56_18_oevermann

Upload: andres-reyes

Post on 07-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 56_18_Oevermann

    1/25

    Euler-Euler and Euler-Lagrange Modeling of

    Wood Gasification in Fluidized Beds

    Michael Oevermann Stephan Gerber Frank Behrendt

    Berlin Institute of Technology

    Faculty III: School of Process Sciences and Engineering

    Department of Energy Engineering

    Chair for Energy Process Engineering and Conversion Technologies for

    Renewable Energies

    Fasanenstr. 89, 10623 Berlin, Germany

    CFB-9, May 13-16, 2008, Hamburg

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    2/25

    Overview

    Motivation

    Modeling approaches

    Euler-Lagrange / Discrete Element Method (DEM)

    Euler-Euler

    Results

    Summary and outlook

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    3/25

    Motivation - simulation of wood gasification

    Renewed interest in producing gas from biomass

    Gasification in fluidized bed reactorsLack of detailed knowledge about the complex interactions

    between heterogeneous reactions and the fluid mechanics

    in fluidized beds

    Develop closure laws for large scale models

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    4/25

    CFD modeling for particulate flow

    Continuum models Euler-Lagrange DNS

    tractable problem size

    computational cost

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    5/25

    Euler-Lagrange model

    Basis:

    OpenFOAM (www.opencfd.co.uk/openfoam)

    Modules:

    1 Solver for the gasphase (OpenFoam)

    2 Lagrangian particle tracking / DEM (OpenFOAM)

    3 Particle combustion / gasification model

    (here: simple zero dimensional particle model)

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    6/25

    Euler-Lagrange model gasphase

    Mass / momentum balance:

    ()t + u = s

    (u)t + {uu} + p + g = Fs

    Energy / species balance:

    (E)t + [(E + p)u] + q = Qs

    (uY)t + [Yu] w = ,s

    s, Qs, ,s

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    7/25

    Euler-Lagrange model particle tracking

    Equation of motion for every single particle

    midvidt

    + vidmidt

    =

    j

    Fij

    Jid

    dt+

    dJidt

    =

    j

    Mij

    Fluid dynamic forces ( drag, buoyant, Magnus, etc.) with

    empirical correlations

    Contact forces via spring-damper modell

    Multiple particle contacts possible

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    8/25

    Euler-Lagrange contact forces by DEM

    (Cundall & Strack, 1979)

    i j

    kn

    n t

    kt

    t

    Fnij = knn+ nvnij

    Ftij = min

    t|Fnij |

    t, t|vtij|

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    9/25

    Euler-Lagrange model coupling

    Detailed single particle

    (Eulerian)

    Solid phaseQp,

    mp s

    Rp, m

    g,

    vg,

    g,

    Tg

    Fs,

    Qsi ,

    (e. g. Tp,Yp

    s )

    (Lagrangian)

    inert

    reacting

    r

    si

    (t),v

    si

    (t)pi(t),Tsi(t),Qsi

    rsr(t), vsr(t)

    pr(t)

    model (1d)

    Rp(t),mp(t), Tp(t)

    mps(t), Q

    p(t)

    Particle library

    mps(t;), Q

    p(t;)

    Rp(t;), mp(t), Tp(t;)

    g(x, t), vg(x, t)

    Tg(x, t),Yg

    s(x, t)

    Gas phase

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    10/25

    Euler-Euler model

    Public Domain Code MFIX (www.mfix.org)

    1 gas phase

    3 solid phases: wood (4mm), 2 x charcoal (1mm, 2mm)

    5 homogeneous gas phase reactions (rev.),

    4 heterogeneous reactions carbon

    Models for primary and secondary pyrolysis

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    11/25

    Gas phase chemistry

    Simple reaction mechanism

    Species: H2, O2, N2, CO, CO2, CH4, H2O, tar

    1. 2 CO + O2 2 CO2

    2. 2 H2 + O2 2 H2O

    3. 2 CH4 + 3 O2 2 CO + 4 H2O

    4. CO + H2O H2 + CO2

    5. CH4 + H2O CO + 3 H2

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    12/25

    Pyrolysis / heterogeneous reactions

    Primary pyrolysis (Grnli, Melan (2000))

    wood H2O(g), CO(g), CO2(g), H2(g), CH4(g), tar(g), char(s).

