56377

Upload: p-s-lakshmi-kanthan

Post on 08-Mar-2016

1 views

Category:

Documents


0 download

DESCRIPTION

standard

TRANSCRIPT

  • St. JOSEPHS COLLEGE OF ENGINEERING, CHENNAI- 119

    St. JOSEPHS INSTITUTE OF TECHNOLOGY, CHENNAI- 119

    I-YEAR B.E./ B.TECH. ( COMMON TO ALL BRANCHES )

    MATHEMATICS I (MA6151)

    CYCLE TEST III (QUESTIONS WITH ANSWERS)

    UNIT -1 MATRICES

    1. If

    1

    2

    1

    is an eigen vector of

    021

    612

    322

    , find the corresponding eigen value.

    Ans: (A - I)X = 0

    21

    612

    322

    0

    0

    0

    x

    x

    x

    3

    2

    1

    21

    612

    322

    0

    0

    0

    1

    2

    1

    (2)(1)+2(2)+(-3)(-1) = 0 = 5.

    2. Determine so that (x2 + y2 +z2) + 2xy 2xz + 2zy is positive definite.

    Ans: The matrix of the given quadratic form is

    11

    11

    11

    A

    D1 = , D2 = )1)(1(11

    1 2

    & D3 = |A| = (+1)2( -2)

    The Quadratic form is positive definite if D1, D2 & D3> 0 > 2

    3. State Cayley Hamilton theorem.

    Ans: Every square matrix satisfies its own characteristics equation.

    4. Find the sum and product of the eigen values of the matrix

    312

    301

    221

    Ans: Sum of the eigen values = Sum of the main diagonal elements = 1+0+3 = 4

    Product of the eigen values = |A|= 13

    5. One of the eigen values of

    814

    184

    4-47

    is -9, Find the other two eigen values.

    Ans: If 1 , 2be the other two eigen values, then

  • 1 + 2 9 = 7 8 8 = 9 (since sum of the eigen values = sum of the leading diagonal elements) 1 + 2 = 0 =>1 = 2 (1) 912 = |A| = 441 ( since product of the eigen values = | A | )

    12 = 49 =>2

    1

    49

    (2)

    substitute in (1) we get, 72 (1) => 71 . Hence the other two eigen values are 7 and -7.

    UNIT -2 SEQUENCES & SERIES

    6. Test the convergence of 1

    1

    n log n

    Ans: The series 1

    1

    n log n

    is a positive term series decreases as n increases after n 2.

    So we can apply integral test.

    22 2

    1 (1/ x)dx dx log (log x)

    x log x log x

    By integral test, the series diverges.

    7. Define Monotonically increasing and Monotonically decreasing sequence with examples

    Ans: A sequence { an } is said to be monotonically increasing if an an+1 , for every n

    A sequence { an } is said to be monotonically decreasing if an+1 an , for every n

    Eg. an = { n } is monotonically increasing

    an = { n } is monotonically decreasing

    8. Define Absolute convergence.

    Ans: If the series of arbitrary terms 1 2 3 .. .nu u u u be such that the series

    1 2 3 . nu u u u is convergent, then the series nu is said to be absolute convergent

    9. Test the convergence of

    n

    n1

    n! 2

    n

    Ans: Let

  • n (n 1)

    n n 1n (n 1)

    (n 1) nn 1

    (n 1) nn nn

    n

    n

    n

    n

    n! 2 (n 1)! 2u , u

    n (n 1)

    u (n 1)! 2 nlim lim

    u (n 1) n! 2

    nlim 2

    n 1

    1 2lim 2 1

    1 e1n

    By Ratio Test,

    n

    n

    n! 2

    n

    converges.

    10. Define Conditional convergence with example

    Ans: If nu is convergent and | |nu is divergent, then nu is said to be conditionally convergent.

    ex: 1 1 1

    1 ...2 3 4

    UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS

    11. Find the centre of curvature of the curve y = x2 at the point (1,1)

    Ans: 2121

    1

    2 2

    1 31 4;

    2

    yyx x y y y

    y y

    Centre of curvature is 3

    4,2

    12. Find the envelope of the family of lines cos sin 1x y

    a b , where being the parameter.

    Ans: (x/a) cos + (y/b) sin =1 --------(1)

    Diff. w.r.to partially, we get

    (x/a) sin + (y/b) cos =0 --------(2)

    (1)2 + (2)2 2

    2

    a

    x (cos2 + sin2) + 2

    2

    b

    y(sin2 + cos2) =1 2

    2

    2

    2

    b

    y

    a

    x = 1

    13. Find the curvature of the curve 2 22 2 5 2 1 0x y x y

  • Ans: Radius of the circle 2 2 25 1 1 21

    16 4 2 4f g c radius of curvature

    Curvature1 4

    21

    14.

