 142Drude–Zener theory, 142dry-cell, battery, 408dry lithiation, 418of tungsten trioxide, 418

dual insertion, of ions and electrons, 138during coloration and bleaching, 83

DuPont, 425durability, 443–9accelerated tests

humidity, 447, 448weathering, 447xenon arc, 448

of ECD electrolyte, 445of ECDs during pulsing, 104of substrates, 444–5

Duracell, 408DVD, see digital video discdyes, encapsulated within poly(aniline), 333dynamic electrochemistry, 46–8dysprosium–vanadium pentoxide, 202

E(cell), see emfECD, 53, 60, 76, 106, 108, 112all polymer, 330, 331–2applications, see applications, ECDassembly, 157, 417directed assembly, 157dual organic–inorganic, 333–4durability, 443–9electrodeposited bismuth, 306electrodes, 52, 419–24electrochromes

conducting polymers,PEDOT, 409poly(aniline)s, 330, 331poly(pyrrole)s, 328

inorganic electrochromes, oxo-molybdenumcomplexes, 269

metal hexacyanoferrates, Prussian blue, 289–91metal hydrides, lanthanide hydride, 308metal oxidescobalt oxide, 170iridium oxide, 159manganese oxide, 176molybdenum trioxide, 154–5, 397nickel oxide, 164–5, 397

Index 459

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 9: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

ECD (cont.)niobium pentoxide, 178of tungsten trioxide, 61, 82, 87, 104, 139, 397,399, 402, 408, 409, 410

vanadium pentoxide, 189–90mixtures of metal oxide

indium–tin oxide, 197tungsten–molybdenum oxide, 397

phthalocyanine complexes, 263lutetium phthalocyanine, 259, 260

organicpyrazolines, 388quinones, 384thiazines, 385

viologens, 346–8, 349, 352, 357, 362, 385heptyl viologen, 360viologens, paper quality, 362

electrolytesacetonitrile, 254, 262, 359, 385,

390T, 419, 438antimony pentoxide, 421TDMF, 254, 419DMSO, 150, 157, 261ethylene glycol, 259fillers (titanium dioxide), 421g-butyrolactone, 167, 186, 303, 304, 362, 419gelled, 106, 305, 350, 384hydrogen uranyl phosphate, 421Tinorganic, 420lead fluoride, 159lead tetrafluorostannate, 159lithium niobate, 421Tlithium pentafluoroarsenate, 150lithium perchlorate, 82, 150, 151, 152, 163, 166,

167, 169, 173, 176, 184, 186, 188, 197, 199,205, 362, 408, 421

lithium phosphorous oxynitride, 363lithium tetrafluoroaluminate, 150, 152,

421T, 436Nafion, 421Torganic, 420–2perchloric acid, 150, 157phosphoric acid, 167, 421, 438polyelectrolytes, 420–2

Nafion, 421Tpoly(AMPS), 150, 260, 348, 366, 391, 391T,395–410, 420

polymer electrolytes, 421–2poly(acrylic acid), 150, 421Tpoly(ethylene oxide), 150, 290, 408, 421, 438poly(methyl methacrylate), 291, 334poly(propylene glycol), 421poly(vinyl alcohol), 421poly(1-vinyl-2-pyrrolidone-co-N,N0-methylenebisacrylamide), 391

potassium chloride, 291, 349potassium hydroxide, 308potassium triflate, 290propylene carbonate, 151, 152, 166, 169, 173,

176, 184, 186, 187, 188, 197, 199, 205, 356,384, 419

solid, 96stibdic acid polymer, 421Tsulfuric acid, 82, 86, 149, 178, 259, 349, 409, 420tantalum oxide, 150, 420, 421Tthickeners, 419acrylic powder, 419poly(ethylene oxide), 419poly(vinylbutyral), 419silica, 419

tin phosphate, 154titanium dioxide, 421Ttriflic acid, 150, 421viscosity, 417whiteners, 159, 384, 418, 422, 424zinc iodide, 408zirconium dioxide, 421T

encapsulation, 424–5, 448Surlyn, 425

first patents, 27flexible, 129, 423illumination of, 417large-area, 141, 332, 447memory effect, 15, 53–4, 152, 153, 403sealing, 362self bleaching, 15, 54, 150, 153

and memory effect, 15, 53–4, 152, 153, 403radical annihilation, 386

type-I electrochromes, 77substrates, 422–4trichromic, 384ultra fast, viologens, 363

EDAX, Prussian blue, 288EDOT, 323, 325, 326

polymers of, 325EIC laboratories, 409Einstein transition probability, 147electric field, 43, 44, 138electric paint, ECD application, 364electroactive material, definition, 1electroactive polymers, 9electrochemical cells, 417electrochemical formation of colour, 52–3electrochemical impedance spectroscopy (EIS), see

impedanceelectrochemical quartz-crystal microbalance

(EQCM), 88, 89, 90, 130, 142, 163, 284,288, 289, 330, 331

electrochemical titration, 104electrochemistry, 11

dynamic, 46–8equilibrium, 34–9electrochromes

electrodeposition, bismuth, 304, 305hexacyanoferrates, Prussian blue, 285–9metal oxides, 138cerium oxide, 167chromium oxide, 167cobalt oxide, 168–9copper oxide, 172iridium oxide, 157iron oxide, 173

460 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 10: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

manganese oxide, 175–6molybdenum trioxide, 152–3nickel oxide, 161–3niobium pentoxide, 177–8palladium oxide, 178–9praseodymium oxide, 178rhodium oxide, 180ruthenium oxide, 181tantalum oxide, 183titanium dioxide, 184tungsten trioxide, 142vanadium pentoxide, 186–8

metal oxyfluoridestitanium oxyfluoride, 205tungsten oxyfluoride, 206

mixtures of metal oxideindium–tin oxide, 196–7

phthalocyanines, 262lutetium phthalocyanine, 260

polymers, 60poly(aniline), 329–30, 331

thermodynamics of, 34–9viologens, 342, 353, 354–5

electrochromeschanges in film thickness, 51colours of, 2decomposition, 49laboratory examples of, 3memory effect, 15, 53–4, 152, 153, 403metal-oxide systems and insertion coefficient, 61metal-oxide systems, intervalence of, 61photodegradation of, 54type, 7–9

electrochromic colourscounter electrode, see secondary electrochromedevice, see ECDelectrodes, 40–1extrinsic intensity of, 52–3intensity of, 3

electrochromic hostsmetal oxides, 190–206antimony oxide, 193cerium oxide, 193–5cobalt oxide, 195–6indium oxides, 196–7iridium oxide, 198iron oxide, 198–9molybdenum oxide, 199nickel oxide, 200niobium pentoxide, 200–1titanium dioxide, 201–2tungsten trioxide, 191–3, 407vanadium pentoxide, 202zirconium oxide, 203

polymers, Nafion as, 405electrochromic modulation, 3, 53electrochromic paper, ECD application, 405–6electrochromic probes, 3electrochromic–photochromic systems, 438–9electrochromism

chemical, 3

complementary, 290definitions, x, 1, 3fax transmissions, 26first use of term, 25history of, 25–30ligand-based, 255near infrared, 165, 183, 253, 254, 265–74

electrodeas conductor, 37ECD, 422–4interphase, 43kinetics, 46–8potential, 35, 39, 48, 75, 91, 93, 104reactions, 52reactions, under diffusion control, 47substrate, see entries listed under substrate

electrodeposition of metals, type-II electrochromes,303, 305

electrodepositionforming hexacyanoferrates

Prussian blue, 283, 284forming metals, 303, 305–7

bismuth, 27, 304, 305–6lead, 306–7silver, 27, 307

forming metal oxides, 132–4cobalt oxide, 132copper oxide, 171iron oxide, 173manganese oxide, 175molybdenum trioxide, 151, 152nickel oxide, 132, 160–1oxide mixtures, 133ruthenium oxide, 181tungsten trioxide, 140, 141vanadium pentoxide, 186

forming mixtures of metal oxidemolybdenum–tungsten oxide, 199nickel–titanium oxide, 201titanium–tungsten oxide, 202tungsten–molybdenum oxide, 199

forming oxyhydroxidescobalt oxyhydroxide, 168nickel oxyhydroxide, 161nitrate forming metal hydroxide, 132

forming viologen radicals, 354potentiostatic, 133precursors, peroxo species, 133yields oxyhydroxide, 132

electrokinetic colloids, 5electroless deposition, of Prussian

blue, 283electroluminescent organic light-emitting diodes,

conducting polymers, 312electrolyte fillers to enhance contrast

ratio, 445electrolyte, ECDchemical systems, see ECD, electrolytedissolves ITO, 444durability, 445failure of, 443

Index 461

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 11: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

electrolyte, ECD (cont.)fillers, 445organic polymers, 445photochemical stability, 445semi-solid, 446

electrolytic capacitor, 52electrolytic side reactions, 43electrolytic writing paper, 405electron conduction, through bands, 81electron donors, photochromism, 438electron hopping, 81, 99electron mediationbismuth electrodeposition, 305mediators

cerous ion as, 359copper as, 305, 306ferrocene as, 359ferrocyanide as, 342, 350, 358, 359ferrous ion as, 359hydroquinone as, 359

electron mobility, tungsten–molybdenumoxide, 192

electron transferenergy barrier to, 42–3, 47fast, 102rate of, 33, 34, 42–3, 46, 75standard rate constant of, 47

electron-beam evaporation, of chromium oxide, 167electron-beam sputteringforming metal oxides

manganese oxide, 137, 175molybdenum trioxide, 137vanadium pentoxide, 138–206

forming metal oxide mixturesindium–tin oxide, 137, 196

electroneutrality, need for, 8electronic bands, 127electronic charge, 42electronic conductivity, 42, 113in metal oxides

nickel oxide, 162tungsten trioxide, 99

in metal oxide mixturesindium–tin oxide, 445

in phthalocyanine complexes, 259in polymers

poly(acetylene), 312poly(aniline), 101

rate of, 42electronic motion, 81–2electronic paper, ECD applications, 363electron–ion pair, see redox pairelectron-transfer rate, viologens, 359electron-transfer reaction, 75electrophotography, of tungsten trioxide, 28electropolychromism, 17–18graphite electrochromes, 303, 304poly(aniline), 329, 331Prussian blue, 287seven-colours, 254polypyridyl complexes, 255–6

quinones, 384viologens, 365

electroreduction, of ITO, 444electroreversibility poor, indium–tin oxide, 197electrostriction, 51, 129, 445

definition, 87of iridium oxide, 130of nickel oxide, 130of tungsten trioxide, 87, 129, 445of vanadium pentoxide, 87, 129

element, circuit, 50ellipsometry, 17, 50–1, 81, 109–10

and film thickness, 50and interfaces, 50in situ, 51of iridium oxide, 157of molybdenum trioxide, 109, 153of phthalocyanine complexes, 263of Prussian blue, 284, 287, 288, 289of titanium dioxide, 184of tungsten trioxide, 81, 109, 143of vanadium pentoxide, 109, 187

emeraldine, 329, 331emf, 33, 34, 39–40, 94, 95, 104, 143encapsulation, ECD, 424–5, 448energetics, 86

of ion movement through solid oxides,89–90

energy barrier, 93, 95to electron transfer, 47

enhancement factor W, 83, 84entropy, 88environmentalism, 398epoxy resin, 362equilibrium potential, 35, 41equivalent circuit, 447equivalent circuit, impedance, 447erbium laser, 267ESCA, 103ESR

of methyl viologen, 356of molybdenum trioxide, 153of tungsten trioxide, 145of viologens, 352, 356

ethyl viologen, 344T, 352T, 438di-reduced, 358

ethylanthraquinone, 2-, 384N-ethylcarbazole, carbazoles, 379T, 381Tethylene glycol, ECD electrolyte, 259ethylenedioxythiophene, 3,4-, 313, 321–7evaporated metal-oxide films, water in, 89evaporation, vacuum

of bismuth oxide, 166of metal-oxide films, 89of molybdenum trioxide, 151of nickel oxide, 160of tantalum oxide, 182of tungsten trioxide, 140–1, 147, 150of vanadium pentoxide, 185, 186

