6. basement geology

Upload: alji-neue-regime

Post on 13-Oct-2015

25 views

Category:

Documents


0 download

TRANSCRIPT

  • 6. Basement Geology

    by : Awang Harun Satyana

    Petroleum Geology of Java Area :Re-Visit Prolific Areas and Disclose Under-Explored Areas

    Bandung, 15 17 June 2009

  • Hamilton (1979)

  • Crustal Composition

    Manur and Barraclough (1994)

  • West Java Crustal Cross-section

    Koesoemadinata (2006)

  • East Java Crustal Cross-section

    Koesoemadinata (2006)

  • Java Plate and Crustal Composition

    Koesoemadinata (2006)

  • Java Basement : Recent Trends

    Recent studies on sedimentary provenances of southern Java indicated the contribution from Proterozoic continental fragments. Regional gravity traverses and modelings across

    Java show presences of continental basement. Recent tectonic reconstruction involves

    continent collision in Java before subduction.

  • Smyth et al. (2007)

  • East Java and Western AustraliaEast Java and Western Australia

    Age (Ma)

    400 800 1200 1600 2000 2400 2800 3200

    R

    e

    l

    a

    t

    i

    v

    e

    P

    r

    o

    b

    a

    b

    i

    l

    i

    t

    y

    Neoproterozoic Mesoproterozoic Paleoproterozoic Archean

    East Java

    Perth Basin, Western Australia

    Smyth et al. (2005)

  • Phanerozoic Fold Belts

    Archean Block

    Proterozoic Basins & Blocks

    Potential Australian SourcesPotential Australian Sources

    Pinjara Orogen

    Yilgarn Craton

    Capricorn Orogen

    Albany-Frazer Orogen (Pell et al. 1997; Brugier et al. 1999)

  • Relavtive

    Probability

    40

    35

    30

    25

    20

    15

    10

    5

    500 1000 1500 2000 2500 3000

    N

    u

    m

    b

    e

    r

    s

    o

    f

    g

    r

    a

    i

    n

    s

    Age (Ma)

    CAPRICORN OROGEN

    YILGARN CRATON

    Zircon U-Pb SHRIMP ages from Sircombeand Freeman, 1999; and Bruguier et al.,

    1999.

    Phanerozoic Neoproterozoic Mesoproterozoic Paleoproterozoic Archean

    PINJARA OROGEN

    ALBANY FRAZER OROGEN

  • What lies beneath East Java?

    continental fragment beneath the arc

    subducted continental fragment

    subducted sediments

    Hall (2007)

  • Archean Continental Crust

    Probably ophiolitic and arc type, not thinned

    Continental?Cretaceous accreted ophiolitic and arc rocks

    Archean Continental Crust

    Progo-Muria Lineament

    Smyth et al. (2007)

    Hamilton (1979)

  • Architecture :constructions, geometry, thickness, depth, extent

    Costraints - provide some degree of controls to the analysisprimitive crusts (geometry & density)

    Bathymetry & topography

    sedimentary thickness from seismic profiles and boreholes

    Analysis : 2-D forward modeling fitting models to observed data

    CRUSTAL ARCHITECTURE JAVA ISLAND, INDONESIAan approach via constrained gravity modelling

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7

    TRANSECTS OF GRAVITY ANALYSISTRANSECTS OF GRAVITY ANALYSIST1. T1. BayahBayah Dome (Dome (CiletuhCiletuh))T2. T2. BandungBandung BasinBasinT3. Caldera T3. Caldera PrianganPrianganT4. T4. KarangsambungKarangsambungT5. T5. LawuLawu MuriaMuriaT6. T6. KendengKendeng ZoneZoneT7. T7. MaduraMadura

    Sardjono (2006)

  • -400 -300 -200 -100 100 200 300 400Distance (Km)

    0

    G

    r

    a

    v

    i

    t

    y

    (

    m

    G

    a

    l

    s

    )

    FUNDAMENTAL CONSTRAINTFUNDAMENTAL CONSTRAINTPRIMITIVE / STANDARD CRUSTSPRIMITIVE / STANDARD CRUSTS(REFERENCE CRUSTAL MODELS)(REFERENCE CRUSTAL MODELS)

    ( Reference density = 2.67 g/cc )( Reference density = 2.67 g/cc )3

    D

    e

    p

    t

    h

    (

    K

    m

    )

    0zero level Bouguer gravity

    continental shield transition zone open marine environment

    zero level Bouguer gravity zero level free-air gravity

    0

    10

    20

    30

    40

    50

    -50

    100

    -100

    Granitic rocks2.67 g/cc

    Andesitic rocks2.72 g/cc

    upper mantle material3.07 g/cc

    3 upper mantlematerial

    3.07 g/cc3

    upper mantle material3.07 g/cc

    3

    seawater = 1.03 g/cc

    Basalt layer 2.77 g/cc

    standard thicknesscontinental crust

    Sardjono (2006)