    Find the evolute of the curve whose centre of curvature of the curve is

    2 32 3 , 2x a at y at

    Ans: 3 2

    3262 27 4 23 2

    x a yt a y x a

    a a

    Equation of the evolute is 3227 4 2ay x a

    15. For the catenary y = c cosh (x/c), find the curvature.

    Ans: 1 sinhx

    yc

    , 2

    1cosh

    xy

    c c

    3 / 2

    2

    2

    2

    1 sinh1

    1cosh

    x

    c y c

    x c y

    c c

    UNIT IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES

    16.

    If , ,x y z u y z uv z uvw find ( , , )

    , ,

    x y z

    u v w

    Ans: 1 ; 1 ;y uv z uv w x u uv u v z uvw

    J =

    uvuwvw

    uvwuwv

    uv

    w

    z

    v

    z

    u

    zw

    y

    v

    y

    u

    yw

    x

    v

    x

    u

    x

    wvu

    zyx

    )1()1(

    01

    ),,(

    ),,( = u2v

    17. If cos , sinx r y r find ( , )

    ( , )

    r

    x y

    Ans:

    cos sin( , )

    sin cos( , )

    rx yr

    rr

    ( , ) 1 1

    ( , )( , )( , )

    r

    x yx y rr

    18. If y xx y c , find

    dx

    dy

  • Ans: Let , y xf x y x y c

    /

    /

    dy f x

    dx f y

    1

    1

    log

    log

    y x

    y x

    yx y y

    x x xy

    19. Find Taylors series expansion of e

    xsin y near the point 1,4

    up to first degree terms.

    Ans: f (x , y) = ex sin y , f x(x , y) = ex sin y, fy(x ,y) = e

    x cosy

    f(1,4

    ) =2

    1

    e, fx(1,

    4

    ) =2

    1

    e, fy(1,

    4

    )=2

    1

    e .

    f(x ,y) = f(a ,b) + [(xa) f x(a ,b) + (yb) f y(a ,b)] =

    4)1(1

    2

    1 yx

    e

    20. Find the maxima and minima of f(x, y) = 3x2 + y2 + 12x +36

    Ans: fx= 6x +12 = 0 x = 2; fy= 2y = 0 y = 0 .

    The stationary point is (2,0).

    A = f xx = 6 ,B = f xy = 0 , C = f yy = 2, AC B2 = 12 > 0 and A > 0 .

    f is minimum at (2,0) and the minimum value is f (2,0) = 24.

    UNIT V MULTIPLE INTEGRALS

    21. Evaluate .

    22 x

    1 0

    x dy dx

    Ans:

    2

    22 2

    01 0 1

    xx

    x dy dx x y dx = 2

    3

    1

    15

    4x dx

    22. Find the area bounded by the lines x = 0, y = 1, y = x using double integration.

    Ans: Area = 2

    1

    2

    1

    0

    21

    0

    0

    1

    0 0

    ydyxdxdydydx

    yy

    R

    23. Evaluate

    a b

    2 2

    dxdy.

    xy

    Ans: I = 1 log22

    bax

    y dy =

    y

    dylog2][logb

    a

    2

    = ydy

    2

    blog

    a

    2

    =

    2log

    b

    a2logy

    =

    2log

    b]2log[log a =

    2log

    b

    2log

    a

    24. Shade the region of integration in

    2 2

    2

    a a x

    0 ax x

    dxdy.

  • Ans: y = 2xax x2 + y2 ax 0 which is a circle

    with centre at ( a 2 , 0) and radius a 2

    y = 22 xa x2 + y2 = a2 which is a circle

    with centre at (0,0) and radius a

    25. Change the order of integration

    1

    0

    x2

    x2

    dxdyy),(xf .

    Ans:

    Given, I = 1

    0

    x2

    x 2

    dxdy)y,x(f

    After changing order of integration

    y 2 y1 2

    0 0 1 0

    I f(x,y) dx dy f(x,y) dx dy

    26. Evaluate R

    22 dx)dyy(x over the region R for which x, y 0, x+y 1.

    Ans: The region of integration is the triangle bounded by the

    lines x 0, y 0 and x y 1

    Limits of y : 0 to 1x ; Limits of x : 0 to 1

    R

    22 dxdy)yx( = 1 1

    2 2

    0 0

    x

    x y dydx

    = dx3y

    yx1

    0

    x1

    0

    32

    1 32

    0

    (1 )(1 )

    3

    xx x dx

    13 4 4

    0

    (1 )

    3 4 12

    x x x

    =

    6

    1

    12

    1

    4

    1

    3

    1

    27. Change the order of integration in

    2 2a a x2 2

    a 0

    (x y )dxdy.