Eveready, battery charge indicator, 408, 443Everitt’s salt, see Prussian white

462 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 12: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

EXAFS, of cerium–titanium oxide, 194exchange current, 47, 95extinction coefficient, 53, 55, 60, 61, 113, 269, 274,

294, 343, 344T, 349and coloration efficiency, 55

extrinsic colour, 52–3eye, human, see human eyeeye wear, see applications, ECD, eye wear

Faradaic current, 45, 52, 76Faraday constant, 34Faraday’s laws, 46, 52fax transmission, using electrochromism, 26F-centres, 28ferric ion, diffusion coefficient, 77Tferricyanide, 342

as oxidant, 342ferrocene

derivatives, 330, 331electron mediator, 359

ferrocene–naphthalimide dyads, 309ferrocyanide

charge transfer complexation, 359electron mediator, 342, 350, 358, 359incorporation intonickel oxide, 200titanium dioxide, 201

mediating viologen comproportionation, 358ferroin, 253ferrous ion, as electron mediator, 359fibre-optics, ECD, applications, 265, 404Fick’s laws, 44, 45, 50, 76, 111

approximation, 45first law, 44second law, 45, 95

field-effect transistors, conducting polymers,and 312

fillers, ECD electrolyte, 445film thickness, and ellipsometry, 50Flabeg Gmbh, ECD, windows, 400flash evaporation, of vanadium pentoxide, 185flat-panel screens, TV, 402flexible ECD, 129, 423

on indium–tin oxide, 423fluoreneones, 18, 379, 380, 387

quasi reversibility of, 3802,4,5,7-tetranitro-9-fluorenone, 3872,4,7-trinitro-9-fluorenylidene

malononitrile, 387fluorescence, 5fluorine-doped tin oxide, as substrate, 139, 166, 168,

171, 196, 205, 292, 362, 400, 406, 409, 422fluoroanil, p-, 382flux, 44, 97

and colour formation, 75formation of colour, electrochemical, 52Fox Talbot, 26frequency, and impedance, 50frequency response analysis FRA, see impedance

spectroscopyfullerene electrochromes, 303

coloration efficiency, 304, 305–6degradation of, 303, 305formation via Langmuir–Blodgett, 304, 305quasi-reversiblity, 303, 305near-infrared absorbance, 399

furan, 313fused bithiophenes, conducting polymers of, 316

gallium hexacyanoferrate, 295galvanostatic coloration, 96–8, 104, 417games, ECD applications, 363gamma rays, 110gasochromism, 5, 406–7, 407Tmaterials

chromium oxide, 407Tcobalt oxide, 406metalloporphyrin, 407Tnickel oxide, 407Tphthalocyanine, 407Ttungsten trioxide, 407T

sensorsfor chloride ion, 406for nitrate ion, 406nitric oxide, 407phosphate ion, 406toluene, 407

gelled ECD electrolyte, 305, 349,350, 351, 384

using agar, 349, 351using silica, 348

Gentex Corporation, 376, 385, 396,398, 417, 425, 447

aircraft windows, 400mirrors (Night-Vision System), ix, 44,

356, 385–7cycle life, 356memory effect, 387radical annihilation, 386type-I electrochrome, 396

Gibbs energy, 34–9and emf, 34

glassy carbon, substrate, 294, 358gold, 150, 153, 159additive

in cobalt oxide, 204Tin iridium oxide, 204Tin molybdenum trioxide, 204Tin nickel oxide, 200, 204, 204Tin tungsten trioxide, 204, 204Tin vanadium pentoxide, 204, 204T

as substrate, 285overlayer of, 446–7

gold nanoparticles, overlayer of, 446graft copolymer, poly(aniline), 333grain boundaries, 88, 98, 146graphiteelectrochromes, 303, 304–5electropolychromic, 303, 304substrate, 424

Grotthus, conduction in metal oxides, 90Gyridon ‘electrochromic paper’, 5

Index 463

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 13: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

half reaction, 35Hall effect, 113hematite, 173Henderson–Hasselbalch equation, 4He–Ne laser, 438heptyl viologen, 8, 9, 11, 14, 28, 190, 344T,

346, 348, 349, 351, 352T, 352–3, 354–5,356, 357, 359

anion effects, 353Tas primary electrochrome, 356, 375, 385charge transfer complexation, 359critical micelle concentration, 355di-reduced, 358ECDs of, 360incorporated in paper, 365morphology of, 355power consumption, 14radical of, 357, 359

aging effects, 357recrystallisation of, 357reduction potentials, 353Tsolubility constant, 351

hexacarbonyl, as CVD precursor, 131, 135–6, 397hexacyanoferrate(II), see ferrocyanidehexacyanoferrate(III), see ferricyanidehexacyanoferrate ofcopper, 294gallium, 295indium, 295, 437iron, see Prussian bluemiscellaneous, 295–6mixed-metal, 296nickel, 293–4palladium, 294–5vanadium, 292–3

hexyl viologen, 352Thistoryof conducting polymers, 312of electrochromism, 25–30of Prussian blue, 282

history effect, 131hoppingelectron, 81, 99, 127polarons, 143

hue, and colour analysis, 56T, 62, 64, 70human eye, spectral response, 62hydride, electrochromic, 307–8Anderson transition in, 307cycle life, 308durability, 307, 308ECD, 308electrochromic alloys, 308

lanthanum–magnesium, 308samarium–magnesium, 308

electrochromic metallanthanum, 307yttrium, 307

mirrors, 307palladium overlayer on, 307response time, 307switchable mirrors, 307

hydrogenelectrode, 36, 37, 40evolution at molybdenum oxide, 199evolution at tungsten oxide, 89, 102, 104, 445uranyl phosphate, ECD electrolyte, 421T

hydrogen peroxide, 135, 308hydroquinone, electron mediator, 359hygroscopicity, of metal oxides, 89hysteresis, 104, 157

IBM Laboratories, 28, 30, 355, 360, 403, 405ICI Plc, 28, 341, 349–51, 352illumination

back-wall, 433, 435front-wall, 433light sources, 64of ECDs, 417

imaginary, impedance 50immitance, 50immobilised viologens, see derivatised electrodesimpedance spectroscopy, 50, 83, 85, 333

and frequency, 50equivalent circuit, 447imaginary, 50real, 50

incident light, 50Inconel-600, oxide on, 203Indigo Blue, coloration efficiency, 57TIndigo Carmine, within poly(pyrrole), 333indium hexacyanoferrate, 295, 437indium nitride, 309indium oxide, as electrochromic host, 196–7indium–tin oxide

chemical stability, 423cycle life, 197degradation of, 444–5

composition of, 196containing silver, 204T

ECDs of, 197electrochemistry of, 196–7

electroreduction of, 444electro-reversibility poor, 197

formation viaCVD, 132dc magnetron sputtering, 136electron-beam deposition, 137, 196laser ablation, 196rf sputtering, 196sol–gel, 196spin coating, 135, 196

kinetics of, chemical diffusion coefficient, 197optical properties

as secondary electrochrome, 197coloration efficiency, 197, 199, 199Tcontrast ratio, 197optical properties, 197optically passive, 17, 197, 199

flexible ECDs, 423on Mylar, 423on PET, 129, 423on polyester, 423

464 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 14: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

mechanical stability, 129resistance, effect of, 349electronic conductivity, 422, 445

substrate, 17, 70T, 86, 96, 128, 129, 135, 138, 139,141, 150, 151, 152, 156, 158, 159, 164, 166,167, 181, 182, 191, 257, 284, 293, 294, 305,306, 326, 330, 331, 333, 349, 375, 382, 385,404, 417, 422–3, 444–5, 447

water sensitivity, 444XPS of, 197, 445

indole, 313inert electrode, 38infra red spectroscopy, 103, 358inorganic–organic, dual ECD, 333–4insertion coefficient, 9, 41, 53, 61, 81, 83, 87, 90–1,

92, 95, 96, 101, 104, 108, 113–14, 143, 146,186, 188, 191, 192, 193, 303, 305

effect on diffusion coefficient, 90–1effect on electroreversibility, 82effect on wavelength maximum, 53high at grain boundaries, 104metal-oxide systems, 61

intensityand colour analysis, 63of electrochromic colours, 3

interactions, counter ion with water, 89interfaces, between films, 50international meetings on electrochromism

(IME), xinterphase, electrode, 43intervalence charge transfer, 61, 102, 125, 127, 145,

153, 188, 192, 253, 267, 284heteronuclear, 127homonuclear, 127

intrinsic coloration efficiency, 54–60iodine, 27, 437iodine laser, 266ion-conductive electrolyte, tantalum oxide, 181, 183ion–electron pair, see redox pairsionic interactions, 36ionic mobility, 99, 303, 305–7ionisation, of water, 89

during coloration, 81iPod screen, ECD application, 363, 402IR drop, 153, 405, 422–3iridium oxide, 10, 125, 155–9, 198

annealing of, 158as secondary electrochrome, 16, 149, 444Tcoloration efficiency, 56T, 70, 158reflectance of, 400

coloration mechanism, 157containingaramid resin, 198gold, 204Twater, 156

electrostriction of, 130ECDs, 159electrochemistry, 157electrochromic host, 198ellipsometry, 157formation via

anodically grown on Ir, 155–6dip coating, 135IrCl3, 156iridium–carbon composite, 156, 158peroxo species, 156sol–gel, 156spray deposition, 158sputtering, 155, 156

hysteresis of, 157mechanical stability, 129optical properties, 158phase changes, 157response time, 156, 159specular reflectance, 407Twater content, 156write–erase efficiency, 156XPS of, 157

iridium trichloride, 156iridium trihydroxide, 157iridium–carbon composite, 156, 158iridium–cobalt–nickel oxide, 203iridium–magnesium oxide, 198iridium–ruthenium oxide, 203iridium–silicon oxide, 198formation via sol–gel, 198

iridium–tantalum oxide, chemical diffusioncoefficient, 198

iridium–titanium oxide, 198formation via sol–gel, 198

iron acetylacetonate, 174iron hexacyanoferrate, see Prussian blueiron oxide, 172–5, 201annealing, 173, 175electrochemistry, 173formation via