  • T1 T1 CiletuhCiletuh--BayahBayah DomeDome

    T2 T2 BandungBandung BasinBasin

    T3 Caldera T3 Caldera PrianganPriangan

    T5 T5 LawuLawu--MuriaMuria

    T4 T4 KarangsambungKarangsambung

    T6 T6 KendengKendeng ZoneZone

    T7 T7 MaduraMadura StraitStrait

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7

    approx100km

    Sardjono (2006)

  • 5km

    40 km

    30

    20

    10

    0

    -600 -500 -400 -300 -200 -100 0 100

    -600

    -400

    -200

    0

    200

    400 mGal

    digitizedcomputed

    Indian Ocean1.03 g/cc

    Java Sea 1.03 g/cc

    Sundaland2.67 g/cc

    standard thickness

    of continental crust

    50km

    upper mantle3.07 g/cc

    5

    k

    m

    50km

    5

    k

    m

    Constrained gravity modelling Crustal Architecture, Transect Ciletuh-Bayah Dome

    T1

    SW NE

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7Sardjono (2006)

  • 5km

    Indian Ocean1.03 g/cc

    Indian Ocean Crust2.77 g/cc

    Sundaland2.67 g/cc

    upper mantle3.07 g/cc

    Java Sea 1.03 g/cc

    digitizedcomputed

    0 100 200 300 400 500 600 km

    Neogenesediments2.37 g/cc

    standard thickness

    continental crust

    40 km

    30

    20

    10

    0

    -200

    -100

    0

    100

    200

    300 mGal

    50km

    5

    k

    m

    Constrained gravity modelling Crustal Architecture, Transect Ciletuh-Bayah Dome

    T1

    SW NE

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7Sardjono (2006)

  • 5km50km

    5

    k

    m

    Indian Ocean1.03 g/cc

    Indian Ocean Crust2.77 g/cc

    Sundaland2.67 g/cc

    FragmentedSundaland2.67 g/cc

    Neogenesediments2.37 g/cc TransitionalCrust

    2.72 g/cc(andesitic)

    upper mantle3.07 g/cc

    Java Sea 1.03 g/cc

    digitizedcomputed

    0 100 200 300 400 500 600 km

    standard thicknesscontinental crust

    40 km

    30

    20

    10

    0

    -200

    -100

    0

    100

    200

    300 mGal

    50km

    5

    k

    m

    Constrained gravity modelling Crustal Architecture, Transect Ciletuh-Bayah DomeT1

    SW NE

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7Sardjono (2006)

  • 5km

    Indian Ocean1.03 g/cc

    Indian Ocean Crust2.77 g/cc

    Sundaland2.67 g/cc

    Neogenesediments2.37 g/cc

    upper mantle

    3.07 g/cc

    Java Sea 1.03 g/cc

    digitizedcomputed

    0 100 200 300 400 500 600 km

    standard thicknesscontinental crust

    40 km

    30

    20

    10

    0

    -200

    -100

    0

    100

    200

    300 mGal

    50km

    5

    k

    m

    Constrained gravity modelling Crustal Architecture, Transect Ciletuh-Bayah DomeT1

    SW NE

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7Sardjono (2006)

  • Indian Ocean1.03 g/cc

    upper mantle3.07 g/cc

    upper mantle3.07 g/cc

    Java Sea 1.03 g/cc

    Sundaland2.67 g/cc

    2.67 g/cc

    Indian Ocean Crust2.77 g/cc

    Neogenesediments2.37 g/cc

    Neogene sediments2.37 g/cc

    Indian Ocean1.03 g/cc

    40 km

    30

    20

    10

    0

    -200

    -100

    0

    100

    200

    300 mGal

    digitizedcomputed

    0 100 200 300 400 500 600 km

    standard thicknesscontinental crust5km

    50km

    5

    k

    m

    Constrained gravity modelling Crustal Architecture, Transect Ciletuh-Bayah Dome

    T1

    SW NE

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7Sardjono (2006)

  • Crustal Architecture, Transect Karangsambung

    5km

    Indian Ocean 1.03 g/cc

    Indian Ocean Crust2.77 g/cc

    Sundaland2.67 g/cc

    upper mantle3.07 g/cc

    Java Sea 1.03 g/ccNeogene sediments

    2.37 g/cc

    40 km

    30

    20

    10

    0

    -200

    -100

    0

    100

    200

    300 mGal

    digitizedcomputed

    0 100 200 300 400 500 600 700 km

    50km

    5

    k

    m

    standard thicknessof continental crust

    T4

    SW NE

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7Sardjono (2006)

