5.2 greenhouse effect

19
5.2 Greenhouse Effect Pp 122 - 130

Upload: dian

Post on 25-Feb-2016

36 views

Category:

Documents


0 download

DESCRIPTION

5.2 Greenhouse Effect. Pp 122 - 130. Assessment Statements. 5.2.1 Draw and label a diagram of the carbon cycle to show the processes involved. 5.2.2 Analyse the changes in concentration of atmospheric carbon dioxide using historical records. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 5.2 Greenhouse Effect

5.2 Greenhouse Effect

Pp 122 - 130

Page 2: 5.2 Greenhouse Effect

Assessment Statements5.2.1 Draw and label a diagram of the carbon

cycle to show the processes involved.5.2.2 Analyse the changes in concentration of

atmospheric carbon dioxide using historical records.

5.2.3 Explain the relationship between rises in concentrations of atmospheric carbon dioxide, methane and oxides of nitrogen and the enhanced greenhouse effect.

5.2.4 Outline the precautionary principle.5.2.5 Evaluate the precautionary principle as a

justification for strong action in response to the threats posed by the enhanced greenhouse effect.

5.2.6 Outline the consequences of a global temperature rise on arctic ecosystems.

Page 3: 5.2 Greenhouse Effect

Draw and label a diagram of the carbon cycle to show the processes involved.

You must be able to draw and label the complete carbon cycle.

The details of the carbon cycle should include the interaction of living organisms and the biosphere through the processes of photosynthesis, cell respiration, fossilization and combustion.

Page 4: 5.2 Greenhouse Effect
Page 5: 5.2 Greenhouse Effect

Roles of living organisms in the carbon cycle plants fix carbon dioxide during

photosynthesis producing carbon compounds such as

sugars carbon compounds in plants are eaten

by primary consumers (herbivores) carbon compounds in primary

consumers are eaten by secondary consumers & passed along the food chain

carbon compounds are digested & absorbed by consumers

carbon dioxide is released by cell respiration in plants & animals

plants & animals die and are decomposed by saprotrophic bacteria & fungi

carbon dioxide released by cell respiration in bacteria & fungi (decomposers)

enzymes are released to digest carbon compounds in organic matter

forest fires (combustion) releases carbon dioxide

humans burn fossil fuels adding carbon dioxide to the atmosphere

Page 6: 5.2 Greenhouse Effect

Changes in atmospheric carbon dioxide concentration over time

Page 7: 5.2 Greenhouse Effect

increase in machinery & industrialization has caused rise in levels of atmospheric carbon dioxide concentrations since the 1880’s.

human activities such as the burning of fossil fuels & transportation have all contributed to the increase.

scientists estimate the levels have increased by over 25% as compared to the levels before industrialization.

scientists take measurements by looking at the concentration of carbon dioxide in bubbles of air trapped in Antarctic ice at different dates.

this data shows that before the 1880’s the carbon dioxide concentrations remained fairly steady at about 270 ppm for about 2000 years.

concentration begins rising after 1880 and is now more than 100 ppm higher than in 1880.

Page 8: 5.2 Greenhouse Effect
Page 9: 5.2 Greenhouse Effect

Global trend in Greenhouse Gases

Page 10: 5.2 Greenhouse Effect

Relationship between the rise in the concentration of atmospheric CO2 & the enhanced greenhouse effect

CO2 is a greenhouse gas increases in CO2 enhance the

greenhouse effect greenhouse effect is a natural

phenomenon but not its increase Earth receives short wave radiation

from the sun These waves reflected from Earth as

longer wave radiation, infra red or heat CO2 (greenhouse gases) absorb longer

wave radiation, infra red & heat global warming happened during same

period as the rise in CO2 CO2 concentration correlated positively

with global temperature this causal link between CO2

concentration & global temperature is accepted by most scientists

However, there is no proof that man-made increases in CO2 have caused global warming

Page 11: 5.2 Greenhouse Effect

Relationship between rises in concentrations of atmospheric carbon dioxide, methane and oxides of nitrogen and the enhanced greenhouse effect.