CVD, 174, 175Tdip coating, 135electrodeposition, 173, 175Toxidised film on Fe metal, 172sol–gel, 173, 174, 175Tspin coating, 135, 174

mixtures, coloration efficiency, 198as electrochromic host, 198–9

optical properties, 175coloration efficiency, 56T, 70, 175, 175T, 201Tsecondary electrochrome, 174

iron oxyhydroxide, 173iron perchlorate, 173iron phthalocyanine, 261iron polypyridyl complexes, 256iron vanadate, 202iron–molybdenum oxide, 199iron–nickel–chromium oxide, 203iron–niobium oxide, 200, 201coloration efficiency, 201Tformation via sol–gel, 200

iron–titanium oxidecharge transfer of, 202formation via dip coating, 202

irreversibility, when oxidising LixWO3, 82iso-pentyl viologen, 352T

Index 465

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 15: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

IUPAC, 55, 147, 161IVCT, see intervalence charge transfer

J-aggregates, 265junction potential, 39

K-glass, substrate, 422kineticsbleaching

modelsFaughnan and Crandall, 105–8Green, 108, 109

of metal oxidesnickel oxide, 164vanadium pentoxide, 188

potentiostatic, 105–8type-II, 79–115type-III, 79–115

coloration, 75–115of amorphous oxides, 88electron as rate limiting, 99faster in damp films, 90of lutetium phthalocyanine, 260type-I, 75–9type-II, 75–9type-III, 91–115

effect of counter-ion size on, 87–8effect of morphology on, 88effect of high resistance of polymers, 11effect of water on, 89electrochrome transport, 75electron transfer, 33, 34rate-limiting process, 33, 83, 87, 92write–erase efficiency and, 11

Kosower, solvent Z-scale, 343

L*a*b* colour space, 64–71data for Prussian blue ! Prussian white, 70T

L*u*v* colour space, 64–71laboratory examples, of electrochromes, 3Langmuir–Blodgett deposition, 138–206forming fullerene electrochromes, 304, 305forming phthalocyanine, 262–3, 407

lanthanide hydride, see hydride, lanthanidelanthanum–nickel oxide, 200large-area ECDs, 141, 332, 447laser ablation, formingindium–tin oxide, 196tantalum oxide, 183titanium dioxide, 184vanadium pentoxide, 185

laser, 404Q-switching, 267types

erbium, 267He–Ne, 438iodine, 266YAG, 266, 267

laser-beam deflection, 87, 130, 157lattice constants, 129lattice energy, 93

Prussian blue, 289lattice defects, nickel oxide, 163lattice stabilisation, 112layer-by-layer deposition

of PEDOT:PSS, 329, 331of poly(aniline), 329–30, 331of poly(viologen), 328–9, 331

LCD, see liquid crystal displaylead, electrodeposition of, 8, 306–7lead fluoride, as ECD electrolyte, 159lead tetrafluorostannate, as ECD electrolyte, 159leakage current, 52leucoemeraldine, 329, 331LFER, see linear free-energy relationshipsligand based, electrochromism, 255ligand-to-metal charge transfer, 269light modulation, ECD application, 404–5light-emitting diodes, 363, 402lightness, and colour analysis, 63, 64, 66limiting current, 76linear diffusion, 76linear free-energy relationships, 343liquid electrolytes, transport through, 75liquid-crystal display, ix, 53, 351, 360, 363, 402, 403,

404, 406, 408, 425power consumption of, 15

lithiation, dry, 418lithium chromate, 167lithium deficient, cobalt oxide, 167lithium niobate, ECD electrolyte, 421Tlithium pentafluoroantimonate, ECD

electrolyte, 150lithium perchlorate, ECD electrolyte, 82, 106,

150, 151, 152, 163, 166, 167, 169,173, 176, 184, 186, 188, 197, 199, 205,362, 408, 421

lithium phosphorous oxynitride, ECDelectrolyte, 363

overlayer of, 446lithium pnictide, specular reflectance of, 407Tlithium tetrafluoroaluminate, electrolyte ECD, 150,

152, 421T, 436overlayer of, 446

lithium tin oxide, 197lithium tungsten bronze, 191

electro-irreversibility of, 82lithium vanadate, 190

vanadate, thermochromic, 190Lucent, 5luminance, and colour analysis, 56T, 63, 64, 66, 70lutetium phthalocyanine, 259–60, 261

cation-free not electrochromic, 260chemical diffusion coefficient, 85Tcoloration kinetics, 260degradation, 260ECDs, 259, 260electrochemistry, 260protonated, 259response times, 260, 261formation via sublimation, 259write–erase cycles, 259

466 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 16: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

Madelung constant, 112maghemite, 173magnesium fluoride, terminal effect suppressor, 423magnesium OEP, 265magnesium phthalocyanine, 260magnesium–iridium oxide, 198magnesium–nickel, 200magnesium–nickel–vanadium oxide, 203magnetic susceptibility, 113, 345magnetite, 168, 173manganese oxide, 175–6, 446

as secondary electrochrome, 165, 176ECDs, 176electrochemistry, 175–6optical properties, 176coloration efficiency, 176

rechargeable batteries, 176formation viaanodising Mn metal, 175electrodeposition, 175electron-beam sputtering, 137, 175rf sputtering, 175sol–gel, 175, 176

XPS, 176manganese phthalocyanine, 261mass balance, 81

nickel oxide, 162mass transport, 33, 43–5, 75mechanical stability, metal oxides, 129–30medicine, ECD, applications, 265melamine, plus vanadium pentoxide, 190, 202membrane potentials, 4

biological, 3memory, 15, 53–4, 152, 153, 403

and Gentex ECD, 387and molybdenum trioxide ECD, 152, 153and tungsten trioxide ECD, 149, 150and viologens ECD, 348, 362ECD self-erasure, 54, 387

metal hexacyanomellates, 282–96metal oxidation to form oxide

cobalt, 168, 169iron, 172manganese, 175niobium, 177rhodium, 179ruthenium, 181tantalum 182titanium, 184tungsten, 81, 150vanadium, 185, 186, 187

metal oxide, 125–206amorphous, 132, 139bronzes of, 61, 81, 82, 103coloration efficiency, 56Tinsertion coefficient and, 61

doped, 266effect of moisture on, 128–9electrochemistry of, 138intervalence of, 61

metal oxide

optical propertiesas primary electrochromes, 139–65optical passivity, 125neutral colours, mixtures, 399

photochemical stability, 125preparation, 130–8

oxide formed by chemical vapour deposition,131–2

oxide formed by dip coating, 135oxide formed by electrodeposition, 132–4oxide formed by evaporation, 89oxide formed by Langmuir–Blodgett

deposition, 138–206oxide formed by oxidising alloy,

Inconel-600, 203oxide formed by oxidising metalcobalt, 168, 169iron, 172manganese, 175niobium, 177rhodium, 179ruthenium, 181tantalum, 182titanium, 184tungsten, 81, 150vanadium, 185, 186, 187

oxide formed by sol–gel deposition, 134–6oxide formed by spin coating, 131, 135–6oxide formed by spray pyrolysis, 135

stability, 128–30mechanical, 129–30photochemical, 128, 129

metal-oxide mixtures, 190–206colour manipulation, 190containing precious metal, 204formation via

dip coating, 135rf sputtering, 204sol–gel, 204

neutral colour, 190site-saturation model, 190, 192

metal oxyfluorides, 203metal–insulator transition, see Anderson transitionmetallic substrates, 423–4metalloporphyrin, gasochromic, 407Tmetals, electrodeposition, 303, 305–7metal-to-ligand charge transfer, 262, 293coordination complexes, 253

methanol, electro-oxidation, 409methoxybiphenyls, 30, 379–80electrode potentials, 379T, 381T, 381Toptical properties, 379T, 379T, 381T, 381Tsteric effects, 380

methoxyfluorene, 8methyl viologen, 7, 11, 17, 341, 344T, 346, 352T,

353, 436charge-transfer complexation, 359coloration efficiency, 57Tdiffusion coefficient, 77Tdi-reduced, 358electropolychromic, 17

Index 467

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 17: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

methyl viologen (cont.)ESR, 356in paper, 365

follows Langmuir adsorption isotherm, 365mixed-valence salt, 356

methyl–benzyl viologen, in paper, 365Methylene Blue, 8, 437, 438coloration efficiency, 57Timmobilised, 391, 391T

in Nafion, 405methylthiophene, 3-, 318oligomers, of 320

micellar, viologens, 355–6microbalance, see electrochemical quartz crystal

microbalancemigration, 43, 44, 75, 96–7diffusion concurrent, 83temperature dependence of, 83

mirror, ECD, see applications, ECD, mirrorsmixed valency, methyl viologen, 356dinuclear ruthenium complexes, 268TRobin–Day classification, 142, 283tungsten trioxide, 142viologens, 356

mixtures, of metal oxide, see metal-oxide mixturesMLCT, see metal-to-ligand charge transfermobilityionic, 99, 104, 115, 303, 305–7proton, 106, 108

modulation, electrochromic, 3, 53molar absorptivity, 53mole fraction x, 37molybdenum ethoxide, forming molybdenum

trioxide, 152molybdenum sulfide, 152molybdenum trioxide, 11, 27, 28, 103, 109, 125, 130,

151–5, 187annealing of, 152, 154bronze, 103, 151chemical diffusion coefficient, 153coloration in vacuo, 89

requires water, 89containing

gold, 204Tplatinum, 204T

crystal phasesa phase, 152monoclinic, 152orthorhombic, 152

ECD, 154–5, 397effect of water on, 89electrochromic host, 199ellipsometry of, 153ESR of, 153formation via

alkoxides, 152CVD, 131, 151, 397dc magnetron sputtering, 136, 151electrodeposition, 132, 151, 152electron-beam sputtering, 137evaporation, 137–8, 151, 155T

Mo(CO)6, 397molybdenum ethoxide, 152molybdenum sulphide, 152, 155Torganometallic precursors, 152oxidation of Mo metal, 151peroxo species, 151rf sputtering, 151sol–gel, 135, 152spin coating, 135spray pyrolysis, 152

hydrogen evolution at, 199in paper, 27, 405memory effect, 152, 153optical properties, 153–4

coloration efficiency, 56T, 154, 155T, 199, 199Toxygen deficient, 103, 151, 153response time, 154self bleaching of, 153stability, mechanical, 129UV irradiation of, 28XPS, 152, 153XRD, 153

molybdenum–chromium oxide, 199molybdenum–iron oxide, 199molybdenum–niobium oxide, 200

formation by sol–gel, 200molybdenum–tin oxide, 199

coloration efficiency, 199, 199T–201Tmolybdenum–titanium oxide, 199

coloration efficiency, 199molybdenum–tungsten oxide, see

tungsten–molybdenum oxidemolybdenum–vanadium oxide, 199

formation via peroxo species, 199Moonwatch, ECD display, 402, 403Mossbauer, 197

Prussian blue, 282, 283tin oxide, 184

motorcycle helmet, ECD application, 398Mylar, indium–tin oxide substrate, 423

Nafion, 159, 290, 366, 385as electrochromic host, 405ECD electrolyte, 421Tincorporating

