5 dimensional analysis

Upload: anonymous-z4fe39j

Post on 04-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 5 Dimensional Analysis

    1/12

    Chapter 5Dimensional Analysis

    Page 1 of 12

    5_001 A gas having a molecular weight of 86 is flowing at a rate of 1.38 kg/min through a tube having an actual i.d.of 1.20 in. At a cross section where the absolute pressure is 330 atm and the temperature is 340 F, the true

    density is 1.2 times that predicted by the perfect-gas law, and the viscosity is 2.0 x 10-6

    force-pound xseconds per square foot. Calculate the numerical value of the dimensionless Reynolds number.

    Solution:

    Reynolds number:

    NRe

    = DG/

    F

    = 2.0 x 10-6 Force-pound x seconds per square foot

    = Fg

    c

    = (2.0 x 10-6)(32.2)

    = 6.44 x 10-5 lb matter / sec-ftD = 1.2 in = 0.1 ft

    G = 4w/D2

    w = 1.38 kg/min = 0.050715 lb/sec

    G = 4(0.050715)/[(0.1)2] = 6.457234

    NRe

    = (0.1)(6.457234)/6.44 x 10-5

    NRe

    = 10,027 . . . Ans.

    5_002 It is desired to investigate the drag force on geometrically similar solid objects placed in a free stream offlowing fluid. In the general case, the force Fexerted on the body is thought to depend on the characteristiclength of the object x, the approach velocity V, the acceleration due to gravity g, and the following properties

    of the fluid: the density , the viscosity , the surface tension , and the velocity Va

    at which sound waves

    are propagated in the liquid.

    a. What is the numbern

    of algebraically independent dimensionless groups which may be used to

    correlate the variables?

    b. Determine a set of these n

    dimensionless groups, using the force Fin only one group.

    c. Calculate the numerical value of each of these groups except the one in which the force Fappers,for the condition in which x= 7 inches, g= 32.2 ft/(sec)(sec), V= 11 ft/sec, and the fluid is water at 68 F

    (assume Va = 4900 ft/sec).

    Solution:

    Variables -

    aV,,,g,V,x,F, Then:

    ( ) 0V,,,g,V,x,F, a = Dimension of Factors: MLF

    Dimensions Factors

    F x V g Va

    M 1 1L 1 1 1 -3 1 -1 1

    -1 -2 -1 -1

    F 1 1

    a. nf= no. of physical factors of importance

    nf= 8

    ni= nd = number of dimension

    ni= 4

  • 7/29/2019 5 Dimensional Analysis

    2/12

    Chapter 5Dimensional Analysis

    Page 2 of 12

    n

    = no. of independent dimensionless group

    n

    = nf- n

    i= 8 - 4 = 4

    b. Incompatible factors

    ( ) ( ) ( )L

    M&,T

    1,L

    M,Lx 3 ==

    ==

    FF

    x

    x

    x

    L

    M

    xLM

    xL

    23

    33

    =

    ===

    ==

    =

    Remaining factors:

    aV,g,V,

    xV;

    x

    x

    x

    LV

    F

    x;

    x

    F

    L

    F

    gx;

    x

    x

    x

    Lg

    xV;

    x

    x

    x

    LV

    a42a

    3

    2

    32

    232

    2

    22

    2

    12

    ====

    ===

    ==

    ==

    ====

    c. Values:x = 7 inches = 0.583333 ftg = 32.2 ft/(sec)(sec)V = 11 ft/secV

    a= 4900 ft/sec

    at 68 F

    = 62.282 lb/cu ft

    = 6.75 x 10-4 lb/(sec)(ft)

    = 72.7 Dynes/cm2

    = 0.67534 N/ft2

    ( )( )( )

    ( ) ( ) ( )

