485lecture5.pdf

Upload: archana-tripathi

Post on 02-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 485Lecture5.pdf

    1/49

    Electrostatically Driven &Sensed MEMS Devices

    How theory from last lecture is

    applied in practice

    ECE/ME 485

    Lecture 5

    1

  • 7/27/2019 485Lecture5.pdf

    2/49

    Outline B i it r nfi r ti n

    Parallel plates

    Applications examples

    Actuators

    ow to counteract t e snap own e ect

    ECE/ME 485

    Lecture 5

    2

  • 7/27/2019 485Lecture5.pdf

    3/49

    Basic Principles Sensin

    capacitance between moving and fixed plates change as

    distance and position is changed

    media is replaced

    Actuation electrostatic force (attraction) between moving and fixed plates as

    a voltage is applied between them

    Two major configurations

    parallel plate capacitor (out of plane)

    interdi itated fin ers - IDT in lane

    dA

    ECE/ME 485

    Lecture 5

    3

    Parallel plate configuration

    Interdigitated finger configuration

  • 7/27/2019 485Lecture5.pdf

    4/49

    Examples Parallel Plate Capacitor

    ECE/ME 485

    Lecture 5

    4

  • 7/27/2019 485Lecture5.pdf

    5/49

    Parallel Plate Capacitor

    dAV

    E

    d

    Frin e electric field

    V

    QC

    AQE /

    (ignored in first order

    analysis)

    dd

    A

    Q

    QC

    Equations without considering fringe electric field.

    A note on fringe electric field: The fringe field is frequently

    ECE/ME 485

    Lecture 5

    5

    gnore n rs -or er ana ys s. s none e ess mpor an .Its effect can be captured accurately in finite elementsimulation tools.

  • 7/27/2019 485Lecture5.pdf

    6/49

    Fabrication Methods Surface micromachining

    Wafer bonding

    3D assembly

    Flip and

    Movable

    ECE/ME 485

    Lecture 5

    6

    Will discuss more details on fabrication later

  • 7/27/2019 485Lecture5.pdf

    7/49

    Forces of Capacitor Actuators

    Stored energy W 12

    CV2 1

    2

    Q2

    C

    Force is derivative of energywith respect to pertinent F

    W1 C

    V2

    Plug in the expression for Acapacto

    d

    for force

    W AV2 1

    1 A 2 1 CV2

    ECE/ME 485

    Lecture 5

    7

    d 2d d

    2 d2

    2 d

  • 7/27/2019 485Lecture5.pdf

    8/49

    Relative Merits of Capacitor Actuators

    Pros

    Nearly universal

    Cons

    Force and distanceinversel scaled - to

    no need for specialmaterials.

    obtain larger force, thedistance must be small.

    .driven by voltage, not

    current.

    ,vulnerable to particles

    as the spacing is small - High speed. Use

    charging anddischarging, therefore

    .

    Vulnerable to stickingphenomenon due to

    realizing full mechanicalresponse speed.

    mo ecuar orces. Occasionally, sacrificial

    release. Efficient and

    ECE/ME 485

    Lecture 5

    8

    clean removal of

    sacrificial materials.

  • 7/27/2019 485Lecture5.pdf

    9/49

    Capacitive Accelerometer

    Proof mass area 1x0.6 mm2,Device Operation

    Micromachined

    Fabrication Method

    .

    Net capacitance 150fF External IC signal

    J .C. Cole, A new sense

    accelerometer subsystems,Transducers91, pp. 93-06,1991

    ECE/ME 485

    Lecture 5

    9

  • 7/27/2019 485Lecture5.pdf

    10/49

    Sealed Cavity Pressure Sensor

    ECE/ME 485

    Lecture 5

    10

  • 7/27/2019 485Lecture5.pdf

    11/49

    Differential Capacitance Flow Sensor

    ECE/ME 485

    Lecture 5

    11

  • 7/27/2019 485Lecture5.pdf

    12/49

    Capacitive Tactile Sensors ens v y . p gram o

    normal force, 0.32 pF/gramto shear force.