    Ans: I = xddyyxax

    ax

    xay

    y

    22

    0

    22 )( ( Correct Form )

    order)thechanging(afterdydx)y(x

    ay

    0y

    yax

    yax

    22

    22

    22

    28. Change the order of integration in

    2 y1

    0 y

    xy dx dy

    .

  • Ans: Given, I = 1

    0

    2 y

    y

    dydxxy

    After changing order of integration

    2

    1

    2

    0

    1

    0 0

    xxdxdyxydxdyxyI

    29.

    Compute the area enclosed by y2 = 4x, x + y = 3 and y = 0.

    Ans: Area A =

    R

    dydx =

    2

    0

    3

    42y

    y

    yx

    dydx = 22

    3

    / 40

    y

    yy

    x dy

    2

    0

    322

    0

    2

    1223

    43

    yyydy

    yy

    y

    = 6 2 12

    8 = 4

    3

    2 =

    3

    10

    30. Evaluate

    a sin

    0 0

    rdr d.

    Ans: a

    0

    sin

    0

    drdr =

    dra

    sin

    00

    2

    2

    =

    ad

    0

    2

    2

    sin

    =

    2

    sin2aa

    4

    1

    31. Evaluate

    52

    0 0

    r sin dr d.

    Ans: I =

    ddrr

    0

    5

    0

    2sin =

    dr

    0

    5

    0

    22

    2sin =

    d

    0

    2sin2

    25

    =

    d 0

    2cos14

    25 =

    02

    2sin

    4

    25

    =

    0

    2

    2sin

    4

    25 =

    4

    25

    32. Evaluate

    2

    2 2 20 0

    r dr d.

    (r a )

    Ans: I =

    2

    0 0222 )(

    ar

    ddrr =

    22 12 2 22 ( )0 0

    d rd

    r a =

    2

    0 022

    1

    2

    1

    dar

  • =

    2

    02

    10

    2

    1

    da

    = 2

    2 0

    1 1

    2 a

    = 24a

    33. Evaluate / 2 sin

    0 0

    .

    r dr d

    Ans: / 2 sin

    0 0

    I r dr d

    sin/ 2 2

    0 02

    rd

    / 2 2

    0

    sin0

    2d

    / 2

    2

    0

    1sin

    2d

    1 1

    .2 2 2

    8

    34.

    Evaluate

    cos

    0 0

    r drd .

    Ans: I = cos

    2

    20 0

    r

    d = 1

    2

    0

    2cos d = 2

    0

    221 cos2

    d = 1

    2 2 4

    35. Transform the integration

    0

    y

    0

    dydx into polar coordinates.

    Ans: Let x = r cos and y = r sin , dxdy = r drd

    2

    4

    00 0

    r

    yddrrdydx

    36. Compute the entire area bounded by r2 = a2 cos2. Ans:

    Area A = R

    ddrr

    4/

    0

    2cos

    0

    4

    a

    r

    drdr

    cos2/ 4 2

    0 0

    42

    a

    rd

    = 4

    4

    0

    2

    2

    2cos

    d

    a4

    2 2

    0

    sin 22

    2a a

    37. Transform the integration from Cartesian to polar co-ordinates

    22ax x2a 2 2(x y )dxdyx 0 y 0

    .

    Ans: Let x = r cos and y = r sin,dxdy = r drd

  • a

    x

    xax

    y

    dydxyx2

    0

    2

    0

    222

    )( =2 cos/ 2

    3

    0 0

    a

    r dr d

    38. Express the region bounded by 2 2 20, 0, 0, 1x y z x y z as a triple integral.

    Ans: Here z varies from 0 to 2 21 x y , y varies from 0 to 21 x , x varies from 0 to 1

    2 22 111

    0 0 0

    x yxI dz dy dx

    39. Evaluate

    1 1 1x y ze dxdydz.

    0 0 0

    Ans: I =

    1

    0

    1

    0 0

    zyx dxdydze1

    = dydzee zyzy 1

    0

    1

    0

    1

    = 1

    2 1

    0

    2z z ze e e dz 323 1133 eeee

    40.

    Evaluate

    x y4 x

    0 0 0

    z dxdy dz.

    Ans: I =

    4

    0

    x

    0

    yx

    0

    dxdydzz = dydxzx

    yx

    4

    00 0

    2

    2 = dydxyx

    x 4

    002

    1

    = 24

    0 0

    1

    2 2

    x

    yxy dx

    =

    242

    0

    1

    2 2

    xx dx

    = 1634

    3

    4

    34

    0

    34

    0

    2

    xdxx