    ( )( )( )263,737

    106.75

    62.28249000.583333

    xV

    36,730106.75

    32.20.58333362.282

    gx

    592,063106.75

    62.282110.583333

    xV

    4

    a4

    4

    32

    2

    32

    2

    41

    =

    ==

    =

    ==

    =

    =

    =

    5_003 Below are some data from an early article on the performance of a packed regenerator. In heating runs, thepacked spheres were initially at an elevated uniform temperature, and air at room temperature entered atconstant mass rate. In cooling runs, the spheres were initially at room temperature, and air at approximately

  • 7/29/2019 5 Dimensional Analysis

    3/12

    Chapter 5Dimensional Analysis

    Page 3 of 12

    200 F entered at constant mass rate. In the data given below the relation between the temperature ofentering air (t

    1), the temperature of exit air (t

    2), and initial uniform temperature (t

    0) of the bed of spheres is

    given by the dimensionless term y= (t2

    - t0)/(t

    1- t

    0). The heat capacity of the vertical cylindrical column was

    small compared with that of the spheres used for packing, and the column was well insulated.Correlate all the values ofygiven below, plotted as ordinates against some suitable abscissa:

    Material Steel Steel Steel Steel Lead Glass

    Bed depth, inches ..... 5.125 10.25 5.125 2.56 9.55 9.71

    Bed diam, in .............. 4 8 4 2 8 8

    Particle diam, in ......... 0.125 0.25 0.125 0.0625 0.233 0.237

    Sp ht .......................... 0.111 0.111 0.111 0.111 0.0347 0.168

    Sp gr ......................... 7.83 7.83 7.83 7.83 11.34 2.6

    k, Btu/(hr)(ft)(deg F) .. 26 26 26 26 19.5 0.4

    Air superficial mass

    vel., lb/(sec)(sq ft) ... .. 0.15 0.15 0.3 0.3 0.3 0.3

    y , , , , , ,

    sec sec sec sec sec sec

    0.1 300 600 140 . . . 113 127

    0.2 360 680 160 . . . 133 149

    0.3 380 740 190 . . . 147 166

    0.4 410 810 205 100 162 182

    0.5 450 890 220 . . . 176 199

    0.6 480 970 240 . . . 191 215

    0.7 510 1050 250 . . . 206 232

    0.8 570 1140 300 140 222 250

    0.9 650 1300 330 170 248 280

    The quantity is the elapsed time at which the indicated ywas measured.

    Solution:

    L - ftD

    t- ft

    Dp

    - ft

    cp

    - Btu/lb-ft

    - lb/cu ftk - Btu/sec-fr-deg FG

    o- lb/sec-sq ft

    - time, sec

    MLTFH System:

    Hoppt Kq,,Gk,,,c,D,DL,y = p

    Hnm

    oife

    pc

    pb

    ta KGkcDDLy =

    ( ) ( ) ( ) ( )p

    2

    2n

    m

    2

    if

    3

    ecba

    H

    ML

    L

    M

    LT

    H

    L

    M

    MT

    HLLL1

    =

  • 7/29/2019 5 Dimensional Analysis

    4/12

    Chapter 5Dimensional Analysis

    Page 4 of 12

    (1) L: a + b + c - 3f - i - 2m + 2p = 0

    (2) L: e + i - p = 0

    (3) M: -e + f + m + p = 0

    (4) T: -e - i = 0

    (5) : -i - m + n - 2p = 0

    (4) i = -e(5) e + i - p = 0

    e - e - p = 0p = 0

    (3) -e + f + m + p = 0-e + m + n = 0e = m - n

    Equating:e = f + m = m - n

    (1) a + b + c - 3f - i - 2m + 2p = 0a + b + c - 3f + e -2m = 0a + b + c - 3f + e - 2(e - f) = 0a + b + c - 3f + e - 2e + 2f = 0a + b + c -f -e = 0

    a + b + c = f + ef = a + b + c -e

    Then:

    p = 0a = ab = bc = ce = ef = a + b + c -ei = -em = e -f = 2e - a - b -c

    n = -f = e - a - b -c

    Then:cbaecba2e

    oeecbae

    pc

    pb

    ta GkcDDLy

    ++=

    e2

    op

    c

    o

    pb

    o

    t

    a

    o rk

    Gc

    G

    D

    G

    D

    G

    Ly

    =

    Note: Strouhal Numbers:

    G

    LN

    oLSl, =

    GDN

    o

    tDSl, t

    =

    G

    DN

    o

    pDSl, p

    =

    Ratio of Peclet Number to Strouhal Number:

  • 7/29/2019 5 Dimensional Analysis

    5/12

    Chapter 5Dimensional Analysis

    Page 5 of 12

    k

    Gc

    N

    N2

    op

    Sl

    Pe =

    Steel # 1:

    L = 5.125 in = 0.4271 ftD

    t= 4 in = 0.3333 ft

    Dp

    = 0.125 in = 0.01042 ft

    cp

    = 0.111 Btu/lb-F

    = 7.83 x 62.4 = 488.6 lb/cu ft

    k = 26 Btu/hr-ft-deg F = 7.2222 x 10-3

    Btu/sec-ft-deg FG

    o= 0.15 lb/sec-sq ft

    ( )( )

    1391.2

    0.15

    488.60.4271

    G

    LN

    oLSl, ===

    ( )( )

    1085.7

    0.15

    488.60.3333

    G

    DN

    o

    tDSl, t

    ===

    ( )( )

    33.9414

    0.15

    488.60.01042

    G

    DN

    o

    pDSl, p

    ===

    ( )( )

    ( )( )107.07754

    107.2222488.6

    0.150.111

    k

    Gc

    N

    N 43

    22op

    Sl

    Pe

    =

    ==

    Table No. 1

    X1N LSl, = X2N

    tDSl,=

    X3N

    pDSl,=

    X4NN

    Sl

    Pe =

    y X1 X2 X3 X4

    0.1 300 4.637333 3.619000 0.113138 0.212326

    0.2 360 3.864444 3.015833 0.094282 0.254791

    0.3 380 3.661053 2.857105 0.089319 0.268947

    0.4 410 3.393171 2.648049 0.082784 0.290179

    0.5 450 3.091556 2.412667 0.075425 0.318489

    0.6 480 2.898333 2.261875 0.070711 0.339722

    0.7 510 2.727843 2.128824 0.066552 0.360955

    0.8 570 2.440702 1.904737 0.059546 0.403420

    0.9 650 2.140308 1.670308 0.052218 0.460040

    Steel # 2:

    L = 10.25 in = 0.8542 ftD

    t= 8 in = 0.6667 ft

    Dp

    = 0.25 in = 0.02083 ft

    cp

    = 0.111 Btu/lb-F

    = 7.83 x 62.4 = 488.6 lb/cu ft

    k = 26 Btu/hr-ft-deg F = 7.2222 x 10-3

    Btu/sec-ft-deg F

  • 7/29/2019 5 Dimensional Analysis

    6/12

    Chapter 5Dimensional Analysis

    Page 6 of 12

    Go

    = 0.15 lb/sec-sq ft

    ( )( )

    2782.4

    0.15

    488.60.8542

    G

    LN

    oLSl, ===

    ( )( )

    2171.7

    0.15

    488.60.6667

    G

    DN

    o

    tDSl, t

    ===

    ( )( )

    67.8503

    0.15

    488.60.02083

    G

    DN

    o

    pDSl, p

    ===

    ( )( )

    ( )( )107.07754

    107.2222488.6

    0.150.111

    k

    Gc

    N

    N 43

    22op

    Sl

    Pe

    =

    ==

    Table No. 1

    X1N LSl, = X2N

    tDSl,=

    X3N

    pDSl,=

    X4NN

    Sl

    Pe =

    y X1 X2 X3 X4

    0.1 600 4.637333 3.619500 0.113084 0.424652

    0.2 680 4.091765 3.193676 0.099780 0.481273

    0.3 740 3.760000 2.934730 0.091690 0.523738

    0.4 810 3.435062 2.681111 0.083766 0.573281

    0.5 890 3.126292 2.440112 0.076236 0.629901

    0.6 970 2.868454 2.238866 0.069949 0.686521

    0.7 1050 2.649905 2.068286 0.064619 0.743142

    0.8 1140 2.440702 1.905000 0.059518 0.806840

    0.9 1300 2.140308 1.670538 0.052193 0.920080

    Steel # 3:

    L = 5.125 in = 0.4271 ftD

    t= 4 in = 0.3333 ft

    Dp

    = 0.125 in = 0.01042 ft

    cp

    = 0.111 Btu/lb-F

    = 7.83 x 62.4 = 488.6 lb/cu ft

    k = 26 Btu/hr-ft-deg F = 7.2222 x 10-3

    Btu/sec-ft-deg FG

    o= 0.30 lb/sec-sq ft

    ( )( )

    695.6

    0.30

    488.60.4217

    G

    LN

    o

    LSl, ===

    ( )( )

    542.8

    0.30

    488.60.3333

    G

    DN

    o

    tDSl, t

    ===

    ( )( )

    16.97

    0.30

    488.60.01042

    G

    DN

    o

    pDSl, p

    ===

    ( )( )

    ( )( )102.83102

    107.2222488.6

    0.300.111

    k

    Gc

    N

    N3

    22op

    Sl

    Pe 3

    =

    ==

  • 7/29/2019 5 Dimensional Analysis

    7/12

    Chapter 5Dimensional Analysis

    Page 7 of 12

    Table No. 1

    X1N LSl, = X2N

    tDSl,=

    X3N

    pDSl,=

    X4NN

    Sl

    Pe =

    y X1 X2 X3 X4

    0.1 140 4.968571 3.877143 0.121214 0.396343

    0.2 160 4.347500 3.392500 0.106063 0.452963

    0.3 190 3.661053 2.856842 0.089316 0.537894

    0.4 205 3.393171 2.647805 0.082780 0.580359

    0.5 220 3.161818 2.467273 0.077136 0.622824

    0.6 240 2.898333 2.261667 0.070708 0.679445

    0.7 250 2.782400 2.171200 0.067880 0.707755

    0.8 300 2.318667 1.809333 0.056567 0.849306

    0.9 330 2.107879 1.644848 0.051424 0.934237

    Steel # 4:

    L = 2.56 in = 0.2134 ftD

    t= 2 in = 0.1667 ft

    Dp

    = 0.0625 in = 0.00521 ft

    cp

    = 0.111 Btu/lb-F

    = 7.83 x 62.4 = 488.6 lb/cu ft

    k = 26 Btu/hr-ft-deg F = 7.2222 x 10-3

    Btu/sec-ft-deg FG

    o= 0.30 lb/sec-sq ft

    ( )( )

    347.6

    0.30

    488.60.2134

    G

    LN

    o

    LSl, ===

    ( )( )

    271.5

    0.30

    488.60.1667

    G

    DN

    o

    tDSl, t

    ===

    ( )( )

    8.485

    0.30

    488.60.00521

    G

    DN

    o

    pDSl, p

    ===

    ( )( )

    ( )( )102.83102

    107.2222488.6

    0.300.111

    k

    Gc

    N

    N3

    22op

    Sl

    Pe 3

    =

    ==

    Table No. 1

    X1N LSl, = X2N

    tDSl,=

    X3N

    pDSl,=

    X4N

    N

    Sl

    Pe =

    y X1 X2 X3 X4

    0.4 100 3.476000 2.715000 0.084850 0.283102

    0.8 140 2.482857 1.939286 0.060607 0.396343

    0.9 170 2.044706 1.597059 0.049912 0.481273

  • 7/29/2019 5 Dimensional Analysis

    8/12

    Chapter 5Dimensional Analysis

    Page 8 of 12

    Lead:

    L = 9.55 in = 0.7958 ftD

    t= 8 in = 0.6667 ft

    Dp

    = 0.233 in = 0.01942 ft

    cp = 0.0347 Btu/lb-F = 11.34 x 62.4 = 707.6 lb/cu ft

    k = 19.5 Btu/hr-ft-deg F = 5.4167 x 10-3

    Btu/sec-ft-deg FG

    o= 0.30 lb/sec-sq ft

    ( )( )

    1877

    0.30

    707.60.7958

    G

    LN

    oLSl, ===

    ( )( )

    1572.5

    0.30

    707.60.6667

    G

    DN

    o

    tDSl, t

    ===

    ( )( )

    45.81

    0.30

    707.60.01942

    G

    DN

    o

    pDSl, p

    ===

    ( )( )

    ( )( )108.14797

    105.4167707.6

    0.300.0347

    k

    Gc

    N

    N3

    22op

    Sl

    Pe 4

    =

    ==

    Table No. 1

    X1N LSl, = X2N

    tDSl,=

    X3N

    pDSl,=

    X4N

    N

    Sl

    Pe =

    y X1 X2 X3 X4

    0.1 113 16.610619 13.915929 0.405398 0.0920720.2 133 14.112782 11.823308 0.344436 0.108368

    0.3 147 12.768707 10.697279 0.311633 0.119775

    0.4 162 11.586420 9.706790 0.282778 0.131997

    0.5 176 10.664773 8.934659 0.260284 0.143404

    0.6 191 9.827225 8.232984 0.239843 0.155626

    0.7 206 9.111650 7.633495 0.222379 0.167848

    0.8 222 8.454955 7.083333 0.206351 0.180885

    0.9 248 7.568548 6.340726 0.184718 0.202070 Glass:

    L = 9.71 in = 0.8092 ftD

    t= 8 in = 0.6667 ft

    Dp

    = 0.237 in = 0.01975 ft

    cp

    = 0.168 Btu/lb-F

    = 2.60 x 62.4 = 162.24 lb/cu ft

    k = 0.4 Btu/hr-ft-deg F = 1.1111 x 10-4

    Btu/sec-ft-deg FG

    o= 0.30 lb/sec-sq ft

    ( )( )

    437.6

    0.30

    162.240.8092

    G

    LN

    oLSl, ===

  • 7/29/2019 5 Dimensional Analysis

    9/12

    Chapter 5Dimensional Analysis

    Page 9 of 12

    ( )( )

    360.6

    0.30

    162.240.6667

    G

    DN

    o

    tDSl, t

    ===

    ( )( )

    10.68

    0.30

    162.240.01975

    G

    DN

    o

    pDSl, p

    ===

    ( )( )

    ( )( ) 0.838766101.1111162.240.300.168

    k

    Gc

    N

    N4

    22op

    Sl

    Pe

    ===

    Table No. 1

    X1N LSl, = X2N

    tDSl,=

    X3N

    pDSl,=

    X4N

    N

    Sl

    Pe =

    y X1 X2 X3 X4

    0.1 127 3.445669 2.839370 0.084094 106.523282

    0.2 149 2.936913 2.420134 0.071678 124.976134

    0.3 166 2.636145 2.172289 0.064337 139.235156

    0.4 182 2.404396 1.981319 0.058681 152.655412

    0.5 199 2.198995 1.812060 0.053668 166.914434

    0.6 215 2.035349 1.677209 0.049674 180.334690

    0.7 232 1.886207 1.554310 0.046034 194.593712

    0.8 250 1.750400 1.442400 0.042720 209.691500

    0.9 280 1.562857 1.287857 0.038143 234.854480

    By curve fitting:

    e2

    op

    c

    o

    pb

    o

    t

    a

    o rk

    Gc

    G

    D

    G

    D

    G

    Ly

    =

    = 0.003593a = -29.130232b = 30.947910c = -3.944493e = -0.394509

    Therefore:-0.394509

    2op

    -3.944493

    o

    p30.947910

    o

    t

    -29.130232

    o rk

    Gc

    G

    D

    G

    D

    G

    L0.003593y

    =

    5_004 Two metals, A and B, are being considered for use in constructing tuning forks which are to produce

    vibrations of a given frequency. What would be the ratio of the costs of the metal required for the two tuningforks, expressed as a function of the frequency, the physical properties of the metals, and the cost per unitmass of each metal (assumed independent of the quantity purchased)? The tuning forks are to begeometrically similar.

