6.5 - nerves (sjhs)

33
Topic 6.5 - Nerves 

Upload: minaash-bablani

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 1/33

Topic 6.5 - Nerves 

Page 2: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 2/33

6.5.1

Overview of the Nervous System

Three major functions:

• Sensory input   – sensory receptors receivesignal – peripheral nervous system (nerves,eyes, ears, etc.)

• Integration   – signal is interpreted andresponse started – central nervous system(brain and spinal cord)

• Motor output   – response to stimulus – peripheral nervous system (nerves, muscleor gland cells)

Page 3: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 3/33

Overview of the Nervous System

Page 4: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 4/33

Overview of the Nervous System 

Page 5: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 5/33

6.5.2

Neurons 

• Function - conduct messages to helpcommunication between parts of nervoussystem.

• Neurons are helped by numerous

supporting cells, which provide structuralsupport, protection, and insulation ofneurons.

Page 6: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 6/33

Neuron Structure 

• Cell body   – large central part of neuron – Contains nucleus and other organelles

• Processes   – fiberlike extensions of neuron

 – Dendrites –

  receive and move signal from tips to cell body (into neuron)

 – Axons  – carry signals away from cell body to 

tips (out of neuron)

6.5.2

Page 7: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 7/33

6.5.2

Neuron Structure 

Page 8: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 8/33

6.5.2

Neuron Structure 

• Schwann cells   – supporting cells that forminsulating myelin sheath layer.

 – Increases speed of signal

• Nodes of Ranvier   – spaces in between the

Schwann cells• Synaptic terminal   – end of axon where

neurotransmitters are released into synapse

Page 9: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 9/33

6.5.2

Nueron Structure 

Page 10: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 10/33

6.5.3

Types of Neurons

• Sensory neurons   – communicateinformation about external and internalenvironments to central nervous system(input)

• Interneurons   – link sensory response tomotor output.

• Motor neurons   – communicate responsefrom central nervous system to effectorcells (motor output)

• All combined, these neurons create a reflexarc, which integrates a stimulus andresponse.

Page 11: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 11/33

A Reflex Arc

Page 12: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 12/33

Membrane Potential

• Membrane potential   – the difference inelectrical charge across the plasmamembrane.

• The inside of the cell is negative with

respect to the outside.• Neurons have a resting membrane potential

of -70mV

Page 13: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 13/33

Membrane Potential

• Inside the cell:

 – Cations: potassium (K+) and few sodium (Na+)

 – Anions: proteins, sulfate, phosphate(collectively A-) and few chloride (Cl-)

• Outside the cell: – Cations: Sodium (Na+) and few potassium (K+)

 – Anions: chloride (Cl-) 

Page 14: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 14/33

Membrane Potential

Page 15: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 15/33

Membrane Potential – How it’s Created 

• The plasma membrane is more permeable (more

membrane channels) to K+ than to Na+. – Therefore, large amounts of K+ are transferred out of

the cell (down the concentration gradient)

 – Small amounts of Na+ are transferred into the cell

(down the concentration gradient)• The movement of K+ and Na+ across the

membrane generate a net negative membranepotential (-70mV)

• A sodium-potassium pump is used to move K+back into the cell and Na+ back out of the cell tomaintain the constant concentration gradients.

Page 16: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 16/33

Membrane Potential

Page 17: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 17/33

6.5.4

Changes in Membrane Potential

• Neurons are excitable cells – a stimuluscan change the neuron’s membrane

potential

• Resting potential   – membrane potential of

unexcited neuron (-70mV)• Neurons become “excited,” when a stimulus

opens a gated ion channel and increasesthe movement of K+ or Na+ across the

plasma membrane

Page 18: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 18/33

Changes in Membrane Potential 

Hyperpolarization:

• A stimulus opens a K+ ion channel andefflux of K+ out of the cell increases

• Membrane potential becomes more

negative

Page 19: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 19/33

Hyperpolarization

Page 20: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 20/33

Changes in Membrane Potential 

Depolarization:

• A stimulus opens a Na+ ion channel andinflux of Na+ into the cell increases

• Membrane potential becomes more positive

6.5.4

Page 21: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 21/33

6.5.4

Depolarization

Page 22: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 22/33

6.5.4

Action Potential 

• When depolarization reaches a certainpoint, the threshold potential is achieved.

• When threshold potential is reached, anaction potential is triggered.

 – Action potential is a nerve impulse.• Action potentials consist of a rapid

depolarization, a rapid repolarization, andundershoot (hyperpolarization)

Page 23: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 23/33

6.5.2

Action Potential

Page 24: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 24/33

6.5.5

Action Potential 

• Caused by voltage-gated channels  

 – Open and close in response to changes inmembrane potential 

 – K+ channels   – one gate; closed at restingpotential; opens slowly during depolarization 

 – Na+ channels   – two gates:

• Activation gate – closed at resting potential;opens rapidly during depolarization

• Inactivation gate – open at resting potential;closes slowly during depolarization

Page 25: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 25/33

6.5.5

Steps in Action Potential 

• Depolarization: Na+ activation gates openand Na+ enters cell.

• Repolarization: Na+ inactivation gatecloses (prevents Na+ influx) and K+ gate

opens and K+ exits cell.• Undershoot: K+ gates remain open and K+

continues to leave cell

• Resting state: All gates closed, Na+/K+pump (active transport) moves Na+ out andK+ in to restore resting potential.

Page 26: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 26/33

Steps in the Action Potential 

Page 27: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 27/33

Steps in Action Potential 

Page 28: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 28/33

Page 29: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 29/33

6.5.6

Synapses 

• Synapse   – junction between

two neurons – Transmitting cell  – 

presynaptic cell 

 – Receiving cell  – postsynapticcell 

• Neurons are separated by agap called the synaptic cleft.

• Messages are transmittedacross the synaptic cleft bychemical neurotransmitters.

Page 30: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 30/33

6.5.6

Steps in Synaptic Transmission

1. A nerve impulse reaches end ofpresynaptic neuron.

2. Presynaptic membrane depolarizes,opening voltage-gated Ca2+ channels.

 – Ca2+ ions diffuse into presynaptic neuron3. Influx of Ca2+ causes neurotransmitter

vesicles to fuse to presynaptic membraneand release neurotransmitters into the

synaptic cleft (exocytosis)

Page 31: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 31/33

6.5.6

Steps in Synaptic Transmission 

4. Neurotransmitter diffuses across synapticcleft and bind to receptors on postsynapticmembrane.

5. Receptors open gated ion channels in

postsynaptic membrane. – Specific receptors open specific ion channels 

 – May open Na+, K+, or Cl- channels

 – Different ions have different responses

(excitatory or inhibitory) 

Page 32: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 32/33

6.5.6

Steps in Synaptic Transmission 

6. Enzymes quickly degradeneurotransmitter, ending its activity.

 – E.g. acetylcholine is degraded bycholinesterase. 

7. Ca2+ is pumped out of presynaptic cellback into synaptic membrane.

Page 33: 6.5 - Nerves (SJHS)

8/3/2019 6.5 - Nerves (SJHS)

http://slidepdf.com/reader/full/65-nerves-sjhs 33/33

Chemical Synapse