Methylene Blue, 405phenolsafranine dye, 405viologen, 405

overlayer of, 150, 446Nanochromic (NTera) displays, 347, 362, 363,

402, 406naphthalimide–ferrocene dyads, 309naphthalocyanine complexes, 263–41, 4-naphthaquinone, 384

cyclic voltammetry, 384N-carbazylcarbazole, carbazoles, 379TNCD, see Nanochromic displaynear infrared, electrochromism, 165, 253, 254,

265–74, 303–4, 317, 319, 327,377T–378T, 399

of aromatic amines, 376

468 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 18: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

of diamond, 399of dinuclear ruthenium complexes, 268Tof fullerene, 399

neodymium–vanadium pentoxide, 202Nernst equation, 36, 38, 40, 75, 90Nernst–Planck equation, 43Nerstian systems, 77neutral colour, 399

metal-oxide mixtures, 190, 399tungsten–vanadium oxide, 399

neutron diffraction, 144nickel, underlayer of, 86, 164nickel dithiolene, 266nickel hexacyanoferrate, 293–4nickel hydroxide, 129, 161

formation via sonication, 133, 134nickel oxide, 9, 125, 130, 159–65, 167, 200

activation energy, 111Tannealing of, 161as primary electrochrome, 16, 149, 165, 176as secondary electrochromes, 444T, 446, 447bleaching of, 164chemical diffusion coefficient, 85Tdegradation of, 163ECDs, 164–5, 397electrochemical quartz microbalance, 163electrochemistry of, 161–3electrochromic host, 200containing

cobalt metal, 164ferrocyanide, 200gold, 200, 204, 204Tlanthanum, 164organometallics, 200

electronic conductivity, 162electrostriction of, 130formation viaCVD, 36, 161dc magnetron sputtering, 136, 165Tdip coating, 135, 161, 165Telectrodeposition, 132, 160–1, 165Tevaporation, 160, 165Tplasma oxidation of Ni–C, 161rf sputtering, 160, 162, 163, 164sol–gel, 135, 161–3, 165Tsonication, 133, 134, 165Tspray pyrolysis, 135, 160, 161, 165T

gasochromic, 407Tionic movement rate, 162mass balance, 162defects lattice, 163oxygen deficiency, 16, 159–60

mechanical stability, 129optical properties, 163–4coloration efficiency, 56T, 70, 165T

phases, 162crystallites in amorphous NiO, 88

response times, 12, 164thermal instability, 160water occluded, 163write–erase cycles, 164

nickel oxyhydroxide, 129as secondary electrochrome, 400formed via electrodeposition, 161

nickel tungstate, 200nickel–aluminium alloy, 200nickel–aluminium oxide, 200nickel–cerium oxide, 200nickel–chromium oxide, 200nickel–chromium–iron oxide, 203nickel-doped tin oxide, 196nickel–iridium–cobalt oxide, 203nickel–lanthanum oxide, 200nickel–magnesium, 200nickel–titanium oxide, 201coloration efficiency, 202formation via electrodeposition, 201

nickel–tungsten oxide, 200, 436coloration efficiency, 200formed via sol–gel, 200

nickel–vanadium pentoxide, 202nickel–vanadium–magnesium oxide, 203nickel–yttrium oxide, 200Nikon, ECD sunglasses, 401Nile Blue, coloration efficiency, 57Tniobium ethoxide, sol–gel precursor, 134niobium pentoxide, 17, 125, 176, 201annealing, 177as secondary electrochrome, 149, 178chemical diffusion coefficient, 85Tcycle life, 178cyclic voltammetry, 178ECDs, 178electrochemistry, 177–8electrochromic host, 200–1

coloration efficiency of mixtures, 201optical properties, 178

coloration efficiency, 56T, 178, 181T,199T–201T, 200

optically passive, 17, 178redox pairs, 102formation via

dc magnetron sputtering, 136, 177dip coating, 135oxidising Nb metal, 177rf sputtering, 181Tsol–gel, 134, 176, 178, 181T, 200spin coating, 135, 177spray pyrolysis, 181T

niobium–iron oxide, 200, 201coloration efficiency, 201Tformation via sol–gel, 200

niobium–molybdenum oxide, 200via sol–gel, 200

niobium–silicone oxide, 200niobium–titanium oxide, 200niobium–tungsten oxide, 201coloration efficiency, 201

Nippon Mitsubishi Oil Corporation, 446–7NIR, see near infrarednitrate ion, gasochromic, sensor for, 406nitric oxide, gasochromic, sensor for, 407

Index 469

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 19: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

nitroaminostilbene, 4nitrogen-15, see nuclear reaction analysisnitrosylmolybdenum complexes, 270N-methyl PProDOP, 328N-methylpyrrolidone, 330, 331NMP, see N-methylpyrrolidonenon-faradaic current, 45, 52, 76non-linear optical effects, 4non-redox electrochromism, 3non-volatile memory, see memory effectN-phenylcarbazole, carbazoles, 379T, 381TN-PrS PProDOP, 328NREL Laboratories, 398, 433, 436, 447NTera, ECD, 6, 10, 347, 348, 362, 363, 402, 404, 405,

406; see alsoNanoChromic (NTera)displaysphosphonated viologen, 10, 362, 406

as primary electrochrome, 363, 365coloration efficiency, 362, 363cycle life, 362ECD, response time, 363, 364

nuclear reaction analysis, 16, 110, 111, 162nucleation, of hydrogen gas, 100nucleation, of viologen reduction, 354NVS, see Gentex Corporation

occlusion, of water during deposition, 89octyl viologen, 344T, 352TOhm’s law, 44Ohmic migration, 386oligomersof 3-methylthiophene, 320of thiophene, 320, 321of viologens, 364

opaque substrates, 423–4optical absorbance, 52optical analyses, water effect of, 89optical attenuator, ECD, application, 270optical charge transfer, see charge transferOptical Coating Laboratory, Santa Rosa, 448optical data storage, ECD applications, 265optical path length, 55optical propertiesmetal oxides

cerium oxide, 166cobalt oxide, 168, 169–70iridium oxide, 158iron oxide, 175manganese oxide, 176molybdenum trioxide, 153–4nickel oxide, 163–4niobium pentoxide, 178tantalum oxide, 183tin oxide, 184titanium dioxide, 184tungsten trioxide, 144–9vanadium pentoxide, 188–9

mixtures of metal oxide, indium–tinoxide, 197

methoxybiphenyls, 379T, 381Toligothiophenes, 321Tpyrazolines, 388T

quinones, 383Ttetracyanoquinonedimethanide, 389Ttetrathiafulvalene, 390Tviologens, 344T

optical response, deconvolution of, 17optically passive, 16, 125

metal oxides, 125cerium oxide, 166nickel–vanadium oxide, 202niobium pentoxide, 178titanium dioxide, 184

mixtures of metal oxideantimony–tin oxide, 193cerium–titanium oxide, 194indium–tin oxide, 197, 199titanium–vanadium oxide, 202vanadium–nickel oxide, 202vanadium–titanium oxide, 202

optically transparent electrode OTE, 62, 129–30,141, 156, 417, 444, see also substrates

optically transparent thin-layer electrodeOTTLE, 255

orbitals, and charge transfer, 61Orgacon EL-350, 332organic, ECD electrolytes, 420–2organic electrochromes, coloration efficiency, 57Torganic–inorganic, dual ECD, 333–4organic, polymers, ECD electrolyte, 445organometallic

precursors, of molybdenum trioxide, 152in nickel oxide, 200

Orgatron, 323oscillator strength, 147, 191, 206osmium dithiolene complexes, 270–4OTTLE, see optically transparent thin-layer

electrodeoverlayers

gold, 446–7gold nanoparticles, 446

lithium phosphorus oxynitride, 446lithium tetrafluoroaluminate, 446Nafion, 446palladium, 307poly(o-phenylenediamine), 446tantalum oxide, 150tungsten oxyfluoride, 446tungsten trioxide, 446

overpotential, 36, 42, 46, 76, 93, 96, 199oxidation, chemical

ferricyanide, 342oxygen gas, 342periodate, 342

oxidation number, 35oxidation potential, 318, 320oxidative polymerisation, conducting polymers,

313–14of pyrrole, 313

oxide ions, charge transfer with, 85oxide mixtures, coloration rate enhancement, 200oxidising metal, to form metal oxide film

cobalt, 168, 169

470 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 20: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

iron, 172manganese, 175niobium, 177rhodium, 179ruthenium, 181tantalum, 182titanium, 184tungsten, 81, 150vanadium, 185, 186, 187

oxyfluoride, metal, see metal oxyfluorideoxygen

as oxidant, 342molecular, 59

oxygen backfilling, 141oxygen bridges, in solid metal oxides, 85oxygen deficiency

in molybdenum trioxide, 103, 151, 153in nickel oxide, 159–60in praseodymium oxide, 179in tungsten trioxide, 102, 103, 140, 147

oxyhydroxide, via electrodeposition, 132, 133

PAH, see poly(allylamine hydrochloride)paints and pigments of, Prussian blue, 282palladium, overlayer of, 307palladium dithiolene, 266palladium hexacyanoferrate, 294–5palladium oxide, 150, 178

electrochemistry, 178–9paper

containing hexacyanoferrates, 405containing metal oxidesmolybdenum trioxide, 27, 405tungsten trioxide, 27, 405

containing viologens, 365, 366, 405heptyl viologen 365methyl viologen, 365methyl–benzyl viologen, 365

paraquat, 341parasitic currents, 52passive, optical, see optically passivepatents, 395PBEDOT-Pyr, 326PBEDOT-PyrPyr(Ph)2, 326PBuDOP, 328PEDOP, 328PEDOT, 10, 60, 319, 332, 437

as photoconductor, 436as primary electrochrome, 190, 291, 334as secondary electrochromes, 149band gap of, 322coloration efficiency, 437colour analysis of, 70, 71ECDs of, 409specular reflectance, 407T

PEDOT:PSS, 323, 329, 330, 331formed via layer-by-layer deposition, 329, 331

PEDOT-S, 330, 331formed via spin coating, 330, 331self-doped polymers, 330, 331

pentyl viologen, 351, 352T

perchloric acid, as ECD electrolyte, 150, 157percolation threshold, 99, 100, 101, 113, 114, 115periodate, as oxidant, 342permanganate, 60permittivity, 106, 108, 112Pernigraniline, 329, 331–2Perovskite, tungsten trioxide, 127, 140peroxo species, 10, 133, 135, 141, 151, 156,

168, 184, 186electrodeposition with, 133forming

cobalt oxide, 168iridium oxide, 156molybdenum oxide, 151, 269molybdenum–tungsten oxide, 199molybdenum–vanadium pentoxide, 199titanium dioxide, 184tungsten–molybdenum oxide, 199tungsten trioxide, 10, 133, 135, 141vanadium–molybdenum–oxide, 199vanadium pentoxide, 186

Perspex, plus tungsten oxide, 193PET, indium–tin oxide substrate, 423phenanthrenes, 379phenanthroline, 3,8-, pseudo viologen, 360Phenolsafranine dye, in Nafion, 405phenothiazines, as secondary electrochromes,