    pa a reso u on . mm

    ECE/ME 485

    Lecture 5

    12

  • 7/27/2019 485Lecture5.pdf

    13/49

    Deformable Mirrors for Adaptive Optics

    ECE/ME 485

    Lecture 5

    13

  • 7/27/2019 485Lecture5.pdf

    14/49

    Deformable Mirrors for Adaptive Optics

    ECE/ME 485

    Lecture 5

    14

  • 7/27/2019 485Lecture5.pdf

    15/49

    Deformable Mirrors for Adaptive Optics

    2 m surface normal stroke

    for a 300 m square mirror, the displacement is 1.5

    T. Bifano, R. Mali, Boston University(http://www.bu.edu/mfg/faculty/homepages/bifano.html)

    ECE/ME 485

    Lecture 5

    15

  • 7/27/2019 485Lecture5.pdf

    16/49

    Adaptive Optics

    ECE/ME 485

    Lecture 5

    16

  • 7/27/2019 485Lecture5.pdf

    17/49

    Optical Micro Switches

    Texas InstrumentDLP

    capacitor support Two stable positions

    -respect to rest)

    All aluminum structure o process s eps

    above 300-350 oC toavoid damage to

    circuits

    ECE/ME 485

    Lecture 5

    17

  • 7/27/2019 485Lecture5.pdf

    18/49

    Digital Light Mirror Pixels

    center-to-center spacing

    Ga s are 1.0 m nominal Mirror transit time is

  • 7/27/2019 485Lecture5.pdf

    19/49

    Digital Micromirror Device (DMD)

    Mirror

    -10 degMirror

    +10 deg

    Hinge

    Yoke

    Substrate

    ECE/ME 485

    Lecture 519

  • 7/27/2019 485Lecture5.pdf

    20/49

    3 Pixel Image

    on Screen

    Light Source Projection

    Lens

    Light

    Absorber

    3 DMD

    ECE/ME 485

    Lecture 520

    Micromirrors(Actual Top

    View)

  • 7/27/2019 485Lecture5.pdf

    21/49

    3 Pixel Image

    on Screen

    Light Source Projection

    Lens

    Light

    Absorber

    3 DMD

    ECE/ME 485

    Lecture 521

    Micromirrors(Actual Top

    View)

  • 7/27/2019 485Lecture5.pdf

    22/49

    3 Pixel Image

    on Screen

    Light Source Projection

    Lens

    Light

    Absorber

    3 DMD

    ECE/ME 485

    Lecture 522

    Micromirrors(Actual Top

    View)

  • 7/27/2019 485Lecture5.pdf

    23/49

    DMD Pixel Exploded ViewDMD Pixel Exploded View

    Landing Tip Torsion HingeMirror Layer

    Mirror AddressElectrode

    Yoke

    Yoke and

    Yoke Address

    ElectrodeVia 2 Contact

    to CMOS

    Hinge Layer

    Bias/Reset Bus Landing Site

    Metal-3

    Layer

    Memory Cell

    (CMOS SRAM)

    ECE/ME 485

    Lecture 523

  • 7/27/2019 485Lecture5.pdf

    24/49

    Sensors and Actuators based

    MOVING SIDE

    ECE/ME 485

    Lecture 524

  • 7/27/2019 485Lecture5.pdf

    25/49

    ECE/ME 485

    Lecture 525

  • 7/27/2019 485Lecture5.pdf

    26/49

    ECE/ME 485Lecture 5

    26

  • 7/27/2019 485Lecture5.pdf

    27/49

    Interdigitated Comb Capacitance

    ECE/ME 485Lecture 5

    27

  • 7/27/2019 485Lecture5.pdf

    28/49

    Electric Field Profile

    ECE/ME 485Lecture 5

    28

    b i i

  • 7/27/2019 485Lecture5.pdf

    29/49

    Transverse Comb Drive Devices

    rec on o nger movemen s or ogona o e rec on o ngers. Pros: Frequently used for sensing for the sensitivity and ease of

    fabrication

    .

    0 CltNC

    )( 0

    0

    fsr Clt

    NC

    xx

    0

    ECE/ME 485Lecture 5

    29

  • 7/27/2019 485Lecture5.pdf

    30/49

    Longitudinal Comb Drive Actuators

    Total capacitance isproportional to the overlaplength and depth of the

    ,

    proportional to the distance.d

    Frequently used inactuators for its relatively

    long achievable drivings ance.

    Cons

    force output is a function of

    Ctot N[2

    0tx

    0

    d Cf ]

    .

    thicker the fingers, thelarger force it will be.

    Relatively large footprint.

    N = number of fingers (4 in above diagram)

    t= comb finger depth

    ECE/ME 485Lecture 5

    30

    Fx 0

    x

    1

    2

    CTOTV2

    NOTE CORRECTION!

  • 7/27/2019 485Lecture5.pdf

    31/49

    Devices Based on Transverse Comb Drive

    Analog Devices ADXL accelerometer A movable mass supported by cantilever beams

    move in response to acceleration in one specificdirection.