  • 5km

    Crustal Architecture, Transect Madura Strait

    0 100 200 300 400 500 600 km40 km

    30

    20

    10

    0

    -200

    -100

    0

    100

    200

    300 mGal

    digitizedcomputed

    Indian Ocean Crust2.77 g/cc

    Sundaland2.67 g/cc

    upper mantle3.07 g/cc

    Neogene sediments2.37 g/cc

    Java Sea 1.03 g/cc

    MaduraStrait

    1.03 g/cc

    Indian Ocean 1.03 g/cc

    50km

    5

    k

    m

    standard thicknessof continental crust

    T7

    SW NE

    T1T1

    T2T2

    T3T3

    T4T4

    T5T5

    T6T6

    T7T7Sardjono (2006)

  • CONCLUSIONSCONCLUSIONS

    Java is constructed primarily of continental crust which is Java is constructed primarily of continental crust which is believed to be the southern part of the believed to be the southern part of the SundalandSundaland (?)(?)

    The continental crust experienced thinning, attenuation The continental crust experienced thinning, attenuation and fragmentation due to the tectonics which in turn, and fragmentation due to the tectonics which in turn,

    promote formation of sedimentary basins and volcanismspromote formation of sedimentary basins and volcanisms High gravity with long wavelengths along the southern High gravity with long wavelengths along the southern

    part of Java should be attributed to the elevated part of Java should be attributed to the elevated MohoMoho The shorter wavelengths with a high level of gravity The shorter wavelengths with a high level of gravity

    anomaly, especially in the southwest, represents high anomaly, especially in the southwest, represents high level or exposure of level or exposure of ultrabasicultrabasic slices slices slab break slab break (?)(?)

    Sardjono (2006)

    CRUSTAL ARCHITECTURE JAVA ISLAND, INDONESIAan approach via constrained gravity modelling

  • Seubert and Sulistianingsih (2008)Regional Gravity Traverses and Crustal Modelling

  • Seubert and Sulistianingsih (2008)

    Possibility of Presence of Continental Fragments at Southern Java

  • Indian Ocean1.03 g/cc

    upper mantle3.07 g/cc

    upper mantle3.07 g/cc

    Java Sea 1.03 g/cc

    Sundaland2.67 g/cc

    2.67 g/cc

    Indian Ocean Crust2.77 g/cc

    Neogenesediments2.37 g/cc

    Neogene sediments2.37 g/ccIndian Ocean1.03 g/cc

    40 km

    30

    20

    10

    0

    -200

    -100

    0

    100

    200

    300 mGal

    digitizedcomputed

    0 100 200 300 400 500 600 km

    standard thicknesscontinental crust

    50km

    5

    k

    m

    SW NE

    Sardjono (2006)

    Seubert and Sulistianingsih (2008)

    Similar Gravity Data but Different Modelling

  • Granath et al. (2009)

    Crustal Architecture of

    the Eastern Java

  • Granath et al. (2009)

    Crustal Architecture of

    the Eastern Java Based on Long-

    Offset 2D Seismic Imaging

  • Tectonic Evolution of Western Indonesia

    rafted microcontinent from Gondwana (?) collisional boundary at southeastern margin

    Budiyani et al. (2003)

    Tectonic Evolution of Western IndonesiaTectonic Evolution of Western IndonesiaTectonic Evolution of Western Indonesia

  • Budiyani et al. (2003)

    Tectonic Evolution of Western Indonesia

  • SERIBU PLATFORMKARIMUNJAWA ARC

    BOGOR TROUGH

    KENDENG TROUGH

    Basement Depth Structure Map

    Sapiie et al. (2003)

  • Java Basement : Preliminary Conclusions

    Two schools of thought : transitional (intermediate) (Manur and Barraclough, 1994; Koesoemadinata, 2006) vs. continental (Budiyani et al., 2003; Smyth et al., 2005, 2007; Seubert and Sulistianingsih, 2008)

    Composition of Quaternary volcanic arc (andesitic) indicate intermediate composition, not continental composition

    No strong support for continental basement, no continental exposure Gravity modelings are various for same data and traverse There is indication for presence of continental fragments at southern Java,

    but not as extent as recent publications (Budiyani et al., 2003; Smyth et al., 2005, 2007; Seubert and Sulistianingsih, 2008)

    Expected continental slivers (small fragment) at southern Java : Jampang, Nanggulan, Bayat, south Cilacap

    Petroleum Geology of Java Area :Re-Visit Prolific Areas and Disclose Under-Explored Areas Bandung, 15 17 June 2009Crustal CompositionWest Java Crustal Cross-sectionEast Java Crustal Cross-sectionJava Plate and Crustal CompositionJava Basement : Recent TrendsEast Java and Western AustraliaPotential Australian SourcesWhat lies beneath East Java?Java Basement : Preliminary Conclusions