362, 363phenylenediamine, 386Philips, 5, 27, 349, 354phosphate ion, gasochromic sensor for, 406phosphomolybdic acid, 152phosphonated viologen, see NTeraphosphoric acid, ECD electrolyte, 167, 421, 438phosphotungstic acid, 150, 192, 309in titanium dioxide, formed via sol–gel, 201

photo-activated ECD cells, 433photo-activity, 129titanium dioxide, 445

photocells, photoelectrochromism, 433, 434photochemistry, metal-oxide stability, 125,

128, 129photochromic–electrochromic systems, 438–9photochromism, 28, 404electron donors, 438of MoO3, 28of SrTiO3, 28of WO3, 103

photoconductors, 433, 434–7amorphous silicon, 436PEDOT, 436poly(3-methylthiophene), 436poly(aniline), 436, 439poly(o-methoxyaniline), 436poly(pyrrole), 436silicon carbide, 436titanium dioxide, 437, 438

photodegradation, 54photo-driven ECD cells, photoelectrochromism, 433photoelectrochemistry, 361, 362viologens, 362

Index 471

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 21: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

photoelectrochromism, 129, 421T, 423, 433–9beam direction, 433

back-wall illumination, 433, 435front-wall illumination, 433

of Prussian blue, 267, 437photo-activated ECD cells, 433photocells, 433, 434photoconductors, 433, 434–7

amorphous silicon, 436PEDOT, 436poly(aniline), 436, 439poly(o-methoxyaniline), 436poly(3-methylthiophene), 436poly(pyrrole), 436silicon carbide, 436titanium dioxide, 437, 438

photo-driven ECD cells, 433poised cells, 434response time, 436

photogalvanic, 438vanadium pentoxide, 438

photography, and Prussian blue, 25photosensitising, ruthenium tris(2,20-bipyridyl),

436, 437photovoltaic, 437–8cadmium sulfide, 437strontium titanate, 437titanium dioxide, 437

phthalocyanine complexes, 9, 258conductivity electronic, 263ECDs of, 263electrochemistry, 262electro quasi-reversibility, 261electronic conductivity, 259ellipsometry, 263formation, via electrochemistry, 261–2Langmuir–Blodgett, 262–3, 407gasochromic, 407Tincluding aniline moieties, 261mixed cation, 261requires central cation, 260response times, 261tetrasulfonated, 261

physical vapour deposition, of cerium oxide 166pigments, industrial, 259Pilkington Glass, 141, 400pixels, 360, 385, 402, 403plasma oxidation, ofNi–C, forming nickel oxide, 161plasma screens, television, 402platinumas substrate, 153, 284, 326, 409, 422, 423black, 133incorporated into

molybdenum trioxide, 204Truthenium dioxide, 204Ttantalum pentoxide, 204Ttungsten trioxide, 204T

platinum dithiolene, 266poised cells, photoelectrochromism, 434polarisationof electrode, 76

of light, 50, 51polaron, 145, 183, 316

hopping, 127, 143in tungsten trioxide, 147polaron–polaron interactions, in WO3, 88

polished metal, substrates, 418poly(acetylene), 312, 315

air sensitive, 312electronic conductivity, 312

poly(acrylate), compositeformed via spin-coating, 333with poly(aniline), 333; composite with silica and

poly(aniline), via sol–gel, 333poly(acrylic acid), as ECD electrolyte, 150, 421Tpoly(alkeneldioxypyrrole)s, 327poly(allylamine hydrochloride), 330, 331poly(AMPS), as ECD electrolyte, 12, 150,

157, 260, 330, 331, 348, 366, 391, 391T,395–410, 420

immobilising electrochromes, 391poly(aniline), 9, 11, 30, 101, 313, 329–30, 331, 333,

384, 438, 439as photoconductor, 436, 439as secondary electrochrome, 149, 290–1, 333,

334, 444Tcastable films, 332–3composites

with cellulose acetate, 333with poly(acrylate), 333with poly(styrene sulfonic acid), 333

containing vanadium pentoxide, 190, 202cyclic voltammetry, 333electrochemistry of, 329–30, 331electropolychromic, 329, 331encapsulating dyes, 333formation via electropolymerisation, 329–30,

331; layer-by-layer deposition, 329–30, 331graft copolymer of, 333immobilising electrochromes, 391poly(acrylate)–silica composite, formed via

sol–gel, 333redox states, 329, 331

poly(aniline)s, 328–30ECDs, 330, 331protonation reactions, 328–9, 331response times, 330, 331spectroelectrochemistry of, 333

poly[3,4-(butylenedioxy)pyrrole], 328poly(carbazole), chemical diffusion coefficient, 85Tpoly(CNFBS), 316polycrystalline, metal oxides, made by

sputtering, 81poly(DDTP), 326poly(diphenylamine), specular reflectance, 407Tpolyelectrochromism, see electropolychromismpolyelectrolytes, ECD electrolyte, 420–2polyester, indium–tin oxide substrate, 423poly(ethylene imine), 329, 331poly(ethylene oxide)

as ECD electrolyte, 150, 290, 408,421, 438, 444

472 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 22: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

as thickener in ECD electrolyte, 419poly(3,4-ethylenedioxy

thiophenedidodecyloxybenzene),coloration efficiency, 57T

poly(ethylene terephthalate), 332ITO on, 27

poly(iso-thianaphthene), chemical diffusioncoefficient, 85T

polymer electrolytes, ECD electrolytes, 421–2conducting, 9, 11electrolyte, 44of EDOT, 325polypyridyl complex, via spin-coating, 254–6TTF species, ion movement rate limiting, 390viologens, 347

photostability,151poly(m-toluidine), 330, 331–2poly(methyl methacrylate) blend, as ECD

electrolyte, 291, 334poly(3-methylthiophene) 320, 322T

as photoconductor, 436as primary electrochrome, 197

poly(o-methoxyaniline), 332as photoconductor, 436

poly(o-phenylenediamine), overlayer of, 446poly(o-toluidine), 159, 330, 331poly(oligothiophene)s, 321T, 323Tpoly(1,3,5-phenylene), 327poly(p-phenylene terephthalate), 198

as secondary electrochrome, 159poly[3,4-(propylenedioxy)pyrrole], 328

coloration efficiency, 57Tpoly(3,4-propylenedioxythiophene), coloration

efficiency, 57Tpoly(propylene glycol), ECD electrolyte, 421poly(pyrrole), 101, 313, 314, 315, 316, 317, 327

as photoconductor, 436as primary electrochrome, 165as secondary electrochrome, 149containing dodecylsulfonate, 333containing Indigo Carmine, 333electro-synthesis of, 30specular reflectance, 407Tviologens of, 346

poly(pyrrole)s, 327–8ECDs of, 328N-Gly PProDOP, 328; PBuDOP, 328PEDOP, 328PProDOP, 328

poly(siloxane), immobilising electrochromes, 391poly(styrene sulfonic acid), 333, 347

composite with poly(aniline), 333poly(thiophene), 9, 11, 313, 315, 321

as primary electrochrome, 165star polymers, 327viologens of, 347PBEDOT-Pyr, 326PBEDOT-PyrPyr(Ph)2, 326PEDOT, 10, 60, 319, 332, 437as photoconductor, 436as primary electrochrome, 190, 291, 334

as secondary electrochrome, 149bandgap of, 322coloration efficiency, 437colour analysis of, 70, 71ECDs of, 409specular reflectance, 407T

PEDOT:PSS, 323, 329, 330, 331formed via layer-by-layer deposition, 329, 331

PEDOT-S, 330, 331formed via spin coating, 330, 331self-doped polymers, 330, 331

poly(thiophene)s, 318–27band structure, 152Baytron M, 323Baytron P, 323BEDOT, 326BEDOT-N-MeCz, 326bipolarons in, 320DDTP, 326

dihedral angle, 323Tformation via spin coating, 327

PBEDOTPBEDOT-B(OC12)2, 332PBEDOT-N-MeCz, 331PBEDOT-Pyr, 326PBEDOT-PyrPyr(Ph)2, 326

PProDOT-Me2, 331, 332response time, 325substituted, 320–1

poly(toluidine)s, 330, 331poly(triphenylamine), 327poly(vinyl alcohol), ECD electrolyte, 421poly(vinyl butyral), ECD electrolyte thickener, 419poly(1-vinyl-2-pyrrolidone-co-

N,N0-methylenebisacrylamide), 391, 391T,395–410

ECD electrolyte, 391poly(viologen), 328–9, 331formation via layer-by-layer deposition,

328–9, 331Polyvision, 306porphyrin complexes, 258, 264–5potassium chloride, ECD electrolyte, 291, 349potassium triflate, ECD electrolyte, 290potential, equilibrium, 41potential, sweep, 48potential stepand cycle life, 12and coloration, 354–5

potentiostat, 48, 62potentiostaticcoloration, 99, 417electrodeposition, 133interrupted coloration, see pulsed potentialsthree-electrode, 443

powder abrasion, of Prussian blue, 283power consumption, 13–15different types of display, 15

poly(methylthiophene), 165PPG Aerospace, ECD, windows, 400PPG Industries, 425

Index 473

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 23: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

praseodymium oxide, 178–9cycle life, 179electrochemistry of, 178oxygen deficiency, 179containing cerium oxide, 179as secondary electrochrome, 179formation via,

CVD, 178, 179dc magnetron sputtering, 136, 178

XRD, 179praseodymium phthalocyanine, 263precious metal, in metal oxide, 204formation via

rf-sputtering, 204sol–gel, 204

preparation, of metal oxides, chemical vapourdeposition, 131–2

primary and secondary electrochromism, 16–17; seealso complementary electrochromism

primary electrochromism, 45, 165, 418, 421, 445hexacyanoferrates as, Prussian blue, 333metal oxides as, 139–65

nickel oxide, 165, 176tungsten trioxide, 149, 154, 165, 170, 178, 179,

184, 190, 197, 290, 291, 333, 334, 400, 421,436, 438, 444T, 446, 447

polymers asPEDOT, 190, 291, 334poly(3-methylthiophene), 165, 197poly(pyrrole), 165poly(thiophene), 165

viologens asheptyl viologen, 356, 375, 385NTera viologen, 363, 365

primary reference electrode, see standard hydrogenelectrode

probe molecules, 5propyl viologen, 352Tpropylene carbonate, as ECD electrolyte, 100, 106,

151, 152, 166, 169, 173, 176, 184, 186, 187,188, 197, 199, 205, 356, 384, 419

proton, conductivity in metal oxides, 89in tantalum oxide, 183mobility, 4, 86, 106, 108

proton transfer, across solution–oxide interface, 86protonation reactions, poly(aniline)s, 328–9, 331Prussian blue, 9, 25–6, 41, 57, 61, 446and blueprints, 26, 405and cyanotype photography, 26and drawing, 26and photography, 25as secondary electrochromes, 149, 290, 333, 334,