    Relevant to device performance sidewall vertical profile

    of -axis movement com ensation

    ECE/ME 485Lecture 5

    31

    temperature sensitivity

  • 7/27/2019 485Lecture5.pdf

    32/49

    Sandia electrostatically driven gears- translating linear motion into continuous rotary motion

    Longitudinal comb drive banks

    ec an ca

    springs

    Optical shutter

    ECE/ME 485Lecture 5

    32

    http://www.mdl.sandia.gov/micromachine/images11.html

  • 7/27/2019 485Lecture5.pdf

    33/49

    Where linear motion turns into rotary motion

    driving Disengaging

    ECE/ME 485Lecture 5

    33

  • 7/27/2019 485Lecture5.pdf

    34/49

    Sandia Gears Use five layer polysilicon toincrease the thickness t in

    actuators.

    Mechanical springs

    Positionlimiter

    ECE/ME 485Lecture 5

    34

  • 7/27/2019 485Lecture5.pdf

    35/49

    More Sophisticated Micro Gears

    ECE/ME 485Lecture 5

    35

  • 7/27/2019 485Lecture5.pdf

    36/49

    Actuators that Use Fringe Electric Field -

    Three phase electrostatic actuator. Arrows indicate electric field and electrostatic force.

    ECE/ME 485Lecture 5

    36

    .

  • 7/27/2019 485Lecture5.pdf

    37/49

    Three Phase Motor Operation Principle

    ECE/ME 485Lecture 5

    37

  • 7/27/2019 485Lecture5.pdf

    38/49

    Starting Position -> Apply voltage to

    ECE/ME 485Lecture 5

    38

  • 7/27/2019 485Lecture5.pdf

    39/49

    Motor tooth aligned to A -> Apply

    ECE/ME 485Lecture 5

    39

  • 7/27/2019 485Lecture5.pdf

    40/49

    M t t th li d t B A l

  • 7/27/2019 485Lecture5.pdf

    41/49

    Motor tooth aligned to B -> Apply

    ECE/ME 485Lecture 5

    41

    M t t th li d t A A l

  • 7/27/2019 485Lecture5.pdf

    42/49

    Motor tooth aligned to A -> Apply

    ECE/ME 485Lecture 5

    42

  • 7/27/2019 485Lecture5.pdf

    43/49

    Some variations

    Large out of plane rotation

    Low voltage

    near movemen

    ECE/ME 485Lecture 5

    43

    Actuators thatUse Fringe Field Micro Mirrors

  • 7/27/2019 485Lecture5.pdf

    44/49

    Actuators that Use Fringe Field - Micro Mirrors

    ECE/ME 485Lecture 5

    44R. Conant, A flat high freq scanning micromirror, IEEE Sen &Act

    Workshop, Hilton Head Island, 2000.

  • 7/27/2019 485Lecture5.pdf

    45/49

    Curled Hin e Comb Drives

    ECE/ME 485Lecture 5

    45

  • 7/27/2019 485Lecture5.pdf

    46/49

    Electrostatic Driven Leverage Actuator

    ECE/ME 485Lecture 5

    46

    u e a ., a ona s ng ua nvers y, rans ucers ,

    Implications of Pull in Effect

  • 7/27/2019 485Lecture5.pdf

    47/49

    Implications of Pull-in Effect

    Vsnap 8kgo

    3

    27Agsnap

    2

    3g0

    For electrostatic actuator, it is impossible to controlthe displacement through the full gap. Only 1/3 of

    .

    Electrostatic micro mirrors

    reduced range of reliable position tuning

    Electrostatic tunable capacitor

    reduced range of tuning and reduced tuning range

    unng s ance ess an , unng capac ance ess an

    50%.

    ECE/ME 485

    Lecture 5

    47

    C t ti P ll I Eff t

  • 7/27/2019 485Lecture5.pdf

    48/49

    Counteracting Pull-In Effect

    everage en ng or u ap os onng

    E. Hung, S. Senturia, Leveraged bending for full gap positioning with

    ECE/ME 485

    Lecture 5

    48

    , ,Island, p. 83, 2000.

    Counteracting Pull-in Effect: Variable Gap Capacitor

  • 7/27/2019 485Lecture5.pdf

    49/49

    Counteracting Pull in Effect: Variable Gap Capacitor

    x s ng una e apac or

    Suspension

    spring

    Counter

    capacitor plate

    Tuning range: 88%(with parasitic capacitance)

    0

    apac tor

    plate

    ctuat on

    electrode

    ctuat on

    electrode NEW DESIGN

    Sus ension

    Variable Gap Variable Capacitor

    spring

    capacitor

    plated0