water vapour, carbon dioxide, methane & oxides of nitrogen are greenhouse gases which occur naturally in low concentration in the atmosphere

human activity has increased the normal level of these gases in the atmosphere in recent years

incoming shorter wave radiation from the Sun is re-radiated as longer wave radiation

mainly in the form of heat which is captured by the greenhouse gases

this trapping of radiations increases the atmospheric temperature

at a higher rate than normal creating a positive imbalance in global temperature

which threatens ecosystems, climatic patterns & ocean patterns

Earth’s history had many fluctuations in greenhouse gases levels & global temperature

some scientists are skeptical about enhanced greenhouse effect

Page 12: 5.2 Greenhouse Effect

The enhanced greenhouse effect

Page 13: 5.2 Greenhouse Effect
Page 14: 5.2 Greenhouse Effect

Causes and consequences of the enhanced greenhouse effectburning of fossil fuels such

coal, oil & gas releases carbon dioxide

deforestation & loss of ecosystems reduces uptake carbon dioxide by plants

methane is emitted from cattle, melting permafrost & decomposing waste at dump sites

accumulation of greenhouse gases cause heating of the atmosphere leading to global warming

global warming causes melting of ice caps, glaciers, permafrost, sea level rise, flooding & droughts

global warming also causes changes in ocean currents, produce more powerful hurricanes & extreme weather conditions

there is also changes in species distributions, migration patterns, increased decomposition rates, increases in pest & pathogen species, loss of ice habitats

Page 15: 5.2 Greenhouse Effect

The precautionary principle those proposing something must

prove that it causes no harm before they start to do it

objectors do not have to prove that there will be harm

activities that threaten the environment are banned

trials (tests) must be done first before changes are made

precautionary principle is applied when possible consequences are severe

precautionary principle should be used in the case of global warming

action should be taken to reduce CO2 emissions before proved it is the cause of global warming

where there are threats of serious or irreversible environmental damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation

Page 16: 5.2 Greenhouse Effect

Precautionary principle as a justification for strong action in response to the threats posed by the enhanced greenhouse effect

Supporters of the precautionary principle advocate for action now to reduce greenhouse gases before it is too late. Anyone producing greenhouse gases should be required to prove that those gases will not have harmful effects.

Those on the opposite side of this issue such as farmers, manufacturers and transportation providers, argue that if there is no proof that greenhouse gases are the cause then they should not have to invest money in new technologies to reduce such gases.

Page 17: 5.2 Greenhouse Effect

The global consequence is that unless all countries take precautionary measures, which can be more expensive than the traditional methods, the polluting competitors will offer products at a reduced price and drive the ecologically conscious companies out of business.

A global effort to support the ecologically friendly companies could drive their less ecologically friendly competitors out of business.

Most scientists believe that the old saying “an ounce of prevention is worth a pound of cure” is relevant here. A more sustainable future is something worth investing in.

There are also many ethical issues at play here and the future generations to consider. The time for more sustainable development is here. Humans are not only impacting each other but all organisms within the biosphere.

Page 18: 5.2 Greenhouse Effect

Consequences of a global temperature rise on arctic ecosystems

Global warming seems to have the largest & most obvious effects right now on the arctic ecosystems.

The Arctic includes the areas of North America, Greenland, Iceland, Norway and Russia which are north of the Arctic Circle.

It also includes Arctic Ocean which is covered by a huge mass of ice surrounding the North Pole.

Over the century there have been many changes in the ecosystems in this area noted by scientists and the people who live there.

Page 19: 5.2 Greenhouse Effect

changes in the arctic ecosystems include the following:

increased amounts of ice melting each year.

melting of glaciers & breaking of polar ice sheets into icebergs that will eventually melt - the Arctic ice cap may disappear altogether.

permafrost will begin melting during the summer which means the rate of decomposition will increase resulting in the release of more carbon dioxide.

species will have to move north which will alter food chains and disrupt animals in the higher trophic levels.

many marine species could face extinction due to their sensitivity to temperature changes in the ocean.

Polar bears & other ice dwelling organisms will lose their habitat where they feed and breed.

warmer temperatures will increase the threat of pests and disease such as malaria.

the rise in sea levels will flood low-lying areas.

extreme weather events (storms) will become more frequent.