363, 365, 444Tbulk properties, 282–3chronoamperometry, 284colour analysis of, 62, 70cyclic voltammetry, 286, 287ECD, 289–91

comprising single film of, 290EDAX of, 288electrochemistry of, 58–60, 285–9

electropolychromism of, 287ellipsometry of, 284, 287, 288, 289formation via, 283–5

catalytic silver paint, 283directed assembly, 285electrodeposition, 283, 284electroless deposition, 283photolysis, 26powder abrasion, 283redox cycling, 283sacrificial anode methods, 283

history, 282in paper, 405‘insoluble’, 282lattice energy, 289Mossbauer of, 282, 283paints and pigments of, 282pH effect of, 289photochargeable battery of, 437photoelectrochromism of, 267, 437preparation‘soluble’, 283write–erase efficiency, 286XPS, 288XRD, 283

Prussian brown, 26, 285Prussian green, 285, 334Prussian white, 57, 286pseudo viologen, see viologen, pseudopulsed potential, 104–5, 303, 305

coloration, 87viologens, 365enhanced ECD durability, 104response time acceleration, 11

purity, and colour analysis, 63, 65, 66purple line, and colour analysis, 64PVPD, immobilising electrochromes, 391, 391T,

395–410PVPD, see poly(1-vinyl-2-pyrrolidone-co-

N,N-methylenebisacrylamide)PXDOP, 328, 356PXDOT, 328pyrazolines, 387–8

optical properties, 388Tresponse times, 388T

pyridinoporphyrazine complexes, 264pyrrole, 313; for polymers of pyrrole,

see poly(pyrrole)oxidative polymerisation of, 313

Q-switching, of lasers, 267quantum-mechanical effects, tunnelling, 81quartz-crystal microbalance, see electrochemical

quartz-crystal microbalancequasi-electrochromism, 406–7quasi-reference electrodes, 40quasi-reversibility

fullerene electrochromes, 303, 305phthalocyanine electrochromes, 261viologen electrochromes, 358

quaternary oxides, 203

474 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 24: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

quinhydrone, 384quinones, 4, 30, 256, 381–5

amino-4-bromoanthaquinone-2-sulfonate, 384aminonaphthaquinone, 384benzoquinoneso-, 381; p-, 381, 382

bis(dimethylamino)diphenylamine, 4,40-, 384bromoanil, o-, 382, 383solubility product, 383

catechole, 270–4chloranilo-, 382, 383p-, 382type-II electrochrome, 382

contrast ratio, 348, 384, 385ECDs of, 384electrode potentials, 383Telectropolymerisation, 3842-ethylanthraquinone, 384fluoroanil, p-, 382naphthaquinone, 1,4-, 384cyclic voltammetry, 384type-I electrochromes, 384

optical properties, 383Tquinhydrone, 384

radical annihilation, and ECD self-erasure, 386Gentex mirror, 386

radical, viologen, see viologen, radicalradii, ionic, 112Raman spectroscopy, 86, 88, 103, 130, 357Randles–Sevcik equation, 49, 83rate

of cell operation, 41–6of coloration, 33, 139of charge transfer, 95of electron transfer, 42–3, 75of electronic conduction, 42of mass transport, 42

rate constant, electron transfer, 34, 46, 102rate limiting kinetics, 83

crystal structure changes, 87electronic motion, 99, 101, 115, 143ionic motion, 92, 163, 188, 390diffusion, 97

RBS, see Rutherford backscatteringRCA Laboratories, 29real, impedance, 50rear-view mirrors, see applications, ECD, mirrorsrechargeable batteries, manganese oxide, 176redox couple, 35, 37redox cycling, of Prussian blue, 283redox electrode, 50redox indicators, 374redox pairs, 101, 112–13, 115

niobium pentoxide, 102redox potential, see electrode potentialredox reaction, 35, 54redox states, of poly(aniline), 329, 331reference electrode 40, 48, 58, 70T, 149, 155, 157

primary standard, 40

quasi, 40saturated calomel electrode, 40, 48, 149, 155, 157,

169, 199, 262, 382, 406, 410secondary, 40silver–silver chloride, 58, 70T, 349, 350silver–silver oxide, 40

reflective, 81, 146, 148, 149T, 303, 305, 399, 407Tmetal oxides

copper oxide, 407Tiridium oxide, 400, 407Trhodium oxide, 188tungsten trioxide, 148–9, 149T, 400, 407T

miscellaneouslithium pnictide, 407Ttungsten oxyfluoride, 407T

polymersPEDOT, 407Tpoly(diphenylamine), 407Tpoly(pyrrole), 407T

Resazurin, coloration efficiency, 57TResearch Frontiers, 398resistance, 50of electrode substrate, 11

ITO, effect of, 349to charge transfer, 86, 105

Resorufin, coloration efficiency, 57Tresponse time, 10–11, 86, 98, 139, 141, 150, 268, 274metal oxides

bismuth oxide, 166iridium oxide, 156, 159molybdenum trioxide, 154nickel oxide, 164tungsten trioxide, 149, 150

mixtures of metal oxide, tungsten–ceriumoxide, 193

organic monomersaromatic amines, 375pyrazolines, 387, 388T

photoelectrochromism, 436phthalocyanine complexes, 261

lutetium phthalocyanine, 260, 261polymers

poly(aniline)s, 330, 331poly(thiophene)s, 325

pulsed potentials acceleration, 11tetrathiafulvalenes, 390Tviologens, 346, 349, 351, 361, 363

NTera viologen, 363, 364reversibility, 39rf sputtering, 137metal oxides

bismuth oxide, 166chromium oxide, 167cobalt oxide, 167manganese oxide, 175molybdenum trioxide, 151nickel oxide, 160, 162, 163, 164tantalum oxide, 182, 183–4tin oxide, 183titanium dioxide, 184tungsten trioxide, 140, 141, 148

Index 475

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 25: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

rf sputtering (cont.)vanadium pentoxide, 185, 187, 188

mixtures of metal oxideindium–tin oxide, 196molybdenum–tungsten oxide, 199titanium dioxide mixtures, 201tungsten–molybdenum oxide, 199

precious metal incorporation, 204rhodium oxide, 125, 179–81annealing of, 181coloration efficiency, 56T, 181cyclic voltammetry of, 181electrochemistry of, 180formation via

anodising Rh metal, 179sol–gel, 180, 181

hydrated, 180reflective, 188

Robin–Day classification, 142, 283rocking-chair mechanism, 16rotated ring-disc electrode, 358ruthenium complexes, 309dinuclear, 267–8trinuclear, 268

ruthenium dioxide, 181electrochemistry, 181formation via electrodeposition, 181; oxidising

Ru metal, 181incorporating platinum, 204T

ruthenium dithiolene complexes, 270–4, 309ruthenium hexacyanoferrate, see ruthenium purpleruthenium polypyridyl complexes, 256ruthenium purple, 285, 292XRD, 292

ruthenium tris(2,20-bipyridyl), 265, 266photosensitiser, 436, 437effects of ligands, 255T

ruthenium–iridium oxide, 203Rutherford backscattering, 103, 160, 205rutiles, 127

sacrificial anode methods, of Prussian blue, 283Safranin O, coloration efficiency, 57TSAGE Incorporated, 398, 447salt bridge, 39salvation stabilisation, 89samarium–vanadium oxide, 202coloration efficiency, 202

sapphire, 202saturated calomel electrode, 40, 48, 149,

155, 157, 169, 199, 262, 382, 406, 410saturation, and colour analysis, 56T, 63,

65, 66, 70scan rate, 48scanning tunnelling microscope, 263, 284SCE, see saturated calomel electrodeSchott Glass, ECD, 400SchottDonnelly mirror, 397screen printingcarbon black, 424carbon ink, 303, 305

tungsten trioxide, 140sealing, ECD, see encapsulation, ECDsecondary battery, ECD like, 54secondary electrochromism, 16–17, 165–90,

418, 421hexacyanoferrates, Prussian blue, 149, 290, 334,

363, 365, 444Tmetals, bismuth, 444Tmetal oxides

cobalt oxide, 170copper oxide, 165iridium oxide, 149, 444Tiron oxide, 174manganese oxide, 165, 176nickel oxide, 149, 165, 444T, 446, 447niobium pentoxide, 149, 178praseodymium oxide, 179tin oxide, 165titanium dioxide, 184tungsten trioxide, 421vanadium pentoxide, 149, 190, 438, 444T

mixtures of metal oxidecerium–titanium oxide, 444Tindium–tin oxide, 197titanium–cerium oxide, 444T

organic monomersphenothiazines, 362, 363tetramethyl phenylenediamine, as, 356,

375, 385oxyhydroxides, nickel, 400polymers

PEDOT, 149poly(aniline), 149, 290–1,

333, 334, 444Tpoly(p-phenylene terephthalate), 159

secondary reference electrodes, 40second-harmonic effects, 4Seebeck coefficient, 113self bleaching, of ECD, 15, 54, 150, 153self-doped polymers, PEDOT-S, 330, 331self-erasing ECD mirrors, 387semiconductor theory, 317semi-solid, ECD electrolyte, 446sensors, conducting polymers, and, 312SERS, see surface-enhanced Raman spectroscopySHE, see standard hydrogen electrodeshear planes, 103shutters, ECD applications, 363,

404–5side reactions, 43, 54, 76, 199

hydrogen evolution at MoO3, 199silica, ECD electrolyte thickener,

348, 419silicon carbide, as photoconductor, 436silicon phthalocyanine, 264silicon–cobalt–aluminium oxide, 204silicon–iridium oxide, 198silicone–niobium oxide, 200silver

conductive paint, 349electrodeposition of, 8, 27, 307

476 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 26: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

incorporated intoindium–tin oxide, 204Ttungsten trioxide, 204Tvanadium pentoxide, 204T

silver oxide, 40silver–silver chloride, reference electrode, 58, 70T,

349, 350silver–silver oxide, reference electrode, 40SIMS, 110, 111–12SIROF, 155site-saturationmodel, metal-oxidemixtures, 190, 192ski goggles, ECD application, 398smart cards, ECD applications, 363smart glass, 397; see also ECD, windows

non-electrochromic, 5smart windows, see ECD applications, windowsSmartPaper, 5sodium tungsten bronze, 27solar energy storage, ECD applications, 265, 266solar-energy conversion, conducting polymers, and,