    Solution:

  • 7/29/2019 5 Dimensional Analysis

    10/12

    Chapter 5Dimensional Analysis

    Page 10 of 12

    Let R = ratio of the cost of the metals.f = frequency, HzU

    1, U

    2= cost per unit mass.

    Other properties:

    1,

    2= densities of material

    V1, V

    2= sound velocities

    ( )212121 U,U,V,V,,f,R = h

    2g

    1e

    2d

    1c

    2b

    1a UUVVfR =

    hgedc

    3

    b

    3

    a

    M

    1

    M

    1

    L

    L

    L

    M

    L

    M

    11

    =

    (1) : -a - d - e = 0

    (2) M: b + c - g - h = 0

    (3) L: -3b - 3c + d + e = 0

    (1) d + e = -a(2) -3b - 3c - a =

    b + c = -a / 3(3) b + c - g - h = 0

    g + h = -a / 3

    Then:

    ga2

    g1

    da2

    d1

    ba2

    b1

    a 31

    31

    UUVVfR

    =

    g

    2

    1

    d

    2

    1

    b

    2

    1

    a

    222U

    U

    V

    V

    UVr

    fR

    31

    31

    =

    g

    2

    1

    d

    2

    1

    b

    2

    13a

    23

    22

    3

    U

    U

    V

    V

    UVr

    fR

    =

    Therefore:

    =

    2

    1

    2

    1

    2

    1

    23

    22

    3

    U

    U

    V

    V

    UVr

    fR ,,,

  • 7/29/2019 5 Dimensional Analysis

    11/12

    Chapter 5Dimensional Analysis

    Page 11 of 12

    5_005 It is agreed to assume that the thermal conductivities of gases and vapors depend on the following factors:

    cp, specific heat at constant pressure; c

    v, specific heat at constant volume; , viscosity; T, absolute

    temperature; = /(p)T, coefficient of compressibility; b = /(T)

    p, coefficient of thermal expansion.

    List all conclusions which may be drawn from dimensional consideration. If one additional physical variablewere to be included, what should it be?

    Solution:

    unitsc

    p- Btu/lb-R

    cv

    - Btu/lb-R

    - sq ft / lb

    - 1/R

    additional variable is the viscositym - Btu/sec-ft-R

    MLTF system

    Hvp K,,,,c,ck = f

    Hedcb

    va

    p1 Kcck = f

    2edc

    2ba

    H

    ML

    L

    M

    T

    1

    M

    L

    MT

    H

    MT

    H

    LT

    H

    =

    (1) H: a + b - f = 1

    (2) : -e - f = -1e + f = 1

    (3) L: 2c - e + 2f = -1

    (4) T: -a - b - d = -1

    a + b + d = 1(5) M: -a - b - c + e + f = 0

    (1) and (4)-f = df = -d

    (5) -a - b - c + e + f = 0a + b + c - e - f = 0a + b + c -1 = 0a + b + c = 1

    (2) e = 1 - fe = 1 + de = 1 + c

    but c = 1 - a - b

    Then:a = ab = bc = 1 - a - bd = 1 - a - be = 1 + c = 2 - a - bf = a + b -1

  • 7/29/2019 5 Dimensional Analysis

    12/12

    Chapter 5Dimensional Analysis

    Page 12 of 12

    -1baH

    b-a-2b-a-1b-a-1bv

    ap1 Kcck

    +=

    =

    H

    b

    Hv

    a

    Hp1

    K

    Kc

    Kck

    KH

    = Jgc

    = (778)(32.2) = 25,000 (lb matter)(ft)2 / (Btu)(sec)2

    Final results.

    =

    Kc

    Kc

    K

    k Hv

    Hp

    H

    ,

    - end -