5ns peaking time transimpedance front end amplifier for the silicon pixel detector in the na62...

1
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b , A. Ceccucci b , P. Jarron b , A. Kluge b , M. Noy b , S. Tiuraniemi b,c F. Marchetto d a Université catholique de Louvain, Louvain-la- Neuve, Belgium b CERN, Geneva, Switzerland, c University of Oulu, Finland d INFN, Torino, Italy We present the design and test results of a front-end prototype circuit developed in 130 nm CMOS technology for the readout of the Gigatracker pixel detector experiment in NA62 at CERN. The main challenges for the front end amplifier are very high signal hit rate (dead time less than 100ns, average signal rate 100 kHz) and 100 ps timing resolution combined with the level of affordable power consumption (<2W/cm 2 ) and noise (<200eENC). The predicted ENC levels for the nominal detector capacitance of 250 fF and maximum leakage current of the order of 20 nA are below 200 e -. The overall power consumed by the analogue and digital part of the pixel cell is in the order of 130 µW. The optimization of the design as well as test results of the prototype front end chip are evaluated and discussed. ABSTRACT The NA62 Gigatracker consists of three pixel detector stations of area around 16 cm 2 placed in vacuum. The demanding requirements are minimum detector mass and sub 0 0 C degree operating temperature of the hybrid pixel detectors. FE electronics are bump bonded to the sensors, with an affordable level of consumed power being below 1mW/pixel. The hit rate in the center of the beam is around 150 MHz/cm 2 . The required timing precision with a high hit rate impose to use a fast transimpedance amplifier with a very short peaking time limiting the time walk of the comparator. The lower limit for the value of the peaking time is determined by the achievable charge collection time from the Silicon detector. Although the thinning of the detector down to 200 µm minimize the charge collection time, the optimum value of the peaking time for the shaper is around 5 ns taking into account the signal speed of the sensor. The NA62 Experiment at the CERN SPS Architecture of the NA62 Pixel Measurements of the NA62 Analog Pixel “End-of column Time to Digital Converter” option Time Walk compensation: Time-over-Threshold correction (TOT). The time measurement is done using a DLL with a TDC at the End of Column, using a reference clock of 320MHz. Delay of cell delay ~ 97.65ps Ibias of the delay cell ~ 80µA, Vsupply = 1.2 V, Pexpected= 96 µW per delay cell Read-Out Demonstrator Architecture of the NA62 Pixel TLs (GHz bandwidth) drive with current mode pre-emphasis -> Differential Switch(±100A) TL Receiver generate pulse edges of 50ps to drive TDC inputs The preamplifier is built with the cascode amplifier with an NMOS input transistor of dimensions 9.6 µm width and 300 nm length with a simple resistive and capacitive feedback defining the pulse gain at the level of 30 mV/fC. The dimensions of the input transistor were optimized for the detector capacitance of 250fF. The low value of the input capacitance allows to use a simple cascode stage offering very high bandwidth (1 GHz gain bandwidth product) at very affordable power consumption (60 µW), the rather moderate open loop gain is in the range of 45 dB, the input impedance of the preamplifier stays in the range of 1 to 2 kΩ for 1 GHz bandwidth, which is sufficiently low to provide the efficient charge collection from the detector (crosstalk between neighboring pixels less than 4 %). The first differential pair translates the external differential threshold voltage VT1-VT2 for the internal threshold of the comparator. A fully differential structure of the comparator provides very good rejection of common mode noise from the digital power supply and good threshold uniformity. The entire preamplifier-shaper circuit has a gain of 70 mV/fC. The overall shaping function of the preamplifier and shaper is equivalent to CR-RC3 with the peaking time around 5.5 ns. The following 3 stages of the comparator provide high sensitivity together with very high speed at a reasonable power (50 µW). The simulated time jitter (transient noise simulation) of the full front end stimulated with 3 fC signal is in the order of 30 ps RMS what agrees well with the predicted ENC values. Analogue Output Noise: ˜500μVRMS->˜56 e− enc (Agrees with simulation for case with no detector) The analog static consumption for 60 pixels is ~8 mA Simulations of the NA62 Analog Pixel ENC noise as a function of input capacitance for the 20 nA maximum detector leakage current. For the detector capacitance of 250 fF the predicted ENC will be below 200e- Jitter peak to peak =0.25ns, at T=25 0 C and injected charge of 2.5fC Digital Output: 5 test pixels with the discriminator outputs exposed-> S-Curve/Error function, Gain, Noise, estimates of the pixel-pixel offset and gain variation, jitter, time-walk and time-over- threshold Analogue test pixel output with ~2fC charge injected into ~20fF capacitor, provides rise time ~0.5ns Photograph of the chip bonded to the pcb S-Gain curve for pixel10, with error bars Gain values extracted from the S-Curve for the 5 test pixels at linear region 1- 3fC Temperature dependence: Pixel 10 has been used to evaluate the influence of temperature for the range from -5 to 35C Offset values extracted from the S-Curve for the 5 test pixels at linear region 1-3fC For 2fC-> ΔTW(simulation) -5,35C ~0.13ns ΔTW(measured)-5,35C~0.1ns For 2fC-> ΔTOT(simulation)-5,35C~0.6ns ΔTOT(measured)-5,35C~0.75ns Time Walk and Time Over Threshold simulations performed at a temperature of 25C IEEE NSS/MIC conference 25-31 October Orlando, Florida, USA Session N13, poster 41

Upload: brittany-williams

Post on 22-Dec-2015

217 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: 5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P