312solar-powered cells, 15sol–gel

formation of phosphotungstic acid, in titaniumdioxide, 201

formation of poly(acrylate)–silica composite withpoly(aniline), 333

forming metal oxides, 134–6cobalt oxide, 135, 168, 195copper oxide, 170iridium oxide, 156iron oxide, 173, 174manganese oxide, 175, 176molybdenum trioxide, 135, 152nickel oxide, 135, 161–3niobium pentoxide, 134, 176, 178, 200rhodium oxide, 180, 181titanium dioxide, 135, 184tungsten trioxide, 135, 141, 149vanadium pentoxide, 135, 185

forming mixtures of metal oxidescobalt–aluminium oxide, 195indium–tin oxide, 196iridium–titanium oxide, 198iridium–silicon oxide, 198iron–niobium pentoxide, 200molybdenum–niobium oxide, 200molybdenum–tungsten oxide, 199nickel–tungsten oxide, 200niobium–iron oxide, 200niobium–molybdenum oxide, 200titanium dioxide mixtures, 201titanium dioxide, plus phosphotungstic

acid, 201tungsten–molybdenum oxide, 199

with precious metals, 204with titanium butoxide, 135

solid polymer matrix, mirror of, 397solid solution electrodes, 41solubility product

bromoanil, o-, 383

viologens, 351, 359solvatochromism, 3sonication, 133–4Sony Corporation, 351space charges, 105SPD, see suspended-particle devicespeciation analyses, 133spectral locus, 64, 65spectroelectrochemistry, poly(aniline)s, 333spectroscopy, impedance, see impedancespecular reflectance, see reflectivespillover, 407spin coatingannealing of product, 135formation of metal oxides, 131, 135–6

cerium oxide, 135cobalt oxide, 135iron oxide, 135, 174molybdenum trioxide, 135niobium pentoxide, 135, 177tantalum oxide, 135titanium dioxide, 135, 184tungsten trioxide, 135, 141vanadium pentoxide, 135, 185, 186

formation of mixtures of metal oxide, 136indium–tin oxide, 135, 196

formation of polymersPEDOT-S, 330, 331poly(acrylate)–poly(aniline) composite, 333polymeric polypyridyl complex, 254poly(thiophene)s, 327

spirobenzopyran, 438spiropyrans, 376SPM, see solid polymer matrixspray pyrolysisannealing of product, 135formation of metal oxides, 135

cerium oxide, 135, 166cobalt oxide, 135, 168, 169iridium oxide, 158molybdenum trioxide, 152nickel oxide, 135, 160tungsten trioxide, 135, 141

sputteringproduct oxide is polycrystalline, 81

sputtering in vacuo, 136–8; see also dc magnetronsputtering, electron-beam sputtering,evaporation and rf sputtering

stabilitymetal oxide, 128–30photochemical, 125, 128, 129

electrolyte, 445tungsten trioxide, 143

Stadsparkasse Bank, ECD, windows, 400standard electrode potential, 36, 37, 40of hydrogen electrode, 40

standard exchange current, 47standard exchange current density, 47standard hydrogen electrode (SHE), 40standard observer, in colour analysis, 63, 64standard rate constant, of electron transfer, 47

Index 477

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 27: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

star polymers, of poly(thiophene)s, 327Stark effects, 4, 25, 61stibdic acid polymer, ECD electrolyte, 421TSTM, see scanning tunnelling microscopestress, in crystal lattice, 130strontium titanate, 28nickel doped, 309photovoltaic, 437

sublimation, of lutetium phthalocyanine, 259substituted poly(thiophene)s, 320–1sub-stoichiometry, see oxygen deficientsubstratesantimony–copper alloy, 423antimony-doped tin oxide, 362carbon, 424

glassy carbon, 358graphite, 424

durability of, 444–5ECD, 422–4fluorine-doped tin oxide, 139, 166, 168, 171, 196,

205, 292, 362, 400, 406, 409, 422gold, 285indium–tin oxide, 17, 70T, 86, 96, 128, 129, 135,

138, 139, 141, 150, 151, 152, 156, 158, 159,164, 166, 167, 181, 182, 191, 257, 284, 293,294, 305, 306, 326, 330, 331, 333, 349, 375,382, 385, 404, 417, 422–3, 444–5, 447

K-glass, 422metallic, 423–4opaque, 423–4platinum, 153, 284, 312, 326, 409, 418, 422, 423resistance of, 11tin oxide, 289, 354titanium dioxide, 406viologens and effect of, 353

sulfuric acid, ECD electrolyte, 82, 86, 149, 178, 259,349, 409, 420

degradation by, 420sunglasses, ECD application, 401supporting electrolyte, 44surface enhanced Raman spectroscopy

viologens, 357surface potentials, 4surface states, 86surfactants, voltammetry and, 356Surlyn, ECD encapsulation, 425suspended-particle device, SPD, 5swamping electrolyte, 75, 76swapping, of counter ions, 87sweep rate, see scan rateswitchable mirrors, metal hydrides, 307symmetry factor, 95

Tafel region, 47, 48Tafel’s law, 43, 46, 47deviations from, 46

tailoring, of colours, 334tantalum oxide, 181–3, 198, 446as ECD electrolyte, 150, 420, 421T, 447electrochemistry, 183ion-conductive electrolyte, 181, 183

mechanical stability, 129optical properties, 183

tantalum oxide, coloration efficiency, 56T, 183overlayer of, 150plus platinum, 204Tprotonic motion, 183formed via

anodising a metal, 182CVD, 132, 182dc magnetron sputtering, 136, 182dip-coating, 182evaporation, 182laser ablation, 183rf sputtering, 182, 183–4spin coating, 135

water adsorbed on, 183tantalum–zirconium oxide, 203

coloration efficiency, 203TCNQ, see tetracyanoquinodimethanideTeflon, 409television

flat-panel screens, 402pixels, 402, 403plasma screen, 402

temperature management, ECD, applications, 265terminal effects, 86, 164, 423

suppressorschromium oxide, 423magnesium fluoride, 423

tethered electrochromes, see derivatised electrodestetracyanoquinonedimethanide species, 387, 388–9

optical properties, 389Treversibility, 389write–erase efficiency, 388

tetrahydrofuran, 327tetramethylphenylenediamine, 356

as secondary electrochrome, 356, 375, 385tetrathiafulvalene species, 30, 387, 389–90

ion hopping, 390ion tunnelling, 390optical properties, 390Tresponse times, 390T

Texas Instruments, 28, 352thermal evaporation, see evaporationthermal instability, nickel oxide, 160thermoelectrochromism, 408

lithium vanadate, 190thermodynamic enhancement, 83–5, 112

enhancement factor W, 83, 84thiazines, 385–7

ECDs, 385Methylene Blue, see Methylene Blue

thickener, see electrolyte thickenerthickness, changes in electrochrome, 51; see also

electrostrictionthiophene, 313

oligomers, 321Tthiophene acetic acid, 3-, 320three-electrode, potentiostatic coloration, 443tin oxide, 183

as ionic conductor, 159

478 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 28: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

as secondary electrochrome, 165dopedantimony-doped, see antimony-doped tin oxidefluorine-doped, see fluorine-doped tin oxidenickel-doped, 196

electrochromic host, 201formation via rf sputtering, 183Mossbauer spectroscopy, 184optical properties, 184infrared max, 183

substrate, 289, 354tin oxyfluoride, 205tin phosphate, as ECD electrolyte, 154tin–cerium oxide, 201tin–molybdenum oxide, 199

coloration efficiency, 199, 199T–201Ttitanium alkoxides, 184titanium butoxide, sol–gel precursor, 135titanium dioxide, 10, 11, 12, 125, 130,

184, 194anatase, 437as secondary electrochrome, 184coloured with pulsed current, 184diffusion coefficient, 184ECD electrolyte, 421T, 445electrolyte filler, 421

electrochemistry, 184electrochromic host, 201–2formed via

sol–gel, 201sputtering, 201

plus ferrocyanide, 201plus phosphotungstic acid, 201

mechanical stability, 129ellipsometry, 184formation viaalkoxides, 184dip coating, 135, 184evaporation, 8, 185Tlaser ablation, 184oxidation of Ti, 184peroxo species, 184rf sputtering, 184, 185Tsol–gel, 135, 184, 185Tspin coating, 135, 184thermal evaporation, 184

nanostructured, 360–4optical properties, 184coloration efficiency, 56T, 184, 185Toptically passive, 184

photo-activity, 445photoconductor, 437, 438photostability, 1153photovoltaic, 437

substrate, 406titanium oxyfluoride, 205

coloration efficiency, 205cycle life, 205electrochemistry, 205formation via dc-sputtering, 205

titanium oxynitride, 184

titanium propoxide, 201titanium–cerium oxideas secondary electrochrome, 444Tformed via dc magnetron sputtering, 136

titanium–cerium–titanium oxide, 203titanium–cerium–vanadium oxide, 203titanium–iridium oxide, 198titanium–iron oxidecharge transfer, 202formed via dip-coating, 201, 202

titanium–molybdenum oxide, 199coloration efficiency, 199

titanium–nickel oxide, 201formed via electrodeposition, 201

titanium–niobium oxide, 200titanium–tungsten oxide, 202titanium–zirconium–cerium oxide, 203formed via electrodeposition, 202

titanium–tungsten–vanadium oxide, 203titanium–vanadium oxide, 202optically passive, 202

titanium–zirconium–cerium oxide, 203titanium–zirconium–vanadium oxide, 203titration, electrochemical, 104tolidine, o-, 77, 78toluene, gasochromic, sensor for, 407Toluylene Red, coloration efficiency, 57Ttone, and colour analysis, 63toys, as ECD application, 363transfer coefficient, 47transmittivity, 62transport number, 44, 83transport, through liquid electrolytes, 75triflic acid, as ECD electrolyte, 150, 421trimethoxysilyl viologen, 346tris(pyrazolyl)borato-molybdenum complexes, 269–70tris-isocyanate complexes, 268tristimulus, and colour analysis, 63, 67TTF, see tetrathiafulvalenetungstate ion, from degradation of WO3, 89tungsten hexacarbonyl, 131, 141forming tungsten trioxide, 397

tungsten oxyfluoride, 153, 205–6, 446coloration efficiency, 205electrochemistry, 206overlayer of, 150, 446specular reflectance, 407Tformed via dc magnetron sputtering, 205

tungsten trioxide, 9, 10, 11, 25, 27, 28, 35, 40, 79, 81,103, 109, 110, 111, 115, 125, 130, 139–51,156, 187, 191, 200, 201, 206, 303, 305, 308,399, 410, 419, 436, 437, 438, 443, 446

activation energy, 111Tamorphous, 81, 88, 113Anderson transition, 81, 99, 142, 149annealing of, 88, 140, 148as primary electrochrome, 16, 149, 154, 159, 165,