    Secondary pyrolysis (Boroson et al. (1989))

    tar CO(g), CO2(g), H2(g), CH4(g), tarinert.

    Heterogeneous reactions

    C + O2 CO2 (Ross and Davidson(1982))

    C + CO2 2 CO (Biggs and Agarwal(1997))

    C + H2O CO + H2 (Hobbs et al. (1992))

    C + 2 H2 CH4 (Hobbs et al. (1992))

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    13/25

    Reactor at the department

    Holzdosierung

    Holzzufuhr

    Reaktor

    Gasfilter

    Gasbrenner

    95

    42

    600

    1100

    5

    0

    50

    134

    fuelinlet

    air

    productgasoutlet

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    14/25

    Reactor at the department

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    15/25

    Reactor inlet boundaries

    95

    42

    600

    110

    0

    5

    0

    5

    0

    134

    fuelinlet

    air

    productgasoutlet wood inflow:

    wood T = 150 C, v = 0.08 cm/s

    bulk density 0.385 g/cm

    3

    air inflow:

    gas species 21% O2, 79% N2

    T = 400 C, v = 25 cm/s

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    16/25

    Results - Euler-Euler model

    play play

    http://pdf/mfixsimu1.mpghttp://pdf/mfixsimu2.mpghttp://pdf/mfixsimu2.mpghttp://pdf/mfixsimu1.mpghttp://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    17/25

    Results exhaust gas composition

    Tar

    H2O

    CH4

    CO

    CO2

    Time / s

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    18/25

    Results - Euler-Euler model

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    E1 E2 E3 E4 E5 E6 E7 E8 E9E10

    E11E12

    E13E14

    E15E16

    E17S1 S2

    Vol % hydrogen carbon monoxidecarbon dioxide hydrocarbons

    Experiments Simulations

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    19/25

    Euler-Lagrange / DEM results

    Model assumptions:

    proportional particle massloss and shrinking

    transient calculation of particle mass-loss and energy

    no heterogeneous reaction (in progress)

    no particle-particle heat transfer

    no radiation

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    20/25

    Euler-Lagrange / DEM results

    play play

    http://pdf/cfbmoviemittwoch.mpghttp://pdf/cfbmoviedonnerstag.mpghttp://pdf/cfbmoviedonnerstag.mpghttp://pdf/cfbmoviemittwoch.mpghttp://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    21/25

    Summary and outlook

    Euler-Lagrange and Euler-Euler model for wood

    gasification in fluidized beds

    Euler-Euler: reasonable agreement with experimental data

    Euler-Lagrange: allows detailed investigation ofparticle/chemistry/gas phase interactions

    Refined chemistry

    Parallelization of the DEM modellQuantitative comparison between Euler-Euler,

    Euler-Lagrange/DEM und experiments

    Coupling Euler-Lagrange with Euler-Euler methods

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    22/25

    The financial support of the

    Deutsche Bundesstiftung Umwelt (DBU)

    is gratefully acknowledged!

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    23/25

    Governing equations Euler-Euler model

    Species mass balance gas phase

    t

    (ggYgs) + (ggvgYgs) = (DgsYgs) + Rgs

    Mass balance solid phase

    t

    (mmYms) + (mmvsmYms) = (DmsYms) + Rms

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    24/25

    Governing equations Euler-Euler model

    Momentum balance solid phase

    t(mmvm)+(mmvmvm) = mpm+m

    nml=1l=m

    Iml+Igm+mmg

    http://find/http://goback/
  • 8/4/2019 56_18_Oevermann

    25/25

    Governing equations Euler-Euler model

    Energy balance gas phase

    ggcpgTgt

    + vg Tg = qg +Nm

    m=1

    gmTm Tg Hg

    Energy balance solid phases

    mmcpmTm

    t

    + vm Tm = qm gmTm Tg Hm

    http://find/http://goback/