5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker

E. Martina,b

J. Kaplonb, A. Ceccuccib, P. Jarronb, A. Klugeb, M. Noyb, S. Tiuraniemib,c F. Marchettod

aUniversité catholique de Louvain, Louvain-la-Neuve, BelgiumbCERN, Geneva, Switzerland, cUniversity of Oulu, FinlanddINFN, Torino, Italy

We present the design and test results of a front-end prototype circuit developed in 130 nm CMOS technology for the readout of the Gigatracker pixel detector experiment in NA62 at CERN. The main challenges for the front end amplifier are very high signal hit rate (dead time less than 100ns, average signal rate 100 kHz) and 100 ps timing resolution combined with the level of affordable power consumption (<2W/cm 2) and noise (<200eENC). The predicted ENC levels for the nominal detector capacitance of 250 fF and maximum leakage current of the order of 20 nA are below 200 e -. The overall power consumed by the analogue and digital part of the pixel cell is in the order of 130 µW. The optimization of the design as well as test results of the prototype front end chip are evaluated and discussed.

ABSTRACT

The NA62 Gigatracker consists of three pixel detector stations of area around 16 cm2 placed in vacuum. The demanding requirements are minimum detector mass and sub 00C degree operating temperature of the hybrid pixel detectors. FE electronics are bump bonded to the sensors, with an affordable level of consumed power being below 1mW/pixel. The hit rate in the center of the beam is around 150 MHz/cm2.

The required timing precision with a high hit rate impose to use a fast transimpedance amplifier with a very short peaking time limiting the time walk of the comparator. The lower limit for the value of the peaking time is determined by the achievable charge collection time from the Silicon detector. Although the thinning of the detector down to 200 µm minimize the charge collection time, the optimum value of the peaking time for the shaper is around 5 ns taking into account the signal speed of the sensor.

The NA62 Experiment at the CERN SPS

Architecture of the NA62 Pixel

Measurements of the NA62 Analog Pixel

“End-of column Time to Digital Converter” option

Time Walk compensation: Time-over-Threshold correction (TOT). The time measurement is done using a DLL with a TDC at the End of Column, using a reference clock of 320MHz.

Delay of cell delay ~ 97.65psIbias of the delay cell ~ 80µA, Vsupply = 1.2 V, Pexpected= 96 µW per delay cell

Read-Out Demonstrator Architecture of the NA62 Pixel

TLs (GHz bandwidth) drive with current mode pre-emphasis -> Differential Switch(±100A)TL Receiver generate pulse edges of 50ps to drive TDC inputs

The preamplifier is built with the cascode amplifier with an NMOS input transistor of dimensions 9.6 µm width and 300 nm length with a simple resistive and capacitive feedback defining the pulse gain at the level of 30 mV/fC. The dimensions of the input transistor were optimized for the detector capacitance of 250fF. The low value of the input capacitance allows to use a simple cascode stage offering very high bandwidth (1 GHz gain bandwidth product) at very affordable power consumption (60 µW), the rather moderate open loop gain is in the range of 45 dB, the input impedance of the preamplifier stays in the range of 1 to 2 kΩ for 1 GHz bandwidth, which is sufficiently low to provide the efficient charge collection from the detector (crosstalk between neighboring pixels less than 4 %).

The first differential pair translates the external differential threshold voltage VT1-VT2 for the internal threshold of the comparator. A fully differential structure of the comparator provides very good rejection of common mode noise from the digital power supply and good threshold uniformity. The entire preamplifier-shaper circuit has a gain of 70 mV/fC. The overall shaping function of the preamplifier and shaper is equivalent to CR-RC3 with the peaking time around 5.5 ns.

The following 3 stages of the comparator provide high sensitivity together with very high speed at a reasonable power (50 µW). The simulated time jitter (transient noise simulation) of the full front end stimulated with 3 fC signal is in the order of 30 ps RMS what agrees well with the predicted ENC values.

Analogue Output Noise: ˜500μVRMS->˜56 e− enc (Agrees with simulation for case with no detector)The analog static consumption for 60 pixels is ~8 mA

Simulations of the NA62 Analog Pixel

ENC noise as a function of input capacitance for the 20 nA maximum detector leakage current. For the detector capacitance of 250 fF the predicted ENC will be below 200e-

Jitterpeak to peak=0.25ns, at T=250C and injected charge of 2.5fC

Digital Output:

5 test pixels with the discriminator outputs exposed-> S-Curve/Error function, Gain, Noise, estimates of the pixel-pixel offset and gain variation, jitter, time-walk and time-over-threshold

Analogue test pixel output with ~2fC charge injectedinto ~20fF capacitor, provides rise time ~0.5ns

Photograph of the chip bonded to the pcb

S-Gain curve for pixel10, with error bars Gain values extracted from the S-Curve for the 5 test pixels at linear region 1-3fC

Temperature dependence:

Pixel 10 has been used to evaluate the influence of temperature for the range from -5 to 35C

Offset values extracted from the S-Curve for the 5 test pixels at linear region 1-3fC

For 2fC-> ΔTW(simulation)-5,35C~0.13ns ΔTW(measured)-5,35C~0.1ns

For 2fC-> ΔTOT(simulation)-5,35C~0.6ns ΔTOT(measured)-5,35C~0.75ns

Time Walk and Time Over Threshold simulations performed at a temperature of 25C

IEEE NSS/MIC conference 25-31 October Orlando, Florida, USA Session N13, poster 41