170, 178, 179, 184, 190, 197, 290, 291, 333,334, 400, 421, 436, 438, 444T, 446, 447

as secondary electrochromes, 421bleaching, 106

Index 479

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 29: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

tungsten trioxide (cont.)bronze, 81, 113, 144charge transport through, 60, 85chemical reduction of, 25, 89, 109

chemical degradation, 149dissolution in acid, 89

chemical diffusion coefficient, 83, 84T, 85T, 195Tcolour, source of

F-centres, 145intervalence, 145oxygen extraction, 145polarons, 145

coloration mechanisma two-electron process, 103‘complicated’, 80involves WIV, 103

coloration, without electrolyte, 28conductivity, 142

dielectric properties, 143electron localisation, 142electronic, 99electrons are rate limiting, 143insulator at x ¼ 143ionic, 83low conductivity of, 81metallic at high x, 143polaron–polaron interactions in, 88

dry lithiation of, 418ECD, first, 27

in paper, 27, 405ECDs of, 28, 29, 61, 104, 139, 149, 397, 399, 402,

408, 409, 410ECD applications

display devices, 149mirrors, 149sunglasses, 401watch displays, 149windows, 149, 400

formation via, 16colloidal tungstate, 141CVD, 131, 141, 148, 150, 397dc magnetron sputtering, 136, 141deposition in vacuo, 129dip coating, 135, 141, 148Telectrodeposition, 132, 140, 141, 148Tevaporation, 81, 99, 140–1, 147, 148T, 150organometallic precursors, 141oxidising W metal, 81, 150peroxo species, 10, 133, 135, 141rf sputtering, 140, 141, 146, 147, 148, 148Tscreen printing, 140sol–gel, 135, 141, 148T, 149spin coating, 135, 141, 148Tspray pyrolysis, 135, 141

electrochemistry, 142electrophotography, 28electrostriction, 87, 129, 130, 445

ellipsometry of, 81, 143ferroelectric properties, 143gasochromic, 407Tmechanical stability, 129

memory effect, 149, 150mixtures of, 88, 191–3, 407

plus bismuth, 140; gold, 204T; indium, 140;Perspex, 193; platinum, 204T;silver, 140, 204T

neutron diffraction, 144optical effects, 144–9

colour, by reflection, 149Tcoloration efficiency, 56T, 148T, 191, 193, 201spectrum, 144

overlayer of, 446photo-chargeable battery, 437photochromism, 103proton-free layers while bleaching, 106reflective effects, 143, 148–9, 400, 407Tresponse time, 149, 150structure

crystal phases, 86crystalline, 98, 104cubic phase, 89morphology, 140oxygen deficiency, 102, 103, 140, 147perovskite, 140polycrystalline, 81structural changes, 143–4

stability, 129, 143water and, 89, 145, 150

hydrated, 115, 150tungsten–cerium oxide, 193, 195

formation via dc magnetron sputtering, 136response time, 193

tungsten–cobalt oxide, chemical diffusioncoefficient, 195T

tungsten–molybdenum oxide, 88, 191, 192, 199amorphisation, 193coloration efficiency, 56T, 192ECD, 397electron mobility, 192formation via

CVD, 397electrodeposition, 199peroxo species, 199rf sputtering, 199sol–gel, 199

intervalence, 192tungsten–nickel oxide, 130, 200, 436

coloration efficiency, 200formation via sol–gel, 200

tungsten–niobium oxide, 201coloration efficiency, 201

tungsten–titanium oxide, 202tungsten–vanadium oxide, 202

neutral colour, 399tungsten–vanadium–titanium oxide, 203tunnelling, 81Tyndall effect, 134type-I electrochromes, 33, 43, 45, 46, 54, 328, 346,

354, 356, 359, 396, 403, 417, 419, 425aromatic amines, 375coloration kinetics, 75–9, 403Gentex mirror, 396, 398, 400

480 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 30: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

naphthaquinones, 384type-II electrochromes, 33, 45, 46, 78, 79–115, 417,

419, 425aromatic amines, 375bleaching, 79–115carbazoles, 376chloranil, 382coloration kinetics, 75–9electrodeposition of metals, 303, 305viologens, 346, 348–9, 351, 354

type-III electrochromes, 45, 46, 54, 79, 397, 403,407, 417, 445

bleaching of, 79–115coloration, 79–115, 403concentration gradients, 303, 305diffusion coefficients through, 83formation via chemical tethering, 346, 361kinetic modelling, 91–115; see also coloration

modelsviologens, 346, 361viscous solvents immobilising, 391

types, of electrochrome, 7–9

u0v0 uniform colour space, 67, 70, 71Ucolite, ECD, 400underlayers, nickel, 86, 164uniform colour space, 66, 67, 70, 71UV electrochromism, 165

vacuum evaporation, product oxide isamorphous, 81

value, and colour analysis, 63vanadium dioxide, 190vanadium ethoxide, 131vanadium hexacyanoferrate, 292–3

cyclic voltammetry, 292XPS, 293

vanadium pentoxide, 16, 56T, 87, 109, 130, 156,185–90, 399, 446

annealing, 185anodising vanadium metal, 185, 186, 187as secondary electrochrome, 16, 149,

190, 438, 444Tbleaching rate, 188chemical diffusion coefficient, 85Tcoloration rate, 188cycle life, 188cyclic voltammetry, 187dissolution in acid, 186ECDs of, 189–90electrochemistry, 186–8quasi-reversible, 188

electrostriction of, 87, 129ellipsometry, 187formation viacathodic arc deposition, 185CVD, 132, 190Tdc sputtering, 136, 185dip coating, 135electrodeposition, 186electron-beam sputtering, 138–206

evaporation, 185, 186flash evaporation, 185laser ablation, 185peroxo species, 186rf sputtering, 185, 187, 188, 190Tsol–gel, 135, 185, 190Tspin coating, 135, 185, 186vanadium propoxide, 185xerogel, 185

intervalence effects, 188mixtures

as electrochromic host, 202compositeswith gold, 204, 204Twith melamine, 190, 202with poly(aniline), 190, 202with silver, 204T

optical properties, 188–9coloration efficiency, 56T, 189, 190T

structure, 186, 188monoclinic, 186

write–erase efficiency, 188xerogel, 202XPS, 189XRD, 185, 202

vanadium propoxide, forming vanadiumpentoxide, 185

vanadium–dysprosium oxide, 202vanadium–magnesium–nickel oxide, 203vanadium–molybdenum oxide, 199vanadium–neodymium oxide, 202vanadium–nickel oxide, 202optically passive, 202

vanadium–samarium oxide, 202coloration efficiency, 202

vanadium–titanium oxide, 202optically passive, 202

vanadium–titanium–cerium oxide, 203vanadium–titanium–tungsten oxide, 203vanadium–titanium–zirconium oxide, 203vanadium–tungsten oxide, 202coloration efficiency, 202neutral colour, 399

video display units, 402, 403violenes, 374viologens, 12, 17, 341–66, 385asymmetric, 355, 360bleaching, chemical, 359chain length, see viologens, substituentcharge movement through solid layers of, 81charge transfer complexation, 342–5, 353, 359potentiostatic, 358

via pulsed potentials, 365comproportionation of, 357–8, 365contrast ratio, 346, 349, 352counter ions, effect of, 352–4covalently tethered, 10, 12cycle life, 362cyclic voltammetry, 352, 355, 356, 357, 359degradation of, 357

oiling, 351

Index 481

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 31: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

viologens (cont.)derivatised electrodes, 348di-reduced, 343, 357, 358ECDs, 346–8, 349, 352, 357

five-colour, 385memory, 348, 362paper quality, 362see also cyanophenyl paraquat, heptyl viologen,

Nanochromics and NTeraultra fast, 363electrochemistry, 342, 353, 354–5

electrochemistry, quasi-reversibility, 358electrodeposition, 354electron transfer rate, 359

electropolychromic, 365ESR, 352, 356in Nafion, 405in paper, 365, 366, 405infrared spectroscopy of, 358memory effect, 348, 362micellar, 355–6

critical micelle concentration, 355, 356mixed valency of, 356modified, 360optical properties, 344T

coloration efficiency, 349, 361, 362, 363colours of, 343, 351extinction coefficient, 343, 344T, 349

polymers of, 328–9, 331, 347poly(pyrrole), 346poly(thiophene), 347oligomers, 364

photoelectrochemistry, 362photostability, 129

pseudobipyridine, 2,20-, 364phenanthroline, 3,8-, 360

radicals ofaging effects, 355, 357; see also recrystallisationchemical oxidation of, 352, 359dimerisation, 351, 355, 357, 358radical, nucleation, 358radical, recrystallisation, 357–8, 359radical, stability, 352T

reduction, multi-step, 353, 354–5occurs via nucleation, 354

response time, 346, 349, 351, 361, 363solubility product, 351, 359substituent, 349, 351–2

alkyl, 359aryl, cyanophenyl, see cyanophenyl paraquatbenzyl, 8, 344T, 346, 352T, 356, 358butyl, 352Tethyl, 344T, 352T, 438heptyl, see heptyl viologenhexyl, 352Tmethyl, see methyl viologenpentyl, 351, 352Tpropyl, 352Toctyl, 344T, 352T

substrates

effect of, 353on nanostructured titania, 360–4

tethered, 361type

type-I electrochrome, 328, 346, 354, 356, 359type-II electrochrome, 346, 348–9, 351, 354type-III electrochrome, 346, 361

write–erase efficiency, 348, 351, 356–60viscous solvents

forming type-III electrochromes, 391immobilised electrochromescarbazoles in, 391

diacetylbenzene, p-, 390T, 391Tdiethyl terephthalate, 391Tdimethyl terephthalate, 391TMethylene Blue, 391, 391T

thickenerspoly(AMPS), 391poly(aniline), 391poly(siloxane), 391PVPD, 391T, 395–410

visors, ECD application, 401volatile memory, 54voltammetry, cyclic, see cyclic voltammetryvoltmeters, 39

watch face, application, ECD, 443of tungsten trioxide, 149

wateradsorbed, 89, 183and molybdenum trioxide, 89and tungsten trioxide, 145, 150coloration, acceleration, 90counter-ion interaction, 89degrades metal-oxide films, 89, 128–9

dissolves ITO, 444ionisation of, 89occluded, 87, 89, 96–7, 156, 163solid oxide films, effect on, 89

wavelength maximum, 53change with insertion coefficient for WO3, 53

Wien effect, 4white point, and colour analysis, 64whitener, in ECD electrolyte, 159, 384, 418, 422windows, ECD, see applications, ECD windowsworking electrode, 48write–erase efficiency, 11–12, 129, 144–9, 156, 164,

259, 286, 348, 351, 356–60and tethered electrochromes, 12, 346

xerogel, 161, 185vanadium pentoxide, 202

Xerox, 5XPS of

indium–tin oxide, 197, 445iridium oxide, 26manganese oxide, 176molybdenum trioxide,1529, 153Prussian blue, 288tungsten trioxide, 103vanadium pentoxide, 189

482 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information

Page 32: 6.5 x 11 Double line - Cambridge University Pressassets.cambridge.org/97805218/22695/index/... · coloration efficiency, 10, 15, 16, 42, 54–60, 88, 139 and conjugation length, 60

X-ray reflector, ECD application, 397XRD of

molybdenum trioxide, 153praseodymium oxide, 179Prussian blue, 283ruthenium purple, 292tungsten trioxide, 140, 141vanadium pentoxide, 185, 202

XYZ-tristimulus, and colour analysis, 63

YAG laser, 266, 267ytterbium phthalocyanine, 261, 291

colour source, 261formed via plasma polymerisation, 291

yttrium–nickel oxide, 200

zinc iodide, ECD electrolyte, 408zinc phthalocyanine, chemical diffusion

coefficient, 85Tzinc TPP, 264zirconium dioxide, ECD electrolyte, 421Telectrochromic host, 203electro-inert, 203

zirconium–cerium oxide, 203zirconium–cerium–titanium

oxide, 203zirconium– titanium–vanadium

oxide, 203zirconium–tantalum oxide, 203coloration efficiency, 203

Z-scale, Kosower, 343

Index 483

© Cambridge University Press www.cambridge.org

Cambridge University Press978-0-521-82269-5 - Electrochromism and Electrochromic DevicesP. M. S. Monk, R. J. Mortimer and D. R. RosseinskyIndexMore information